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This revised second edition of Computational Fluid Dynamics represents a

significant improvement from the first edition. However, the original idea

of including all computational fluid dynamics methods (FDM, FEM, FVM);

all mesh generation schemes; and physical applications to turbulence, com-

bustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic

flow, and general relativity is maintained. This unique approach sets this book

apart from its competitors and allows the instructor to adopt this book as a

text and choose only those subject areas of his or her interest.

The second edition includes new sections on finite element EBE-GMRES

and a complete revision of the section on the flowfield-dependent variation

(FDV) method, which demonstrates more detailed computational processes

and includes additional example problems. For those instructors desiring a

textbook that contains homework assignments, a variety of problems for

FDM, FEM, and FVM are included in an appendix. To facilitate students

and practitioners intending to develop a large-scale computer code, an ex-

ample of FORTRAN code capable of solving compressible, incompressible,

viscous, inviscid, 1-D, 2-D, and 3-D for all speed regimes using the flowfield-

dependent variation method is available at http://www.uah.edu/cfd.

T. J. Chung is distinguished professor emeritus of mechanical and aerospace

engineering at the University of Alabama in Huntsville. He has also authored

General Continuum Mechanics and Applied Continuum Mechanics, both pub-
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Preface to the First Edition

This book is intended for the beginner as well as for the practitioner in computational

fluid dynamics (CFD). It includes two major computational methods, namely, finite

difference methods (FDM) and finite element methods (FEM) as applied to the nu-

merical solution of fluid dynamics and heat transfer problems. An equal emphasis on

both methods is attempted. Such an effort responds to the need that advantages and

disadvantages of these two major computational methods be documented and consoli-

dated into a single volume. This is important for a balanced education in the university

and for the researcher in industrial applications.

Finite volume methods (FVM), which have been used extensively in recent years,

can be formulated from either FDM or FEM. FDM is basically designed for structured

grids in general, but is applicable also to unstructured grids by means of FVM. New ideas

on formulations and strategies for CFD in terms of FDM, FEM, and FVM continue

to emerge, as evidenced in recent journal publications. The reader will find the new

developments interesting and beneficial to his or her area of applications. However,

the subject material is often inaccessible due to barriers caused by different training

backgrounds. Therefore, in this book, the relationship among all currently available

computational methods is clarified and brought to a proper perspective.

To the uninitiated beginner, this book will serve as a convenient guide toward the

desired destination. To the practitioner, however, preferences and biases built over the

years can be relaxed and redeveloped toward other possible options. Having studied all

methods available, the reader may then be able to pursue the most reasonable directions

to follow, depending on the specific physical problems of each reader’s own field of

interest. It is toward this flexibility that the present volume is addressed.

The book begins with Part One, Preliminaries, in which the basic principles of FDM,

FEM, and FVM are illustrated by means of a simple differential equation, each leading

to the identical exact solution. Most importantly, through these examples with step-by-

step hand calculations, the concepts of FDM, FEM, and FVM can be easily understood

in terms of their analogies and differences. The introduction (Chapter 1) is followed by

the general forms of governing equations, boundary conditions, and initial conditions

encountered in CFD (Chapter 2), prior to embarking on details of CFD methods.

Parts Two and Three cover FDM and FEM, respectively, including both histori-

cal developments and recent contributions. FDM formulations and solutions of vari-

ous types of partial differential equations are discussed in Chapters 3 and 4, whereas

xix
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the counterparts for FEM are covered in Chapters 8 through 11. Incompressible and

compressible flows are treated in Chapters 5 and 6 for FDM and in Chapters 12

through 14 for FEM, respectively. FVM is included in both Part Two (Chapter 7) and

Part Three (Chapter 15) in accordance with its original point of departure. Historical

developments are important for the beginner, whereas the recent contributions are in-

cluded as they are required for advanced applications given in Part Five. Chapter 16,

the last chapter in Part Three, discusses the detailed comparison between FDM and

FEM and other methods in CFD.

Full-scale complex CFD projects cannot be successfully accomplished without au-

tomatic grid generation strategies. Both structured and unstructured grids are included.

Adaptive methods, computing techniques, and parallel processing are also important

aspects of the industrial CFD activities. These and other subjects are discussed in

Part Four (Chapters 17 through 20).

Finally, Part Five (Chapters 21 through 27) covers various applications including

turbulence, reacting flows and combustion, acoustics, combined mode radiative heat

transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows.

It is intended that as many methods of CFD as possible be included in this text.

Subjects that are not available in other textbooks are given full coverage. Due to

a limitation of space, however, details of some topics are reduced to a minimum by

making a reference, for further elaboration, to the original sources.

This text has been classroom tested for many years at the University of Alabama in

Huntsville. It is considered adequate for four semester courses with three credit hours

each: CFD I (Chapters 1 through 4 and 8 through 11), CFD II (Chapters 5 through

7 and 12 through 16), CFD III (Chapters 17 through 20), and CFD IV (Chapters 21

through 27). In this way, the elementary topics for both FDM and FEM can be covered

in CFD I with advanced materials for both FDM and FEM in CFD II. FVM via FDM

and FVM via FEM are included in CFD I and CFD II, respectively. CFD III deals with

grid generation and advanced computing techniques covered in Part IV. Finally, the

various applications covered in Part V constitute CFD IV. Since it is difficult to study

all subject areas in detail, each student may be given an option to choose one or two

chapters for special term projects, more likely dictated by the expertise of the instructor,

perhaps toward thesis or dissertation topics.

Instead of providing homework assignments at the end of each chapter, some se-

lected problems are shown in Appendix E. An emphasis is placed on comparisons

between FDM, FEM, and FVM. Through these exercises, it is hoped that the reader

will gain appreciation for studying all available methods such that, in the end, advan-

tages and disadvantages of each method may be identified toward making decisions on

the most suitable choices for the problems at hand. Associated with Appendix E is a

Web site http://www.uah.edu/cfd that provides code (FORTRAN 90) for solutions of

some of the homework problems. The student may use this as a guide for programming

with other languages such as C++ for the class assignments.

More than three decades have elapsed since the author’s earlier book on FEM in

CFD was published [McGraw-Hill, 1978]. Recent years have witnessed great progress

in FEM, parallel with significant achievements in FDM. The author has personally

experienced the advantage of studying both methods on an equal footing. The purpose
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of this book is, therefore, to share the author’s personal opinion with the reader, wishing

that this idea may lead to further advancements in CFD in the future. It is hoped that

all students in the university will be given an unbiased education in all areas of CFD. It

is also hoped that the practitioners in industry will benefit from many alternatives that

may impact their new directions of future research in CFD applications.

In completing this text, the author recalls with sincere gratitude a countless number

of colleagues and students, both past and present. They have contributed to this book

in many different ways.

My association with Tinsley Oden has been an inspiration, particularly during the

early days of finite element research. Among many colleagues are S. T. Wu and Gerald

Karr, who have shared useful discussions in CFD research over the past three decades.

I express my sincere appreciation to Kader Frendi, who contributed to Sections 23.2

(pressure mode acoustics) and 23.3 (vorticity mode acoustics) and to Vladimir Kolobov

for Section 26.3.2 (semiconductor plasma processing).

My thanks are due to J. Y. Kim, L. R. Utreja, P. K. Kim, J. L. Sohn, S. K. Lee, Y. M.

Kim, O. Y. Park, C. S. Yoon, W. S. Yoon, P. J. Dionne, S. Warsi, L. Kania, G. R. Schmidt,

A. M. Elshabka, K. T. Yoon, S. A. Garcia, S. Y. Moon, L. W. Spradley, G. W. Heard,

R. G. Schunk, J. E. Nielsen, F. Canabal, G. A. Richardson, L. E. Amborski, E. K. Lee,

and G. H. Bowers, among others. They assisted either during the course of development

of earlier versions of my CFD manuscript or at the final stages of completion of this

book.

I would like to thank the reviewers for suggestions for improvement. I owe a debt

of gratitude to Lawrence Spradley, who read the entire manuscript, brought to my

attention numerous errors, and offered constructive suggestions. I am grateful to Francis

Wessling, Chairman of the Department of Mechanical & Aerospace Engineering, UAH,

who provided administrative support, and to S. A. Garcia and Z. Q. Hou, who assisted

in typing and computer graphics. Without the assistance of Z. Q. Hou, this text could

not have been completed in time. My thanks are also due to Florence Padgett, Engi-

neering Editor at Cambridge University Press, who has most effectively managed the

publication process of this book.

T. J. Chung



Preface to the Revised Second Edition

This revised second edition of Computational Fluid Dynamics represents a significant

improvement from the first edition. However, the original idea of including all com-

putational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes;

and physical applications to turbulence, combustion, acoustics, radiative heat transfer,

multiphase flow, electromagnetic flow, and general relativity is maintained. This unique

approach sets this book apart from its competitors and allows the instructor to adopt

this book as a text and choose only those subject areas of his or her interest.

The second edition includes new sections on finite element EBE-GMRES and a com-

plete revision of the section on the flowfield-dependent variation (FDV) method, which

demonstrates more detailed computational processes and includes additional example

problems. For those instructors desiring a textbook that contains homework assign-

ments, a variety of problems for FDM, FEM, and FVM are included in an appendix. To

facilitate students and practitioners intending to develop a large-scale computer code,

an example of FORTRAN code capable of solving compressible, incompressible, vis-

cous, inviscid, 1-D, 2-D, and 3-D for all speed regimes using the flowfield-dependent

variation method is available at http://www.uah.edu/cfd.

xxii



PART ONE

PRELIMINARIES

T
he dawn of the twentieth century marked the beginning of the numerical solu-

tion of differential equations in mathematical physics and engineering. Numer-

ical solutions were carried out by hand and using desk calculators for the first

half of the twentieth century, then by digital computers for the later half of the century.

In Section 1.1, a brief summary of the history of computational fluid dynamics (CFD)

will be given, along with the organization of text.

Before we proceed with details of CFD, simple examples are presented for the

beginner, demonstrating how to solve a simple differential equation numerically by

hand calculations (Sections 1.2 through 1.7). Basic concepts of finite difference meth-

ods (FDM), finite element methods (FEM), and finite volume methods (FVM) are

easily understood by these examples, laying a foundation or providing a motivation

for further explorations. Even the undergraduate student may be brought to an ad-

equate preparation for advanced studies toward CFD. This is the main purpose of

Preliminaries.

Furthermore, in Preliminaries, we review the basic forms of partial differential equa-

tions and some of the governing equations in fluid dynamics (Sections 2.1 and 2.2).

These include nonconservation and conservation forms of the Navier-Stokes system of

equations as derived from the first law of thermodynamics and are expressed in terms

of the control volume/surface integral equations, which represent various physical

phenomena such as inviscid/viscous, compressible/incompressible, subsonic/supersonic

flows, and so on.

Typical boundary conditions are briefly summarized, with reference to hyperbolic,

parabolic, and elliptic equations (Section 2.3). Examples of Dirichlet, Neumann, and

Cauchy (Robin) boundary conditions are also examined, with additional and more

detailed boundary conditions to be discussed later in the book.





CHAPTER ONE

Introduction

1.1 GENERAL

1.1.1 HISTORICAL BACKGROUND

The development of modern computational fluid dynamics (CFD) began with the ad-

vent of the digital computer in the early 1950s. Finite difference methods (FDM) and

finite element methods (FEM), which are the basic tools used in the solution of par-

tial differential equations in general and CFD in particular, have different origins. In

1910, at the Royal Society of London, Richardson presented a paper on the first FDM

solution for the stress analysis of a masonry dam. In contrast, the first FEM work was

published in the Aeronautical Science Journal by Turner, Clough, Martin, and Topp

for applications to aircraft stress analysis in 1956. Since then, both methods have been

developed extensively in fluid dynamics, heat transfer, and related areas.

Earlier applications of FDM in CFD include Courant, Friedrichs, and Lewy [1928],

Evans and Harlow [1957], Godunov [1959], Lax and Wendroff [1960], MacCormack

[1969], Briley and McDonald [1973], van Leer [1974], Beam and Warming [1978], Harten

[1978, 1983], Roe [1981, 1984], Jameson [1982], among many others. The literature on

FDM in CFD is adequately documented in many text books such as Roache [1972,

1999], Patankar [1980], Peyret and Taylor [1983], Anderson, Tannehill, and Pletcher

[1984, 1997], Hoffman [1989], Hirsch [1988, 1990], Fletcher [1988], Anderson [1995],

and Ferziger and Peric [1999], among others.

Earlier applications of FEM in CFD include Zienkiewicz and Cheung [1965], Oden

[1972, 1988], Chung [1978], Hughes et al. [1982], Baker [1983], Zienkiewicz and Taylor

[1991], Carey and Oden [1986], Pironneau [1989], Pepper and Heinrich [1992]. Other

contributions of FEM in CFD for the past two decades include generalized Petrov-

Galerkin methods [Heinrich et al., 1977; Hughes, Franca, and Mallett, 1986; Johnson,

1987], Taylor-Galerkin methods [Donea, 1984; Löhner, Morgan, and Zienkiewicz, 1985],

adaptive methods [Oden et al., 1989], characteristic Galerkin methods [Zienkiewicz

et al., 1995], discontinuous Galerkin methods [Oden, Babuska, and Baumann, 1998],

and incompressible flows [Gresho and Sani, 1999], among others.

There is a growing evidence of benefits accruing from the combined knowledge

of both FDM and FEM. Finite volume methods (FVM), because of their simple data

structure, have become increasingly popular in recent years, their formulations being

3
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related to both FDM and FEM. The flowfield-dependent variation (FDV) methods

[Chung, 1999] also point to close relationships between FDM and FEM. Therefore,

in this book we are seeking to recognize such views and to pursue the advantage of

studying FDM and FEM together on an equal footing.

Historically, FDMs have dominated the CFD community. Simplicity in formulations

and computations contributed to this trend. FEMs, on the other hand, are known to be

more complicated in formulations and more time-consuming in computations. However,

this is no longer the case in many of the recent developments in FEM applications. Many

examples of superior performance of FEM have been demonstrated. Our ultimate goal

is to be aware of all advantages and disadvantages of all available methods so that if

and when supercomputers grow manyfold in speed and memory storage, this knowledge

will be an asset in determining the computational scheme capable of rendering the most

accurate results, and not be limited by computer capacity. In the meantime, one may

always be able to adjust his or her needs in choosing between suitable computational

schemes and available computing resources. It is toward this flexibility and desire that

this text is geared.

1.1.2 ORGANIZATION OF TEXT

This book covers the basic concepts, procedures, and applications of computational

methods in fluids and heat transfer, known as computational fluid dynamics (CFD).

Specifically, the fundamentals of finite difference methods (FDM) and finite element

methods (FEM) are included in Parts Two and Three, respectively. Finite volume meth-

ods (FVM) are placed under both FDM and FEM as appropriate. This is because FVM

can be formulated using either FDM or FEM. Grid generation, adaptive methods, and

computational techniques are covered in Part Four. Applications to various physical

problems in fluids and heat transfer are included in Part Five.

The unique feature of this volume, which is addressed to the beginner and the prac-

titioner alike, is an equal emphasis of these two major computational methods, FDM

and FEM. Such a view stems from the fact that, in many cases, one method appears

to thrive on merits of other methods. For example, some of the recent develop-

ments in finite elements are based on the Taylor series expansion of conservation vari-

ables advanced earlier in finite difference methods. On the other hand, unstructured

grids and the implementation of Neumann boundary conditions so well adapted in finite

elements are utilized in finite differences through finite volume methods. Either finite

differences or finite elements are used in finite volume methods in which in some cases

better accuracy and efficiency can be achieved. The classical spectral methods may be

formulated in terms of FDM or they can be combined into finite elements to generate

spectral element methods (SEM), the process of which demonstrates usefulness in di-

rect numerical simulation for turbulent flows. With access to these methods, readers are

given the direction that will enable them to achieve accuracy and efficiency from their

own judgments and decisions, depending upon specific individual needs. This volume

addresses the importance and significance of the in-depth knowledge of both FDM

and FEM toward an ultimate unification of computational fluid dynamics strategies in

general. A thorough study of all available methods without bias will lead to this goal.

Preliminaries begin in Chapter 1 with an introduction of the basic concepts of all

CFD methods (FDM, FEM, and FVM). These concepts are applied to solve simple



1.1 GENERAL 5

one-dimensional problems. It is shown that all methods lead to identical results. In this

process, it is intended that the beginner can follow every step of the solution with simple

hand calculations. Being aware that the basic principles are straightforward, the reader

may be adequately prepared and encouraged to explore further developments in the

rest of the book for more complicated problems.

Chapter 2 examines the governing equations with boundary and initial conditions

which are encountered in general. Specific forms of governing equations and boundary

and initial conditions for various fluid dynamics problems will be discussed later in

appropriate chapters.

Part Two covers FDM, beginning with Chapter 3 for derivations of finite difference

equations. Simple methods are followed by general methods for higher order derivatives

and other special cases.

Finite difference schemes and solution methods for elliptic, parabolic, and hyper-

bolic equations, and the Burgers’ equation are discussed in Chapter 4. Most of the basic

finite difference strategies are covered through simple applications.

Chapter 5 presents finite difference solutions of incompressible flows. Artificial com-

pressibility methods (ACM), SIMPLE, PISO, MAC, vortex methods, and coordinate

transformations for arbitrary geometries are elaborated in this chapter.

In Chapter 6, various solution schemes for compressible flows are presented. Poten-

tial equations, Euler equations, and the Navier-Stokes system of equations are included.

Central schemes, first order and second order upwind schemes, the total variation dimin-

ishing (TVD) methods, preconditioning process for all speed flows, and the flowfield-

dependent variation (FDV) methods are discussed in this chapter.

Finite volume methods (FVM) using finite difference schemes are presented in

Chapter 7. Node-centered and cell-centered schemes are elaborated, and applications

using FDV methods are also included.

Part Three begins with Chapter 8, in which basic concepts for the finite element

theory are reviewed, including the definitions of errors as used in the finite element

analysis. Chapter 9 provides discussion of finite element interpolation functions.

Applications to linear and nonlinear problems are presented in Chapter 10 and

Chapter 11, respectively. Standard Galerkin methods (SGM), generalized Galerkin

methods (GGM), Taylor-Galerkin methods (TGM), and generalized Petrov-Galerkin

(GPG) methods are discussed in these chapters.

Finite element formulations for incompressible and compressible flows are treated in

Chapter 12 and Chapter 13, respectively. Although there are considerable differences

between FDM and FEM in dealing with incompressible and compresible flows, it is

shown that the new concept of flowfield-dependent variation (FDV) methods is capable

of relating both FDM and FEM closely together.

In Chapter 14, we discuss computational methods other than the Galerkin methods.

Spectral element methods (SEM), least squares methods (LSM), and finite point meth-

ods (FPM, also known as meshless methods or element-free Galerkin), are presented

in this chapter. Chapter 15 discusses finite volume methods with finite elements used as

a basic structure.

Finally, the overall comparison between FDM and FEM is presented in Chapter 16,

wherein analogies and differences between the two methods are detailed. Furthermore,

a general formulation of CFD schemes by means of the flowfield-dependent variation

(FDV) algorithm is shown to lead to most all existing computational schemes in FDM
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and FEM as special cases. Brief descriptions of available methods other than FDM,

FEM, and FVM such as boundary element methods (BEM), particle-in-cell (PIC) meth-

ods, Monte Carlo methods (MCM) are also given in this chapter.

Part Four begins with structured grid generation in Chapter 17, followed by unstruc-

tured grid generation in Chapter 18. Subsequently, adaptive methods with structured

grids and unstructured grids are treated in Chapter 19. Various computing techniques,

including domain decomposition, multigrid methods, and parallel processing, are given

in Chapter 20.

Applications of numerical schemes suitable for various physical phenomena are

discussed in Part Five (Chapters 21 through 27). They include turbulence, chemically

reacting flows and combustion, acoustics, combined mode radiative heat transfer, mul-

tiphase flows, electromagnetic flows, and relativistic astrophysical flows.

1.2 ONE-DIMENSIONAL COMPUTATIONS BY FINITE DIFFERENCE METHODS

In this and the following sections of this chapter, the beginner is invited to examine

the simplest version of the introduction of FDM, FEM, FVM via FDM, and FVM via

FEM, with hands-on exercise problems. Hopefully, this will be a sufficient motivation

to continue with the rest of this book.

In finite difference methods (FDM), derivatives in the governing equations are

written in finite difference forms. To illustrate, let us consider the second-order, one-

dimensional linear differential equation,

d2u
dx2

− 2 = 0 0 < x < 1 (1.2.1a)

with the Dirichlet boundary conditions (values of the variable u specified at the bound-

aries),{
u = 0 at x = 0

u = 0 at x = 1
(1.2.1b)

for which the exact solution is u = x2 − x.

It should be noted that a simple differential equation in one-dimensional space with

simple boundary conditions such as in this case possesses a smooth analytical solution.

Then, all numerical methods (FDM, FEM, and FVM) will lead to the exact solution

even with a coarse mesh. We shall examine that this is true for this example problem.

The finite difference equations for du/dx and d2u/dx2 are written as (Figure 1.2.1)(
du
dx

)
i
≈ ui+1 − ui

�x
forward difference (1.2.2a)

(
du
dx

)
i
≈ ui − ui−1

�x
backward difference (1.2.2b)(

du
dx

)
i
≈ ui+1 − ui−1

2�x
central difference (1.2.2c)

d2u
dx2

= d
dx

(
du
dx

)
∼= 1

�x

[(
du
dx

)
i+1

−
(

du
dx

)
i

]
= 1

�x

(
ui+1 − ui

�x
− ui − ui−1

�x

)
(1.2.3)
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Assume that the variable u(e)(x) is a linear function of x

u(e)(x) = �1 + �2x (1.3.1)

Write two equations from (1.3.1) for x = 0 (node 1) and for x = h (node 2) in terms

of the nodal values of variables, u(e)

1 and u(e)
2 , solve for the constants �1 and �2, and

substitute them back into (1.3.1). These steps lead to

u(e)(x) =
(

1 − x
h

)
u(e)

1 +
(

x
h

)
u(e)

2 = �
(e)
N (x)u(e)

N (N = 1, 2) (1.3.2)

where the repeated index implies summing, u(e)
N represents the nodal value of u at the

local node N for the element (e), and �
(e)
N (x) are called the local domain (element)

trial functions (alternatively known as interpolation functions, shape functions, or basis

functions),

�
(e)

1 (x) = 1 − x
h

, �
(e)
2 (x) = x

h
(1.3.3a)

0 ≤ �
(e)
N (x) ≤ 1 (1.3.3b)

These functions are shown in Figure 1.3.1d, indicating that trial functions assume the

value of one at the node under consideration and zero at the other node, linearly varying

in between.

There are many different ways to formulate finite element equations (as detailed

in Part Three). One of the simplest approaches is known as the Galerkin method. The

basic idea is to construct an inner product of the residual R(e) of the local form of the

governing equation (1.2.1a) with the test functions chosen the same as the trial functions

given by (1.3.3) and in (1.3.2):

(
�

(e)
N (x), R(e)

) =
∫ h

0

�
(e)
N (x)

(
d2u(e)(x)

dx2
− 2

)
dx = 0 (1.3.4)

This represents an orthogonal projection of the residual error onto the subspace spanned

by the test functions summed over the domain, which is then set equal to zero (implying

that errors are minimized), leading to the best numerical approximation of the solution

to the governing equation. Integrate (1.3.4) by parts to obtain

�
∗(e)

N
du
dx

∣∣∣∣
h

0

−
∫ h

0

d�
(e)
N (x)

dx
du(e)(x)

dx
dx −

∫ h

0

2�
(e)
N (x)dx = 0

or by using (1.3.2), we have

�
∗(e)

N
du
dx

∣∣∣∣
h

0

−
[∫ h

0

d�
(e)
N (x)

dx
d�

(e)
M (x)

dx
dx

]
u(e)

M −
∫ h

0

2�
(e)
N (x)dx = 0 (N, M = 1, 2)

(1.3.5)

This is known as the variational equation or weak form of the governing equa-

tion. Note that the second derivative in the given differential equation (1.2.1) has been

transformed into a first derivative in (1.3.5), thus referred to as “weakened.” This
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implies that, instead of solving the second order differential equation directly, we are to

solve the first order (weakened) integro-differential equation as given by (1.3.5), thus

leading to a weak solution, as opposed to a strong solution that represents the analyt-

ical solution of (1.2.1). The derivative du/dx in the first term is no longer the variable

within the domain, but it is the Neumann boundary condition (constant) to be specified

at x = 0 or x = h if so required. Likewise, the test function is no longer the function
of x, thus given a special notation �

∗(e)
N , called the Neumann boundary test function,

as opposed to the domain test function �
(e)
N (x). The Neumann boundary test function

assumes the value of 1 if the Neumann boundary condition is applied at node N, and 0

otherwise, similar to a Dirac delta function. This represents one of the limit values given

by (1.3.3b) at x = 0 or x = h, indicating that it is no longer the function of x within the

domain. Furthermore, appropriate direction cosines must be assigned, reduced from

two-dimensional configurations (Figure 8.2.3). Depending on the Neumann boun-

dary condition being applied on either the left-hand side (x = 0) or the right-hand side

(x = h), we obtain

du
dx

∣∣∣∣
x=0

= du
dx

cos �

∣∣∣∣
�=180◦

= −du
dx

,
du
dx

∣∣∣∣
x=h

= du
dx

cos �

∣∣∣∣
�=0◦

= du
dx

(1.3.6a)

To prove (1.3.6a), we must first refer to the 2-D geometry as shown in Figure 8.2.3, and

integration by parts is carried out as follows:∫∫
�

(e)
N (x)

d2u
dx2

dxdy ⇒
∫

�
∗(e)

N
du
dx

dy =
∫

�
∗(e)

N
du
dx

cos � d� = �
∗(e)

N
du
dx

cos �

= �
∗(e)

N
du
dx

∣∣∣∣
x=h,�=0◦

x=0,�=180◦
(1.3.6b)

in which only the integrated term is shown (omitting the differentiated term) and the di-

rection cosines for 1-D are applied at both ends of an element (� = 0◦ for x = h, � = 180◦

for x = 0). This represents the simplification of 2-D geometry into a 1-D problem.

Using a compact notation, we rewrite (1.3.5) as

K(e)
NM u(e)

M = F (e)
N + G(e)

N (N,M = 1, 2) (1.3.7)

This leads to a system of local algebraic finite element equations, consisting of the

following quantities [henceforth the functional representation (x) in the domain trial

and test functions will be omitted for simplicity unless confusion is likely to occur]:

Stiffness (Diffusion or Viscosity) Matrix (associated with the physics arising from the

second derivative term)

K(e)
NM =

∫ h

0

d�
(e)
N

dx
d�

(e)
M

dx
dx =

⎡
⎢⎢⎢⎢⎣

∫ h

0

d�
(e)

1

dx
d�

(e)

1

dx
dx

∫ h

0

d�
(e)

1

dx
d�

(e)
2

dx
dx

∫ h

0

d�
(e)
2

dx
d�

(e)

1

dx
dx

∫ h

0

d�
(e)
2

dx
d�

(e)
2

dx
dx

⎤
⎥⎥⎥⎥⎦

=
[

K(e)

11 K(e)

12

K(e)

21 K(e)
22

]
= 1

h

[
1 −1

−1 1

]
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Source Vector

F (e)
N = −

∫ h

0

2�
(e)
N dx = −h

[
1

1

]

Neumann Boundary Vector

G(e)
N = �

∗(e)
N

du
dx

∣∣∣∣
h

0

= �
∗(e)

N
du
dx

cos �

Contributions of local elements calculated above (e = 1, 2) can be assembled into

global nodes (�, � = 1, 2, 3) simply by summing the adjacent elemental contributions

to the global node shared by both elements. In this example, global node 2 is shared by

local node 2 of element 1 and local node 1 of element 2.

K�� =

⎡
⎢⎣ K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎥⎦ =

⎡
⎢⎢⎣

K(1)

11 K(1)

12 0

K(1)

21 K(1)
22 + K(2)

11 K(2)

12

0 K(2)

21 K(2)
22

⎤
⎥⎥⎦ = 1

h

⎡
⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤
⎦

(1.3.8)

F� =
⎡
⎣ F1

F2

F3

⎤
⎦ =

⎡
⎢⎢⎣

F (1)

1

F (1)
2 + F (2)

1

F (2)
2

⎤
⎥⎥⎦ = −h

⎡
⎣ 1

2

1

⎤
⎦ (1.3.9)

G� =
⎡
⎣ G1

G2

G3

⎤
⎦ =

⎡
⎢⎢⎣

G(1)

1

G(1)
2 + G(2)

1

G(2)
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

�
∗

1

�
∗

2

�
∗

3

⎤
⎥⎥⎦ du

dx
cos � =

⎡
⎢⎢⎢⎣

�
∗(1)

1

�
∗(1)

2 + �
∗(2)

1

�
∗(2)

2

⎤
⎥⎥⎥⎦ du

dx
cos �

=
⎡
⎣ 0

0

0

⎤
⎦ du

dx
cos � (1.3.10)

with �
∗

1 = �
∗

2 = �
∗

3 = 0 indicating that the Neumann boundary conditions are not to be

applied to any of the global nodes for the solution of (1.2.1a,b). This implies that, if the

Neumann boundary conditions are not applied, then the Neumann boundary vector is

zero even if the gradient du/dx is not zero. If the Neumann boundary conditions are to
be applied, then the boundary test function �

∗(e)
N assumes the value of one and the du/dx

as given is simply imposed at the node under consideration. This is a part of the FEM

formulation that makes the process more complicated than in FDM, but it is a distinct

advantage when the Neumann boundary conditions are to be specified exactly.

Notice that the 2 × 2 local stiffness matrices for element 1 and element 2 are over-

lapped (superimposed) at the global node 2 with the contributions algebraically summed

together,

K22 = K(1)
22 + K(2)

11
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and similarly,

F2 = F (1)
2 + F (2)

1 , G2 = G(1)
2 + G(2)

1

In view of the above, we obtain the final global algebraic equations in the form⎡
⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤
⎦

⎡
⎣ u1

u2

u3

⎤
⎦ = −h2

⎡
⎣ 1

2

1

⎤
⎦ (1.3.11)

It will be shown in Chapter 8 that the global finite element equations (1.3.11) may

be obtained directly from the global form of (1.3.4),

(��, R) =
∫ 1

0

��

(
d2u
dx2

− 2

)
dx = 0 (1.3.12)

which will lead to (1.3.11), or

K��u� = F� + G� (�, � = 1, 2, 3) (1.3.13)

Expanding (1.3.11) at the global node 2 yields

−u1 + 2u2 − u3 = −2h2 (h = �x) (1.3.14)

or

ui+1 − 2ui + ui−1

�x2
= 2 (1.3.15)

This result is identical to the FDM formulation (1.2.4).

The Galerkin finite element method described here is called the standard Galerkin

method (SGM). It works well for linear differential equations, but is not adequate for

nonlinear problems in fluid mechanics. In this case, the test functions must be of the

form different from the trial functions. This will be one of the topics to be discussed in

Part Three.

1.4 ONE-DIMENSIONAL COMPUTATIONS BY FINITE VOLUME METHODS

Finite volume methods (FVM) utilize the control volumes and control surfaces as de-

picted in Figure 1.4.1. The control volume for node i covers �x/2 to the right and left

of node i with the control surface being located at i − 1/2 and i + 1/2. Finite volume

formulations can be obtained either by a finite difference basis or a finite element basis.

The results are identical for one-dimensional problems.

1.4.1 FVM VIA FDM

The basic idea for the formulation of FVM is similar to the finite element method

(1.3.12) with the test function being set equal to unity, as applied to the differential

equation (1.2.1a),

(��, R) = (1, R) =
∫ 1

0

(1)

(
d2u
dx2

− 2

)
dx = 0, 0 < x < 1 (1.4.1)
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Figure 1.4.1 Finite volume approximations.

Integrating (1.4.1) yields

du
dx

∣∣∣∣
1

0

−
∫ 1

0

2dx = 0 (1.4.2a)

or

∑
CS1,2

�u
�x

−
∑
CV2

2�x = 0 (1.4.2b)

The integration limits of 0 and 1 are now replaced by discrete control surfaces (CS1

and CS2) between i − 1/2 and i + 1/2, and the source term is to be evaluated for the

control volume (CV2), with reference to Figure 1.4.1. This implies that du/dx in (1.4.2a)

is to be evaluated at the control surfaces and that the diffusion flux du/dx is conserved

between i − 1 and i through the control surface i − 1/2 or CS1 and between i and

i + 1 through the control surface i + 1/2 or CS2. This is accomplished when the control

surface equations are assembled at i − 1, i , and i + 1. This conservation property is the

most significant aspect of the finite volume methods.

To complete the illustrative process, (1.4.2) can be written using finite difference

representation for the control surfaces between i − 1/2 and i + 1/2 as

ui+1 − ui

�x
− ui − ui−1

�x
= 2�x

(CS2) (CS1) (CV2) (1.4.3)

Dividing (1.4.3) by �x, we obtain

ui+1 − 2ui + ui−1

�x2
= 2 (1.4.4)

which is identical to (1.2.4) for the finite difference method. Note that CV1 and CV3

do not contribute to this process since nodes i − 1 and i + 1 are the boundaries whose

influence is contained in (1.4.3) through control surfaces CS1 and CS2.
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1.4.2 FVM VIA FEM

In order to demonstrate that FVM can also be formulated by FEM, we evaluate du/dx
analytically from the trial functions (1.3.2), (Figure 1.3.1d), for the finite volume repre-

sentation of (1.4.2a),

u(e) = �
(e)
N u(e)

N =
(

1 − x
h

)
u(e)

1 + x
h

u(e)
2

or

du(e)

dx
= u(e)

2 − u(e)

1

h

so that, from (1.3.6), we obtain

du(1)

dx

∣∣∣∣
CS1

= u(1)
2 − u(1)

1

h
cos �

∣∣∣∣
�=180◦

= u(1)
2 − u(1)

1

h
(−1) (1.4.5)

du(2)

dx

∣∣∣∣
CS2

= u(2)
2 − u(2)

1

h
cos �

∣∣∣∣
�=0◦

= u(2)
2 − u(2)

1

h
(1) (1.4.6)

Here, CS1 provides the direction cosine, cos � = cos 180◦ = −1, whereas CS2 gives

cos � = cos 0◦ = 1, with reference to Figure 1.4.1.

Summing the fluxes through CS1 and CS2 at the control volume center (node 2) in

terms of the global nodes

∑
CS1,2

du
dx

= u2 − u1

h
(−1) + u3 − u2

h
(1) (1.4.7)

Note that, using (1.4.7), the finite volume representation (1.4.2) is given by

u3 − 2u2 + u1

�x2
= 2 (1.4.8)

Once again, the result is the same as all other previous analyses.

1.5 NEUMANN BOUNDARY CONDITIONS

So far, we have dealt with only the Dirichlet boundary conditions for numerical exam-

ples. However, it has been seen that the Neumann boundary condition, du/dx, arises

automatically from the finite element or finite volume formulations through integration

by parts. This information, if given as an input, may be implemented at the boundary

nodes under consideration. This is not the case for finite difference methods.

To demonstrate this point, let us return to the differential equation examined in

Section 1.2.

d2u
dx2

− 2 = 0 0 < x < 1 (1.5.1)
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with the following boundary conditions:

u(0) = 0 (Dirichlet) at x = 0 (1.5.2)

du
dx

(1) = 1 (Neumann) at x = 1 (1.5.3)

where it is reminded that the given differential equation (1.5.1) is described only

within the domain, 0 < x < 1, not including the boundaries, x = 0 and x = 1, which

are reserved for the specification of boundary conditions, either Dirichlet or Neumann.

Only when the governing equation is integrated are the boundary points (x = 0, x = 1)

needed and used.

In the following subsections, implementations of the Neumann boundary conditions

will be demonstrated.

1.5.1 FDM

One way to implement the Neumann boundary condition of the type (1.5.3) is to install

a phantom (ghost, imaginary, fictitious) node 4 as shown in Figure 1.5.1. Writing the

finite difference equation and the Neumann boundary condition (slope) at the boundary

node 3, we have

u4 − 2u3 + u2 = 2�x2 (1.5.4)

u4 − u2

2�x
= 1 (1.5.5)

Substitute (1.5.5) into (1.5.4),

2�x + u2 − 2u3 + u2 = 2�x2 (1.5.6)

Writing the finite difference equation at node 2, we have

u3 − 2u2 + u1 = 2�x2 (1.5.7)

Solve (1.5.6) and (1.5.7) simultaneously to obtain

u2 = −1/4, with u3 = 0

which is the exact solution. This is because the approximation given by (1.5.5) is rea-

sonable with respect to the exact solution. The phantom node method may give a large

1 2 3

i-1 +1

( )du

dx
1 = 1

Phantom
node

( )u 0 0=

i i

4

Figure 1.5.1 Installation of phantom node for Neumann bound-

ary condition in finite difference method.
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error if this is not the case, or if the solution is unsymmetric with respect to the interior

and phantom node.

Instead of using a phantom node, we may utilize the higher order finite difference

equation at the Neumann boundary node. For example, we use the second order accurate

finite difference formula for du/dx at node 3 (see Chapter 3 for derivation),(
du
dx

)
3

= 3u3 − 4u2 + u1

2�x
= 1 (1.5.8)

Solve u3 from the above and substitute the result into (1.5.7) and obtain once again the

exact solution u2 = −1/4, u3 = 0.

1.5.2 FEM

It follows from (1.3.6b) that, at the Neumann boundary node 3,

G(e)
N = �

∗(e)
N

du
dx

∣∣∣∣
h

0

, with �
∗(e)

3 = 1 (1.5.9a)

Thus

G3 = (1)
du
dx

∣∣∣∣
x=h

= (1)
du
dx

cos 0◦ = 1 (1.5.9b)

It follows from (1.3.11) that, having applied the Dirichlet boundary condition at node 1

(u(0) = 0), the global finite element equation becomes[
2 −1

−1 1

] [
u2

u3

]
= −h2

[
2

1

]
+ h

[
0

1

]
(1.5.10)

from which we obtain the exact solution u2 = −1/4 and u3 = 0. Notice that FEM ac-

commodates the Neumann boundary conditions exactly within the formulation itself,

not through those approximations required in FDM.

At this point it is important to realize that, if the Neumann boundary condition

du/dx = −1 is specified on the left end, then we have

G1 = du
dx

∣∣∣∣
x=0

= du
dx

cos 180◦ = (−1)(−1) = 1

Thus, we have[
1 −1

−1 2

] [
u1

u2

]
= −h2

[
1

2

]
+ h

[
1

0

]

This will once again give the exact solution, u1 = 0 and u2 = −1/4.

1.5.3 FVM VIA FDM

The finite volume equation is given by Figure 1.4.1,

du
dx

∣∣∣∣
i+ 1

2

i− 1
2

−
∫ i+ 1

2

i− 1
2

2dx = 0
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or in terms of finite differences at node 2,

u3 − u2

�x
− u2 − u1

�x
− 2�x = 0 (1.5.11)

at node 3,

du
dx

∣∣∣∣
3

− du
dx

∣∣∣∣
i+ 1

2

− 2
�x
2

= 0 or 1 − u3 − u2

�x
− 2

�x
2

= 0 (1.5.12)

Combining (1.5.11) and (1.5.12), we obtain[
2 −1

−1 1

] [
u2

u3

]
= −h2

[
2

1

]
+ h

[
0

1

]

It is interesting to note that this is identical to the FEM formulation (1.5.10). Solving, we

have the exact solution (u2 = −1/4, u3 = 0). In this manner, FVM via FDM is capable

of implementing the Neumann boundary conditions exactly, unlike FDM.

1.5.4 FVM VIA FEM

We return to (1.4.2a),

du
dx

∣∣∣∣
1

0

−
∫ 1

0

2dx = 0 (1.5.13)

where at node 2 we have, from (1.4.5) and (1.4.6),

du
dx

∣∣∣∣
1

0

−
∫ 1

0

2dx = du
dx

cos 180◦ + du
dx

cos 0◦ − 2h

or

u2 − u1

h
(−1) + u3 − u2

h
(1) − 2h = 0 (1.5.14)

at node 3,

du
dx

∣∣∣∣
2 1

2

+ du
dx

∣∣∣∣
3

− 2
h
2

= 0

or

u3 − u2

h
(−1) + 1 − h = 0 (1.5.15)

Combining (1.5.14) and (1.5.15), we have[
2 −1

−1 1

] [
u2

u3

]
=

[ −2h2

h − h2

]

This gives the exact solution, u2 = −1/4 and u3 = 0. Once again in FVM via FEM the

treatment of the Neumann boundary condition is precise.
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1.6 EXAMPLE PROBLEMS

Here we provide additional examples, illustrating further applications of boundary con-

ditions and including treatment of source terms.

1.6.1 DIRICHLET BOUNDARY CONDITIONS

Consider the three-element system as shown in Figure 1.6.1a to solve the differential

equation with the source term f (x),

d2u
dx2

− 2u = f (x) 0 < x < 1 (1.6.1)

f (x) = 4x2 − 2x − 4

subject to the Dirichlet boundary conditions:

u = 0 at x = 0

u = −1 at x = 1

whose exact solution is given by u = −2x2 + x.

FDM

Write FDE at nodes 2 and 3.

Node 2

u3 − 2u2 + u1

�x2
− 2u2 = f2

u3 − 2u2 + 0

(1/3)2
− 2u2 = 4

(
1

3

)2

− 2

(
1

3

)
− 4 = −38

9

9(u3 − 2u2) − 2u2 = −38

9

1 2 3 4

(a)

1 2 3 4

X X X 

θ = 180° θ = 0° 

θ = 180° θ = 0° 

h h 

(b)

Figure 1.6.1 Example problem, Dirichlet and

Neumann boundary conditions. (a) Three ele-

ments, four nodes for FDM and FEM.

(b) Direction cosines at control surfaces as a

result of integration by parts for FVM.
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Node 3

u4 − 2u3 + u2

(1/3)2
− 2u3 = 4

(
2

3

)2

− 2

(
2

3

)
− 4 = −32

9

9(−1 − 2u3 + u2) − 2u3 = −32

9

Combining, we have[−20 9

9 −20

] [
u2

u3

]
=

[
− 38

9
49
9

]
[

u2

u3

]
=

[
0.111

−0.222

]

These values represent the exact solution.

FEM

The local Galerkin finite element analog is given by∫ h

0

�
(e)
N

(
d2u
dx2

− 2u − f (x)

)
dx = 0

where the source term f (x) may be linearly approximated in the form

f (x) = �
(e)
N (x) f (e)

N

Integrating by part, the local algebraic equations are written as

K(e)
NMu(e)

M = F (e)
N + G(e)

N

where

K(e)
NM =

∫ h

0

(
d�

(e)
N

dx
d�

(e)
M

dx
+ 2�

(e)
N �

(e)
M

)
dx = 1

h

[
1 −1

−1 1

]
+ 2h

6

[
2 1

1 2

]

F (e)
N = C(e)

NM f (e)
M , C(e)

NM = −
∫ h

0

�
(e)
N �

(e)
M dx = −h

6

[
2 1

1 2

]
, G(e)

NM =
[

0

0

]

The local finite element equations are assembled into the global form,

K��u� = F� + G�

or ⎡
⎢⎢⎣

a b 0 0

b c b 0

0 b c b
0 0 b a

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ = −h

6

⎡
⎢⎢⎣

2 1 0 0

1 4 1 0

0 1 4 1

0 0 1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎦ + du

dx

⎡
⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎦

= −h
6

⎡
⎢⎢⎣

2 f1 + f2

f1 + 4 f2 + f3

f2 + 4 f3 + f4

f3 + 2 f4

⎤
⎥⎥⎦ = h

54

⎡
⎢⎢⎣

110

220

184

68

⎤
⎥⎥⎦
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with

a = (1/h) + (2h/3) = 29/9

b = −(1/h) + (2h/6) = −26/9,

c = 58/9

f� =

⎡
⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−4
− 38

9

− 32
9

−2

⎤
⎥⎥⎥⎦

The first and last equations are replaced by the Dirichlet boundary conditions u(0) = 0

and u(1) = −1, and the rest of the equations are modified as follows:

u1 = 0

cu2 + bu3 = F2

bu2 + cu3 + b (−1) = F3

u4 = −1

Rewriting the above in matrix form,⎡
⎢⎢⎣

1 0 0 0

0 c b 0

0 b c 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0

F2

F3

−1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

0

0

−b
0

⎤
⎥⎥⎦

The solution of the above equations again results in the exact solution,⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0

0.111

−0.222

−1

⎤
⎥⎥⎦

Notice that the first and last equations may be deleted and only the second and third

equations solved to once again arrive at the exact solution.

FVM via FDM

Finite volume methods require the use of control volumes and control surfaces

centered around a node. The governing differential equation is integrated similarly as

in finite element formulations, but with the test functions set equal to unity at a node

under consideration and zero elsewhere. At node 2 for control volume 1, we have

∫ xi + 1
2
=2 1

2

xi − 1
2
=1 1

2

(1)

[
d2u
dx2

− 2u − f (x)

]
dx = 0

du
dx

∣∣∣∣
2 1

2

1 1
2

−
∫ 2 1

2

1 1
2

2udx =
∫ 2 1

2

1 1
2

f (x)dx,
u3 − u2

�x
− u2 − u1

�x
− 2u2�x = f2�x
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Similarly, at node 3 for control volume 2

u4 − u3

�x
− u3 − u2

�x
− 2u3�x = f3�x

These equations are identical to FDM, giving the exact solution.

FVM via FEM

du
dx

∣∣∣∣
1

0

−
∫ 1

0

2udx =
∫ 1

0

f (x)dx

For control volume 1 with CS1 and CS2 involved, we have

∑
CS1,2

du
dx

= u2 − u1

h
(cos 180◦) + u3 − u2

h
(cos 0◦) = u2 − u1

h
(−1) + u3 − u2

h
(1)

u3 − 2u2 + u1

h
− 2u2h = f2h

or

u3 − 2u2 + u1

�x2
− 2u2 = f2

Similarly, for control volume 2 with CS1 and CS2 involved,

u4 − 2u3 + u2

�x2
− 2u3 = f3

It is seen that the result is identical to FVM via FDM.

1.6.2 NEUMANN BOUNDARY CONDITIONS

Here we demonstrate methods for treating the Neumann boundary conditions depend-

ing on the side of the boundary to which they are applied.

Neumann Boundary Condition Specified at Right End Node. Given the same differential

equation as in (1.6.1), Figure 1.6.1b:

d2u
dx2

− 2u = f (x) 0 < x < 1

f (x) = 4x2 − 2x − 4

subject to boundary conditions:

u = 0 at x = 0

du
dx

= −3 at x = 1

which has the exact solution:

u = −2x2 + x
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FDM

From the given Neumann boundary conditions without using the phantom node, we

have

u4 − u3

(1/3)
= −3, u4 = u3 − 1

with FDM equations at nodes 2 and 3 given by

u3 − 2u2 + u1

(1/3)2
− 2u2 = f2

u4 − 2u3 + u2

(1/3)2
− 2u3 = f3

Thus we obtain

9(u3 − 2u2 + 0) − 2u2 = −38

9

9(u3 − 1 − 2u3 + u2) − 2u3 = −32

9

or [−20 9

9 −11

] [
u2

u3

]
=

[
− 38

9

− 32
9

]
+

[
0

9

]
=

[
− 38

9

49
9

]

or [
u2

u3

]
=

[−0.018

−0.51

]
u4 = −1 − 0.51 = −1.51, 50% error

In order to improve the solution, we may use a three-element system with the phantom

node 5,

du
dx

∣∣∣∣
x=1

= −3 = u5 − u3

2�x
, u5 = u3 − 2

9u3 − 20u4 + 9u5 = f4

9u3 − 20u4 + 9(u3 − 2) = −2⎡
⎣−20 9 0

9 −20 9

0 18 −20

⎤
⎦

⎡
⎣u2

u3

u4

⎤
⎦ =

⎡
⎢⎣− 38

9

− 32
9

16

⎤
⎥⎦

This gives the exact solution

u1 = 0, u2 = 1/9, u3 = −2/9, u4 = −1

Another method is to use the second order accurate formula for du/dx [(3.2.5) or

(3.2.20) in Chapter 3] written at node 4,

3u4 − 4u3 + u2

2�x
= −3
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or with d2u/dx2 written at node 4 as(
du
dx

)
4

−
(

du
dx

)
4− 1

2

�x/2
= 2

�x

(
−3 − u4 − u3

�x

)

and combining with FDM equations written at nodes 2 and 3, we again obtain the exact

solution. The reader may verify that the solution deteriorates significantly if only two

elements are used. This is because the implementation of Neumann boundary con-

ditions is difficult in FDM, contrary to FEM, as shown in the next example.

FEM

The Neumann boundary conditions at x = 1 are written as

G(e)
N = �

∗
N

du
dx

∣∣∣∣
h

0

, G(2)
2 = (1)

(
du
dx

)
2

= −3

with �
∗

N = 0 everywhere except at the Neumann boundary node. Assembly of all contri-

butions of elements for the global stiffness matrix and the load vector for a two-element

system results in the following:[
c b
b a

] [
u2

u3

]
= −h

6

[
f 1 + 4 f2 + f3

f2 + 2 f3

]
= − 1

12

[−22

−8

]

with

a = (1/h) + (2h/3) = 2 + 1/3 = 7/3

b= −(1/h) + (h/3) = −2 + 1/6 = −11/6

c = 14/3

so that the final algebraic equations together with the Neumann boundary vector are

written as[
14
3

− 11
6

− 11
6

7
3

] [
u2

u3

]
= 1

12

[
22

8

]
+

[
0

−3

]

or [
u2

u3

]
=

[
0

−1

]

Once again, the exact solution has been obtained with only two elements.

FVM via FEM and FDM (two elements)

For node 3 via FEM, we have

du
dx

∣∣∣∣
2 1

2

+ du
dx

∣∣∣∣
3

− 2u3

h
2

= f3

h
2

u3 − u2

h
(−1) − 3 − 2u3

h
2

= −2

(
h
2

)
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Similarly, for node 3 via FDM, we obtain

du
dx

∣∣∣∣
3

2 1
2

− 2u3

h
2

= f3

h
2

−3 − u3 − u2

h
− 2u3

h
2

= −2

(
h
2

)

Thus, for both methods, we have[− 5
2

1

1 − 5
4

] [
u2

u3

]
=

[−1
5
4

]

or [
u2

u3

]
=

[
0

−1

]

It is seen that both methods give the same results.

Neumann Boundary Condition Specified at Left End Node. To demonstrate treatment of the

Neumann boundary condition if given at the left end node, we consider the following

data:

du
dx

= 1 at x = 0

u = −1 at x = 1

FDM

(1) Phantom node method (phantom node created, corresponding to u0)

u2 − u0

2�x
= 1

(2) Second order accurate formula for du/dx at node 1

−3u1 + 4u2 − u3

2�x
= 1

(3) d2u/dx2 written at node 1 as

−

(
du
dx

)
1

−
(

du
dx

)
1 1

2

�x
2

= −2

�x

(
1 − u2 − u1

�x

)

With either one of these three methods, we obtain the exact solution. The reader should

carry out the calculations for verification of the above results.

FEM⎡
⎣a b 0

b c b
0 b a

⎤
⎦

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣F1

F2

F3

⎤
⎦ +

⎡
⎢⎣�

∗
1

du
dx

∣∣∣
x=0

0

0

⎤
⎥⎦
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with

�
∗

1

du
dx

∣∣∣∣
x=0

= (1)
du
dx

cos(180◦) = (1)(1)(−1)

⎡
⎣ 2.333 −1.888 0

−1.888 4.666 −1.833

0 −1.833 2.333

⎤
⎦

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣ 1

1.833

0.666

⎤
⎦ +

⎡
⎣−1

0

0

⎤
⎦

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣ 0

0

−1

⎤
⎦

Note that, although du
dx (0) = 1 at the left end node, we obtain G1 = −1 because of the

direction cosine, cos 180◦ = −1. The reader is reminded that it is important to recognize

the role of direction cosines as depicted in Figure 8.2.3.

FVM via FEM

Node 1:
du
dx

∣∣∣∣
1

+ du
dx

∣∣∣∣
1 1

2

− 2u1

h
2

= f1

h
2

Node 2:
du
dx

∣∣∣∣
1 1

2

+ du
dx

∣∣∣∣
2 1

2

− 2u2h = f2h

Specifying the Neumann boundary data with correct direction cosine (−1), we obtain

Node 1: (1)(−1) + u2 − u1

h
(1) − 2u1

(
h
2

)
= −4

(
h
2

)

Node 2:
u2 − u1

h
(−1) + u3 − u2

h
(1) − 2u2h = −4h[− 5

4
1

1 − 5
2

] [
u1

u2

]
=

[
0

0

]

from which, again, we obtain the same results.

FVM via FDM

Node 1:
du
dx

∣∣∣∣
1 1

2

1

= u2 − u1

h
− 1

Node 2:
du
dx

∣∣∣∣
2 1

2

1 1
2

= u3 − u2

h
− u2 − u1

h

The formulation and results here are the same as in FVM via FEM.

1.7 SUMMARY

The purpose of this chapter was to acquaint the reader with all available computa-

tional methods through very simple one-dimensional linear second order differential
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There are differences and analogies (similarities) among all methods, irrespective

of geometric dimensions. Some of the relatively well known properties are listed below.

FDM

1. Easy to formulate.

2. For multidimensional problems, meshes must be structured in either two or

three dimensions. Curved meshes must be transformed into orthogonal cartesian

coordinates so that finite difference equations can be written on structured

cartesian meshes.

3. Neumann boundary conditions can only be approximated, not exactly enforced.

FEM

1. Underlying principles and formulations require a mathematical rigor.

2. Complex geometries and unstructured meshes are easily accommodated, no

coordinate transformations needed.

3. Neumann boundary conditions are enforced exactly.

FVM

1. Formulations can be based on either FDM or FEM.

2. Surface integrals of normal fluxes guarantee the conservation properties through-

out the domain.

3. Complex geometries and unstructured meshes are easily accommodated, no

coordinate transformations needed.

The above assessments are by no means complete; we shall examine more thor-

oughly all the details of each method in the remainder of this book. Advantages and

disadvantages are to be evaluated on a much broader basis.

Many of the problems in fluids and heat transfer are dominated by convection,

shock wave discontinuities, turbulence microscales, incompressibility, compressibility,

viscosity, etc. Thus the simple procedures shown in this chapter must be modified in

accordance with physical situations. These challenges are ahead of us. Our goal is to

explore all major computational methods using FDM, FEM, and FVM in the hope

that in the end the reader will have developed an insight and ability to choose the most

accurate, efficient, and suitable approaches to CFD in order to solve his or her problems

of interest.
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CHAPTER TWO

Governing Equations

2.1 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (PDEs) in general, or the governing equations in fluid

dynamics in particular, are classified into three categories: (1) elliptic, (2) parabolic,

and (3) hyperbolic. The physical situations these types of equations represent can be

illustrated by the flow velocity relative to the speed of sound as shown in Figure 2.1.1.

Consider that the flow velocity u is the velocity of a body moving in the quiescent fluid.

The movement of this body disturbs the fluid particles ahead of the body, setting off the

propagation velocity equal to the speed of sound a. The ratio of these two competing

speeds is defined as Mach number

M = u
a

For subsonic speed, M < 1, as time t increases, the body moves a distance, ut , which

is always shorter than the distance at of the sound wave (Figure 2.1.1a). The sound wave

reaches the observer, prior to the arrival of the body, thus warning the observer that

an object is approaching. The zones outside and inside of the circles are known as the

zone of silence and zone of action, respectively.

If, on the other hand, the body travels at the speed of sound, M = 1, then the observer

does not hear the body approaching him prior to the arrival of the body, as these two

actions are simultaneous (Figure 2.1.1b). All circles representing the distance traveled

by the sound wave are tangent to the vertical line at the position of the observer. For

supersonic speed, M > 1, the velocity of the body is faster than the speed of sound

(Figure 2.1.1c). The line tangent to the circles of the speed of sound, known as a Mach

wave, forms the boundary between the zones of silence (outside) and action (inside).

Only after the body has passed by does the observer become aware of it.

The governing equations for subsonic flow, transonic flow, and supersonic flow

are classified as elliptic, parabolic, and hyperbolic, respectively. We shall elaborate on

these equations below. Most of the governing equations in fluid dynamics are second

order partial differential equations. For generality, let us consider the partial differential

equation of the form [Sneddon, 1957] in a two-dimensional domain

A
∂2u
∂x2

+ B
∂2u
∂x∂y

+ C
∂2u
∂y2

+ D
∂u
∂x

+ E
∂u
∂y

+ Fu + G = 0 (2.1.1)

29
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Zone of 
Silence 
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Action 
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2a 

3a 
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Action 

ut at 

Mach Wave 

Current 
position 

(c)

Figure 2.1.1 Subsonic, sonic, and supersonic flows. (a) Subsonic (u < a, M< 1). (b) Sonic

(u = a, M= 1). (c) Supersonic (u > a, M> 1).

where the coefficients A, B, C, D, E, and F are constants or may be functions of both

independent and/or dependent variables. To assure the continuity of the first derivative

of u, ux ≡ ∂u/∂x and uy ≡ ∂u/∂y, we write

dux = ∂ux

∂x
dx + ∂ux

∂y
dy = ∂2u

∂x2
dx + ∂2u

∂x∂y
dy (2.1.2a)

duy = ∂uy

∂x
dx + ∂uy

∂y
dy = ∂2u

∂x∂y
dx + ∂2u

∂y2
dy (2.1.2b)

Here u forms a solution surface above or below the x − y plane and the slope dy/dx
representing the solution surface is defined as the characteristic curve.

Equations (2.1.1), (2.1.2a), and (2.1.2b) can be combined to form a matrix equation⎡
⎣ A B C

dx dy 0

0 dx dy

⎤
⎦

⎡
⎣ uxx

uxy

uyy

⎤
⎦ =

⎡
⎣ H

dux

duy

⎤
⎦ (2.1.3)

where

H = −
(

D
∂u
∂x

+ E
∂u
∂y

+ Fu + G
)

(2.1.4)

Since it is possible to have discontinuities in the second order derivatives of the

dependent variable along the characteristics, these derivatives are indeterminate. This
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Figure 2.1.2 Propagation of disturbance and

characteristics.

happens when the determinant of the coefficient matrix in (2.1.3) is equal to zero.∣∣∣∣∣∣
A B C

dx dy 0

0 dx dy

∣∣∣∣∣∣ = 0 (2.1.5)

which yields

A
(

dy
dx

)2

− B
(

dy
dx

)
+ C = 0 (2.1.6)

Solving this quadratic equation yields the equation of the characteristics in physical

space,

dy
dx

= −B ± √
B2 − 4AC

2A
(2.1.7)

Depending on the value of B2 − 4AC, characteristic curves can be real or imaginary.

For problems in which real characteristics exist, a disturbance propagates only over a

finite region (Figure 2.1.2). The downstream region affected by this disturbance at point

A is called the zone of influence. A signal at point A will be felt only if it originates from

a finite region called the zone of dependence of point A.

The second order PDE is classified according to the sign of the expression

(B2 − 4AC).

(a) Elliptic if B2 − 4AC < 0

In this case, the characteristics do not exist.

(b) Parabolic if B2 − 4AC = 0

In this case, one set of characteristics exists.

(c) Hyperbolic if B2 − 4AC > 0

In this case, two sets of characteristics exist.

Note that (2.1.1) resembles the general expression of a conic section,

AX2 + BXY + CY2 + DX + EY + F = 0 (2.1.8)

in which one can identify the following geometrical properties:

B2 − 4AC < 0 ellipse

B2 − 4AC = 0 parabola

B2 − 4AC > 0 hyperbola
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This is the origin of terms used for classification of partial differential equations.

Examples

(a) Elliptic equation

∂2u
∂x2

+ ∂2u
∂y2

= 0 (2.1.9)

A= 1, B = 0, C = 1

B2 − 4AC = −4 < 0

(b) Parabolic equation

∂u
∂t

− �
∂2u
∂x2

= 0 (� > 0) (2.1.10)

A= −�, B = 0, C = 0

B2 − 4AC = 0

(c) Hyperbolic equation

1-D First Order Wave Equation

∂u
∂t

+ a
∂u
∂x

= 0 (a > 0) (2.1.11)

1-D Second Order Wave Equation

Differentiating (2.1.11) with respect to x and t ,

∂2u
∂t∂x

+ a
∂2u
∂x2

= 0 (2.1.12a)

∂2u
∂t2

+ a
∂2u
∂t∂x

= 0 (2.1.12b)

Combining (2.1.12a) and (2.1.12b) yields

∂2u
∂t2

− a2 ∂2u
∂x2

= 0 (2.1.13)

where

A= 1, B = 0, C = −a2

B2 − 4AC = 4a2 > 0

(d) Tricomi equation

y
∂2u
∂x2

+ ∂2u
∂y2

= 0 (2.1.14)

A= y, B = 0, C = 1

B2 − 4AC = −4y

elliptic y > 0

parabolic y = 0

hyperbolic y < 0
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(e) 2-D small disturbance potential equation

(1 − M2)
∂2�

∂x2
+ ∂2�

∂y2
= 0 (2.1.15)

A= 1 − M2, B = 0, C = 1

B2 − 4AC = −4(1 − M2)

elliptic M < 1

parabolic M = 1

hyperbolic M > 1

In CFD applications, computational schemes and specification of boundary condi-

tions depend on the types of PDEs. In many cases, the governing equations in fluids and

heat transfer are of mixed types. For this reason, selections of computational schemes

and methods to apply boundary conditions are important subjects in CFD. We shall

examine them in detail for the remainder of this book.

2.2 NAVIER-STOKES SYSTEM OF EQUATIONS

Physics of fluids and heat transfer as a part of continuum mechanics has now been

well established. The nonconservation form of the governing equations in fluids can be

derived from the first law of thermodynamics, written as [Truesdell and Toupin, 1960;

Chung, 1996]

DK
Dt

+ DU
Dt

= M + Q (2.2.1)

where K, U, M, and Q denote the kinetic energy, internal energy, mechanical power,

and heat energy, respectively,

K =
∫

�

1

2
�vi vi d� (2.2.2)

U =
∫

�

�εd� (2.2.3)

M=
∫

�

�Fi vi d� +
∫

�

�i j v j ni d � (2.2.4)

Q=
∫

�

�rd� ±
∫

�

qi ni d � (2.2.5)

with

ε = cpT − p
�

(2.2.6a)

�i j = −p�i j + �i j (2.2.6b)

�i j = �(vi, j + v j,i ) − 2

3
�vk,k�i j (2.2.6c)

qi = ± kT,i (2.2.6d)
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where the repeated indices imply summing and the comma denotes partial derivatives

with respect to the independent variables xi , � represents the domain of the flowfield

with ni being the components of a vector normal to the boundary surface �, with � =
density per unit mass, vi = components of the velocity vector, ε = internal energy per

unit mass, Fi = components of body force vector, cp = specific heat at constant pressure,

�i j = total stress tensor, �i j = viscous stress tensor, � = coefficient of dynamic viscosity,

p = pressure, qi = heat flux, T = temperature, k = coefficient of thermal conductivity,

and r = heat supply per unit mass. Note that �i j denotes the Kronecker delta with �i j = 1

for i = j and �i j = 0 for i �= j .

The dynamic viscosity and thermal conductivity coefficients are functions of tem-

perature as given by Sutherland’s law,

� = C1T3/2

T + C2

(2.2.7)

k = C3T3/2

T + C4

(2.2.8)

with C1, C2, C3, and C4 being the constants for a given gas. For air at moderate

temperatures, we may use C1 = 1.458 × 10−6 kg/(m s K1/2), C2 = 110.4 K, C3 = 2.495 ×
10−3 kg m/(s3 K3/2), and C4 = 194 K.

Substituting (2.2.2) through (2.2.5) into (2.2.1) and using the Green-Gauss theorem,

we obtain the governing equations of continuity, momentum, and energy,

Continuity

∂�

∂t
+ (�vi ),i = 0 (2.2.9a)

Momentum

�
∂v j

∂t
+ �v j,i vi + p, j − �i j,i − � Fj = 0 (2.2.9b)

Energy

�
∂ε
∂t

+ �ε,i vi + pvi,i − �i j v j,i + qi,i − � r = 0 (2.2.9c)

with the equation of state

p = �RT (2.2.10)

where R is the specific gas constant. Note that equations (2.2.9a) through (2.2.9c) are

known as the nonconservation form of the Navier-Stokes system of equations for com-

pressible viscous flows.

The above equations may be recast in the so-called conservation form of the Navier-

Stokes system of equations,

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (2.2.11)
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where U, Fi , Gi , and B are the conservation flow variables, convection flux variables,

diffusion flux variables, and source terms, respectively

U =
⎡
⎣ �

�v j

� E

⎤
⎦ , Fi =

⎡
⎣ �vi

�vi v j + p�i j

�Evi + pvi

⎤
⎦ , Gi =

⎡
⎣ 0

−�i j

−�i j v j + qi

⎤
⎦ , B =

⎡
⎣ 0

�Fj

�r + �Fj v j

⎤
⎦

with E being the total (stagnation) energy,

E = ε + 1

2
v j v j (2.2.12a)

which is related by the pressure and temperature as

p = (	 − 1) �

(
E − 1

2
v j v j

)
(2.2.12b)

T = 1

cv

(
E − 1

2
v j v j

)
(2.2.12c)

with cv being the specific heat at constant volume. The Navier-Stokes system of equations

is simplified to the Euler equations if the diffusion flux variables Gi are neglected.

It should be noted that, upon differentiation as implied in (2.2.11), we recover the

nonconservation form of the Navier-Stokes system of equations given by (2.2.9).

On the other hand, integrating (2.2.11) spatially over the volume of the domain,∫
�

(
∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
− B

)
d� = 0 (2.2.13)

we obtain another form of governing equations,∫
�

(
∂U
∂t

− B
)

d� +
∫

�

(Fi + Gi )ni d� = 0 (2.2.14)

Note that the surface integral in (2.2.14) represents the convection and diffusion fluxes

through the control surfaces, which are in balance with ∂U/∂t and B inside the con-

trol volume. The surface integral in (2.2.14) has two important roles. First, it lays the

foundation for the finite volume methods (FVM). Second, it provides appropriate nu-

merical treatments for high gradient flows or discontinuities such as shock waves. Con-

servation properties across the discrete element boundary surfaces are satisfied if the

surface integral components in (2.2.14) are properly implemented in the numerical

solution.

Various types of fluid flows emerge from the Navier-Stokes system of equations in

nonconservation and conservation forms. In general, computational schemes are dic-

tated from the physics of flows characterized by special forms of the governing equations.

We have written the governing equations in fluid dynamics in three different ways.

Equations (2.2.9a) through (2.2.9c) derived from the First Law of Thermody-

namics (FLT) are the nonconservation form of the Navier-Stokes system of equa-

tions in terms of the primitive variables � , vi , p, T, whereas the Conservation form

of Navier-Stokes system (CNS) of (2.2.11) are written in terms of the conservation



36 GOVERNING EQUATIONS

variables U, Fi , and Gi . In contrast, the Control Volume-Surface (CVS) equations

(2.2.14) are expressed in volume and surface integral forms, but still in terms of the

conservation variables U, Fi , and Gi . All of these three different forms of the governing

equations represent certain types of numerical schemes to be developed, each playing

special roles in CFD.

The FLT equations are convenient when the primitive variables � , vi , p, T are to be

solved directly, whereas this is not possible if CNS or CVS equations are used. It is seen

that the conservation variables must be solved first with primitive variables extracted

indirectly. Despite this inconvenience, the CNS or CVS equations are preferred in many

CFD problems. For example, when the solution of density � is discontinuous, such as in

shock waves, the solution through FLT is difficult. On the other hand, the mass flow �vi

is a smooth function and so are all other conservation variables, whereby the solution of

CNS or CVS equations makes it possible to obtain discontinuous solution of primitive

variables (indirectly). So, the conclusion here is that we can use FLT if the solution

does not contain discontinuities such as in incompressible flows (no shock waves). This

is known as the pressure-based formulation. Otherwise, CNS or CVS equations can

be chosen, in which satisfactory results are assured in general, when the solution may

contain discontinuities such as in compressible flows. This is known as the density-based
formulation.

The Navier-Stokes system of equations as given by (2.2.11) may be simplified by

disregarding one or more equations and/or some of the terms of each equation. For

example, the momentum equations (2.2.9b) alone are often called the Navier-Stokes

equations, thus distinguished from the Navier-Stokes system of equations which includes

all equations (2.2.9a) through (2.2.9c). If all viscous terms are eliminated from the

Navier-Stokes system of equations, then the resulting equations are known as Euler

equations. The momentum equations without the pressure gradients are called the

Burgers’ equation. The Burgers’ equation can be inviscid linear (no viscosity terms

with convection terms being linearized), inviscid nonlinear, linear viscous, and nonlinear

viscous. Simpler forms of these equations will be treated in Chapter 4. The governing

equations for incompressible and compressible flows are discussed in Chapters 5 and 6

for FDM and Chapters 12 and 13 for FEM. More complicated governing equations are

the subjects of Chapters 21 through 27.

The Navier-Stokes system of equations can be modified into various different forms,

corresponding to particular physical phenomena, with the following subject areas in-

cluded: compressible viscous flow (Navier-Stokes system of equations), compressible

inviscid flow (diffusion terms are neglected), incompressible viscous flow (temporal

and spatial variations of density are neglected), incompressible inviscid flow (both dif-

fusion and density variations are neglected), vortex flow in terms of vorticity and stream

function, compressible inviscid flow in terms of velocity potential function, turbulence,

chemically reacting flows and combustion, acoustics, combined mode radiative heat

transfer, and two-phase flows, as summarized in Table 2.2.1.

The governing equations in fluids and heat transfer in general are of mixed types:

elliptic, parabolic, and hyperbolic partial differential equations. The presence or absence

of each of the terms in these equations will determine their specific classifications. It will

be shown throughout the book that numerical schemes depend on the types of partial
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Table 2.2.1 Various types of flows

Navier-Stokes System of Equations

Incompressible Compressible

Thin Shear
Layer

Parabolized
Navier-Stokes

Vorticity
Transport

Crocco
Equation

Burgers,

Equation

Euler Equation

Boundary 
Layer

Approximations

Stream
Function

Biharmonic
Equation

Stokes Equation
Creeping Flow

Full Potential
Equation

Turbulent
Flows

Small 
Perturbations

Reactive Flow
Acoustics
Radiative Heat Transfer
Multiphase Flow
Electromagnetic Flow

Rotational Inviscid
Viscous-
Inviscid

Interactions
Viscous

Incompressible Laminar Flows Compressible

differential equations. In general, physical phenomena dictate the types of equations to

be used, which are then accommodated by appropriate numerical schemes for solutions

of the equations.

The Navier-Stokes system of equations presented above is cast in the Eulerian co-

ordinates in which the current flowfield is fixed at the reference coordinates. In dealing

with multiphase flows, however, it is convenient to work with the Lagrangian coordi-

nates in which displacements of fluid or solid particles are tracked relative to the initial

reference coordinates. Both Eulerian and Lagrangian coordinates may be coupled in

dealing with certain physical phenomena. These and other topics of coordinate systems

are discussed in Section 16.4 and Chapter 25. Detailed mathematics of Eulerian and

Lagrangian coordinates are given in Chung [1996].

For flows coupled with magnetic and electric forces, it is necessary to solve the

Maxwell’s equations together with the modified Navier-Stokes system of equations.

Applications of these equations to coronal mass ejection and semiconductor plasma

processing are presented in Chapter 26.

The Navier-Stokes system of equations discussed in this section is based on the

macroscopic nonrelativistic continuum view. In dealing with extremely high velocities

such as occur in supernova explosions, the cosmic expansion, and cosmic singularity,
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however, the relativity principles based on the microscopic kinetic theory must be used.

The governing equations for the relativistic astrophysical flows and their numerical

solutions are discussed in Chapter 27.

2.3 BOUNDARY CONDITIONS

In Section 1.2 we dealt with boundary conditions for the second order differential

equation: Dirichlet boundary conditions (values of variables specified at boundaries)

and Neumann boundary conditions (derivatives of variables specified at boundaries).

In general, the boundary conditions are identified by constructing the inner product

of the residual of the given differential equation with an arbitrary function. For exam-

ple, consider the biharmonic fourth order partial differential equation of the stream

function 


�∇4
 − f = 0 (2.3.1)

which is obtained from the curl of the vector form of the two-dimensional momentum

equation (2.2.9b), with � = �/� and f being the nonlinear function of velocity gradients.

We shall demonstrate which boundary conditions are required for this equation. To

determine them, we construct an inner product of (2.3.1) with an arbitrary function �

[Chung, 1996]:

(�, �∇4
 − f ) =
∫

�

�(�
,i i j j − f )d� = 0 (2.3.2)

Integrate (2.3.2) by parts four times, successively,∫
�

��
,i i j n j d� −
∫

�

�, j �
,i i j d� −
∫

�

�f d� = 0

∫
�

��
,i i j n j d� −
∫

�

�, j �
,i i n j d� +
∫

�

�, j j �
 ,i i d� −
∫

�

�f d� = 0

∫
�

��
,i i j n j d� −
∫

�

�, j �
,i i n j d� +
∫

�

�, j j �
,i ni d� −
∫

�

�, j j i �
,i d�

−
∫

�

�f d� = 0

Finally,∫
�

(��
,i i j n j − �, j �
 ,i i n j + �, j j �
 ,i ni − �, j j i �
 ni )d�

+
∫

�

�, j j i i �
 d� −
∫

�

�f d� = 0 (2.3.3)

where the boundary conditions consist of two Neumann and two Dirichlet conditions:

Neumann Boundary Conditions


,i i j n j normal stress gradient

 ,i i n j normal velocity gradient

(2.3.4a)
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Dirichlet Boundary Conditions


 ,i ni normal velocity

 stream function

(2.3.4b)

It is seen that, for the 2mth order differential equation, the Neumann boundary con-

ditions are of the order 2m − 1, 2m − 2, . . . m and the Dirichlet boundary conditions

are of the order m − 1, m − 2, . . . 0. These boundary conditions are to be prescribed

on the boundary surfaces. Similarly, for the second order equation (∇2
 = 0), there is

one Neumann boundary condition (
,i ni ) and one Dirichlet boundary condition (
).

It was seen in Chapter 1 that the implementation of the Neumann boundary conditions

“naturally” arises in the formulation process of FEM, whereas in FDM they must be

carried out “manually” with appropriate forms of the difference equations.

Often, mixed Dirichlet and Neumann conditions (called Cauchy or Robin condi-

tions) are used. For example, for the second order differential equation such as in

combined conductive and convective heat transfer boundary conditions, we may write

�T + �
∂T
∂n

= 	 (2.3.5)

with

∂T
∂n

= (n · ∇)T = T,i ni = ∂T
∂x

n1 + ∂T
∂y

n2 + ∂T
∂z

n3 (2.3.6)

� = 0 Dirichlet

� = 0 Neumann

� �= 0, � �= 0 Cauchy/Robin

Note that the notation ∂T/∂n is misleading since n in this derivative is neither the unit

normal vector n, nor its components ni . However, this unfortunate notation has been

generally accepted in the literature.

For time dependent problems, we must provide initial conditions as well as boundary

conditions. Let us consider the case of hyperbolic, parabolic, and elliptic equations as

shown in Figure 2.3.1.

(1) Hyperbolic equations associated with Cauchy conditions in an open region

(Figure 2.3.1a).

Second Order Equation

∂2u
∂t2

− a2 ∂2u
∂x2

= 0 0 < x < 1 (2.3.7)

Two initial conditions given

{
u(x, 0) and

∂u
∂t

(x, 0)

Two boundary conditions given

{
u(0, t) or

∂u
∂x

(0, t)

{
u(1, t) or

∂u
∂x

(1, t)
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Figure 2.3.1 Initial and boundary conditions for hyperbolic, parabolic, and elliptic equations.

(a) Hyperbolic equations (two sets of characteristics), Cauchy conditions in open region for second

order equation. (b) Parabolic equations (one set of characteristics), Dirichlet or Neumann boundary

conditions in an open region. (c) Elliptic equations (no real characteristics), Dirichlet or Neumann

boundary conditions in closed region.

First Order Equation
∂u
∂t

+ a
∂u
∂x

= 0 0 < x < 1 (2.3.8)

One initial condition given

{
u(x, 0) or

∂u
∂t

(x, 0)

One boundary condition given at x = 0

{
u(0, t) or

∂u
∂x

(0, t)

(2) Parabolic equations associated with Dirichlet or Neumann conditions in an open

region (Figure 2.3.1b).

∂u
∂t

− �
∂2u
∂x2

= 0 0 < x < 1 (2.3.9)

One initial condition given

{
u(x, 0) or

∂u
∂t

(x, 0)
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Two boundary conditions given

{
u(0, t) or

∂u
∂x

(0, t){
u(1, t) or

∂u
∂x

(1, t)

(3) Elliptic equations associated with Dirichlet or Neumann conditions in a closed

region (Figure 2.3.1c).

∂2u
∂x2

+ ∂2u
∂y2

= 0 in � (2.3.10)

Two boundary conditions given

u on �D

∂u
∂n

on �N

where �D and �N denote the Dirichlet and Neumann boundaries, respectively.

In general, more complicated boundary and initial conditions are required for CFD.

Discussions on detailed boundary conditions for the Euler equations and the Navier-

Stokes system of equations in FDM will be presented in Section 6.7, various aspects

of boundary conditions associated with FEM in Sections 10.1.2, 11.1, and 13.6.6, and

special boundary conditions for multiphase flows in Section 22.2.6.

2.4 SUMMARY

The basic properties of partial differential equations have been described and clas-

sified as elliptic, parabolic, and hyperbolic equations. The Navier-Stokes system of

equations which represents mixed elliptic, parabolic, and hyperbolic partial differ-

ential equations can be written in three different forms: first law of thermodynam-

ics (FLT) nonconservation form, conservation form of Navier-Stokes system (CNS),

and control volume-surface integral form (CVS). The nonconservation form of the

Navier-Stokes system of equations is derived from the first law of thermodynamics

(FLT) written in terms of primitive variables, suitable for low-speed incompressible

flows in which the solution surfaces are relatively smooth and not discontinuous.

The conservation form of the Euler equations or Navier-Stokes (CNS) system of

equations, on the other hand, is convenient for discontinuities such as in shock

waves, thus suitable for high-speed compressible flows. Another conservation form

is the control volume-surface (CVS) integral equations, applicable for the finite

volume methods in which conservation requirements through discrete interior bound-

ary surfaces as well as the exterior boundary surfaces are self-enforced. Relation-

ships of these three forms of the Navier-Stokes system of equations have been

mathematically linked together, traced back to the first law of thermodynamics

[Chung, 1996].

The governing equations presented in this chapter are based on the Eulerian coor-

dinates, which are fixed on the reference coordinates in which velocity components

of fluid particles are calculated at any fixed point rather than tracing the particles
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downstream. In some problems, however, it is convenient to use the Lagrangian co-

ordinates where the coordinate points are allowed to move together with fluid parti-

cles such as in multiphase flows. This subject will be discussed in Section 16.4.2 and

Chapter 25.

In this chapter, we also discussed the boundary conditions for simple geometries and

simple physics. The general method of identifying the existence of Neumann and Dirich-

let boundary conditions of higher order partial differential equations was demonstrated.

However, in reality, determination of boundary conditions is a difficult task in multi-

dimensional, complex geometrical configurations with complex physical phenomena.

Applications of boundary conditions will be the subject of discussion throughout the

remainder of this book.
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PART TWO

FINITE DIFFERENCE METHODS

P
art Two presents the finite difference methods (FDM) and topics related to

finite difference approximations. The subjects to be covered here include basic

concepts of finite difference theory, various formulation strategies, and appli-

cations to incompressible and compressible flows. Finite volume methods (FVM) via

FDM are also presented.

Although FDM as applied to CFD is widespread and many textbooks are available,

the purpose of Part Two is to make detailed comparisons with other methods such as

finite element methods (FEM) to be presented in Part Three (particularly in Chapter 16)

for the benefit of the beginner and the practitioner alike. Historical developments,

traditional treatments of finite difference methods, and some recent advancements are

presented for this reason.

Chapter 3 discusses derivations of finite difference equations, followed in Chapter 4

by various finite difference schemes for solutions of elliptic, parabolic, hyperbolic, and

Burgers’ equations. General fluid dynamics problems of incompressible and compress-

ible flows are presented in Chapters 5 and 6, respectively. Finally, finite volume

methods (FVM) via FDM are discussed in Chapter 7.





CHAPTER THREE

Derivation of Finite Difference Equations

The basic idea of finite difference methods is simple: derivatives in differential equations

are written in terms of discrete quantities of dependent and independent variables,

resulting in simultaneous algebraic equations with all unknowns prescribed at discrete

mesh points for the entire domain.

In fluid dynamics applications, appropriate types of differencing schemes and suit-

able methods of solution are chosen, depending on the particular physics of the flows,

which may include inviscid, viscous, incompressible, compressible, irrotational, rota-

tional, laminar, turbulent, subsonic, transonic, supersonic, or hypersonic flows. Dif-

ferent forms of the finite difference equations are written to conform to these different

physical phenomena encountered in fluid dynamics.

In this chapter, we present various methods for deriving finite difference equations

of low and high orders of accuracy. Truncation errors, as related to the orders of accuracy

involved in the approximations, will also be discussed.

3.1 SIMPLE METHODS

Consider a function u(x) and its derivative at point x,

∂u(x)

∂x
= lim

�x→0

u(x + �x) − u(x)

�x
(3.1.1)

If u(x + �x) is expanded in Taylor series about u(x), we obtain

u(x + �x) = u(x) + �x
∂u(x)

∂x
+ (�x)2

2

∂2u(x)

∂x2
+ (�x)3

3!

∂3u(x)

∂x3
+ · · · (3.1.2)

Substituting (3.1.2) into (3.1.1) yields

∂u(x)

∂x
= lim

�x→0

(
∂u(x)

∂x
+ �x

2

∂2u(x)

∂x2
+ · · ·

)
(3.1.3)

Or it is seen from (3.1.2) that

u(x + �x) − u(x)

�x
= ∂u(x)

∂x
+ �x

2

∂2u(x)

∂x2
+ · · · = ∂u(x)

∂x
+ O(�x) (3.1.4)

45
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The derivative
∂u(x)
∂x in (3.1.4) is of first order in �x, indicating that the truncation

error O(�x) goes to zero like the first power in �x. The finite difference form given by

(3.1.1), (3.1.3), and (3.1.4) is said to be of the first order accuracy.

Referring to Figure 1.2.1, we may write u in Taylor series at i + 1 and i − 1,

ui+1 = ui + �x
(

∂u
∂x

)
i
+ �x2

2

(
∂2u
∂x2

)
i
+ �x3

3!

(
∂3u
∂x3

)
i
+ �x4

4!

(
∂4u
∂x4

)
i
+ · · · (3.1.5)

ui−1 = ui − �x
(

∂u
∂x

)
i
+ �x2

2

(
∂2u
∂x2

)
i
− �x3

3!

(
∂3u
∂x3

)
i
+ �x4

4!

(
∂4u
∂x4

)
i
+ · · · (3.1.6)

Rearranging (3.1.5), we arrive at the forward difference:(
∂u
∂x

)
i
= ui+1 − ui

�x
+ O(�x) (3.1.7)

Likewise, from (3.1.6), we have the backward difference:(
∂u
∂x

)
i
= ui − ui−1

�x
+ O(�x) (3.1.8)

A central difference is obtained by subtracting (3.1.6) from (3.1.5):(
∂u
∂x

)
i
= ui+1 − ui−1

2�x
+ O(�x2) (3.1.9)

It is seen that the truncation errors for the forward and backward differences are first

order, whereas the central difference yields a second order truncation error.

Finally, by adding (3.1.5) and (3.1.6), we have

ui+1 − 2ui + ui−1

�x2
=

(
∂2u
∂x2

)
i
+ (�x)2

12

(
∂4u
∂x4

)
i
+ · · · (3.1.10)

This leads to the finite difference formula for the second derivative with second order

accuracy,(
∂2u
∂x2

)
i
= ui+1 − 2ui + ui−1

�x2
+ O(�x2) (3.1.11)

Note that these results were intuitively obtained in Section 1.2 by approximations

of slopes of a curve, without the notion of truncation errors.

3.2 GENERAL METHODS

In general, finite difference equations may be generated for any order derivative with

any number of points involved (any order accuracy). For example, let us consider a first

derivative associated with three points such that(
∂u
∂x

)
i
= aui + bui−1 + cui−2

�x
(3.2.1)
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The coefficients a, b, c may be determined from a Taylor series expansion of upstream

nodes ui−1 and ui−2 about ui (one-sided upstream or backward difference)

ui−1 = ui + (−�x)

(
∂u
∂x

)
i
+ (−�x)2

2

(
∂2u
∂x2

)
i
+ (−�x)3

3!

(
∂3u
∂x3

)
i
+ · · · (3.2.2a)

ui−2 = ui + (−2�x)

(
∂u
∂x

)
i
+ (−2�x)2

2

(
∂2u
∂x2

)
i
+ (−2�x)3

3!

(
∂3u
∂x3

)
i
+ · · · (3.2.2b)

from which we obtain

aui + bui−1 + cui−2 = (a + b + c)ui − �x(b + 2c)

(
∂u
∂x

)
i

+ �x2

2
(b + 4c)

(
∂2u
∂x2

)
i
+ O(�x3) (3.2.3)

It follows from (3.2.1) and (3.2.3) that the following three conditions must be satisfied:

a + b + c = 0 (3.2.4a)

b + 2c = −1 (3.2.4b)

b + 4c = 0 (3.2.4c)

The solution of (3.2.4) yields a = 3/2, b = −2, and c = 1/2. Thus, from (3.2.1) we obtain(
∂u
∂x

)
i
= 3ui − 4ui−1 + ui−2

2�x
+ O(�x2) (3.2.5)

If the downstream nodes ui+1 and ui+2 are used (one-sided downstream or forward

difference), then we have(
∂u
∂x

)
i
= −3ui + 4ui+1 − ui+2

2�x
+ O(�x2) (3.2.6)

A similar approach may be used to determine the finite difference formula for a

second derivative. In view of (3.2.3) and setting

a + b + c = 0 (3.2.7a)

b + 2c = 0 (3.2.7b)

b + 4c = 2 (3.2.7c)

we obtain(
∂2u
∂x2

)
i
= ui − 2ui−1 + ui−2

�x2
+ �x

∂3u
∂x3

+ · · · (3.2.8)

This implies that the one-sided formula provides only the first order accuracy in contrast

to the two-sided formula, which gives the second order accuracy as seen in (3.1.11).

The foregoing procedure may be transformed into a systematic form in terms of

“displacement” and “difference” operators so that difference formulas may be obtained

with a preselected order of accuracy [Hildebrand, 1956; Kopal, 1961; Collatz, 1966],

among others. These results are summarized next.
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Forward Difference Formulas

The Taylor series expansion (3.1.2) may be written in terms of the displacement

operator E and the derivative operator D,

Eu(x) = [1 + �xD + (�xD)2/2! + (�xD)3/3! + · · ·] u(x) (3.2.9)

with Du = ∂u
∂x , E = e�xD, and D = 1

�x ln E. These definitions lead to the first derivative

of u at i in the form(
∂u
∂x

)
i
= 1

�x
ln(1 + �+)ui = 1

�x

(
�+ − �+2

2
+ �+3

3
− �+4

4
+ · · ·

)
ui (3.2.10)

where �+ is the forward difference operator,

�+ = E − 1, �+ui = ui+1 − ui (3.2.11)

with E being defined such that

Eui = ui+1, Enui = ui+n (3.2.12)

It is now obvious that the order of accuracy increases with the number of terms kept on

the right-hand side of (3.2.10) given by(
∂u
∂x

)
i
= 1

�x

(
(E − 1) − (E − 1)2

2
+ (E − 1)3

3
− (E − 1)4

4
+ · · ·

)
ui (3.2.13)

which leads to

First Order Accuracy(
∂u
∂x

)
i
= ui+1 − ui

�x
− �x

2

∂2u
∂x2

(3.2.14)

Second Order Accuracy(
∂u
∂x

)
i
= −3ui + 4ui+1 − ui+2

2�x
+ �x2

3

∂3u
∂x3

(3.2.15)

Backward Difference Formulas

A backward difference formula can be derived similarly in the form(
∂u
∂x

)
i
= −1

�x
ln(1 − �−)ui = 1

�x

(
�− + �−2

2
+ �−3

3
+ �−4

4
+ · · ·

)
ui

= 1

�x

[
(1 − E−1) + (1 − E−1)2

2
+ (1 − E−1)3

3
+ (1 − E−1)4

4
+ · · ·

]
ui

(3.2.16)

where �− is the backward difference operator,

�− = 1 − E−1, �−ui = ui − ui−1 (3.2.17)

with

E−1ui = ui−1 (3.2.18)
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These definitions lead to the following schemes:

First Order Accuracy(
∂u
∂x

)
i
= ui − ui−1

�x
+ �x

2

∂2u
∂x2

(3.2.19)

Second Order Accuracy(
∂u
∂x

)
i
= 3ui − 4ui−1 + ui−2

2�x
+ �x2

3

∂3u
∂x3

(3.2.20)

Central Difference Formulas

The central difference formulas are derived using the following definitions:

�ui = ui+1/2 − ui−1/2 = (
E1/2 − E−1/2

)
ui (3.2.21)

with

� = e�xD/2 − e−�xD/2 = 2 sinh(�xD/2) (3.2.22)

which leads to the first derivative of u at i in the form(
∂u
∂x

)
i
= 1

�x

(
2 sinh−1 �

2

)
ui = 1

�x

(
� − �3

24
+ 3�5

640
− 5�7

7168
+ · · ·

)
ui (3.2.23)

With these definitions, we obtain

Second Order Accuracy (with the first term)(
∂u
∂x

)
i
=

ui+ 1
2
− ui− 1

2

�x
− �x2

24

∂3u
∂x3

(3.2.24)

Fourth Order Accuracy (with the first two terms)(
∂u
∂x

)
i
= 1

24�x

(−ui+ 3
2
+ 27ui+ 1

2
− 27ui− 1

2
+ ui− 3

2

) + 3

640
�x4 ∂5u

∂x5
(3.2.25)

The half-integer mesh points may be avoided by choosing(
∂u
∂x

)
i
= 1

�x

(
�̄ − �̄3

3!
+ 32

5!
�̄5 + · · ·

)
ui (3.2.26)

where �̄ is the alternative central difference operator such that

�̄ui = 1

2
(E − E−1) ui = 1

2
(ui+1 − ui−1) (3.2.27)

These definitions provide

Second Order Accuracy(
∂u
∂x

)
i
= ui+1 − ui−1

2�x
− (�x)2

6

∂3u
∂x3

(3.2.28)

Fourth Order Accuracy(
∂u
∂x

)
i
= −ui+2 + 8ui+1 − 8ui−1 + ui−2

12�x
+ �x4

30

∂5u
∂x5

(3.2.29)
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3.3 HIGHER ORDER DERIVATIVES

Finite difference formulas for higher-order derivatives may be derived using the op-

erator technique similarly to the one employed for the first order derivative. Let us

consider the forward difference relation given by (3.2.10) and extend it to higher order

derivatives as(
∂nu
∂xn

)
i
= 1

�xn
[ln(1 + �+)]nui

= 1

�xn

[
�+n − n

2
�+(n+1) + n(3n + 5)

24
�+(n+2)

− n(n + 2)(n + 3)

48
�+(n+3) + · · ·

]
ui (3.3.1)

Similarly for the backward difference, we write(
∂nu
∂xn

)
i
= −1

�xn
[ln(1 − �−)]nui

= 1

�xn

(
�− + �−2

2
+ �−3

3
+ · · ·

)n

ui

= 1

�xn

[
�−n + n

2
�−(n + 1) + n(3n + 5)

24
�−(n + 2)

+ n(n + 2)(n + 3)

48
�−(n+3) + · · ·

]
ui (3.3.2)

The central difference formulas are in the form(
∂nu
∂xn

)
i
=

(
2

�x
sinh−1 �

2

)n

ui

= 1

�xn

[
� − �3

24
+ 3�5

640
− 5�7

7168
+ · · ·

]n

ui

= 1

�xn
�n

[
1 − n

24
�2 + n

64

(
22 + 5n

90

)
�4

− n
45

(
5

7
+ n − 1

5
+ (n − 1)(n − 2)

35

)
�6 + · · ·

]
ui (3.3.3)

If n is even, the difference formulas are obtained at the integer mesh points. If n is

uneven, however, the difference formulas involve half-integer mesh points. In order to

maintain the integer mesh points, we may use(
∂nu
∂xn

)
i
= �(

1 + �2

4

) 1
2

(
2

�x
sinh−1 �

2

)n

ui

= �
�n

�xn

[
1 − n + 3

24
�2 + 5n2 + 52n + 135

5760
�4 + · · ·

]
ui (3.3.4)



3.3 HIGHER ORDER DERIVATIVES 51

where

� =
(

1 + �2

4

) 1
2

Based on these formulas, we summarize the second, third, and fourth order derivatives

below.

Second Order Derivative (n == 2)(
∂2u
∂x2

)
i
= 1

�x2

(
�+2 − �+3 + 11

12
�+4 − 5

6
�+5 + · · ·

)
ui , from (3.3.1) (3.3.5a)

(
∂2u
∂x2

)
i
= 1

�x2

(
�−2 + �−3 + 11

12
�−4 + 5

6
�−5 + · · ·

)
ui , from (3.3.2) (3.3.5b)

(
∂2u
∂x2

)
i
= 1

�x2

(
�2 − �4

12
+ �6

90
− �8

560
+ · · ·

)
ui , from (3.3.3) (3.3.5c)

(
∂2u
∂x2

)
i
= �

�x2

(
�2 − 5�4

24
+ 259

5760
�6 + O(�x8)

)
ui , from (3.3.4) (3.3.5d)

Forward Difference

First Order Accuracy(
∂2u
∂x2

)
i
= 1

�x2
(ui+2 − 2ui+1 + ui ) − �x

∂3u
∂x3

(3.3.6)

Second Order Accuracy(
∂2u
∂x2

)
i
= 1

�x2
(2ui − 5ui+1 + 4ui+2 − ui+3) + 11

12
�x2 ∂4u

∂x4
(3.3.7)

Backward Difference

First Order Accuracy(
∂2u
∂x2

)
i
= 1

�x2
(ui − 2ui−1 + ui−2) + �x

∂3u
∂x3

(3.3.8)

Second Order Accuracy(
∂2u
∂x2

)
i
= 1

�x2
(2ui − 5ui−1 + 4ui−2 − ui−3) − 11

12
�x2 ∂4u

∂x4
(3.3.9)

Central Difference

Second Order Accuracy(
∂2u
∂x2

)
i
= 1

�x2
(ui+1 − 2ui + ui−1) − �x2

12

∂4u
∂x4

(3.3.10)

Fourth Order Accuracy(
∂2u
∂x2

)
i
= 1

12�x2
(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2) + �x4

90

∂6u
∂x6

(3.3.11)
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Central Difference – Half Integer Points

Second Order Accuracy(
∂2u
∂x2

)
i
= 1

2�x2

(
ui+ 3

2
− ui+ 1

2
− ui− 1

2
+ ui− 3

2

) − 5

24
�x2 ∂4u

∂x4
(3.3.12)

Fourth Order Accuracy(
∂2u
∂x2

)
i
= 1

48�x2

(−5ui+ 5
2
+ 39ui+ 3

2
− 34ui+ 1

2
− 34ui− 1

2
+ 39ui− 3

2
− 5ui− 5

2

)

+ 259

5760
�x4 ∂6u

∂x6
(3.3.13)

Note that the last scheme requires six mesh points to achieve the fourth order accuracy,

whereas for the same accuracy, the scheme given by (3.3.11) requires only five mesh

points.

Third Order Derivative (n == 3)

Forward Difference

First Order Accuracy(
∂3u
∂x3

)
i
= 1

�x3
(ui+3 − 3ui+2 + 3ui+1 − ui ) − �x

2

∂4u
∂x4

(3.3.14)

Second Order Accuracy(
∂3u
∂x3

)
i
= 1

2�x3
(−3ui+4 + 14ui+3 − 24ui+2 + 18ui+1 − 5ui ) + 21

12
�x2 ∂5u

∂x5
(3.3.15)

Backward Difference

First Order Accuracy(
∂3u
∂x3

)
i
= 1

�x3
(ui − 3ui−1 + 3ui−2 − ui−3) + �x

2

∂4u
∂x4

(3.3.16)

Second Order Accuracy(
∂3u
∂x3

)
i
= 1

2�x3
(5ui − 18ui−1 + 24ui−2 − 14ui−3 + 3ui−4) − 21

12
�x2 ∂5u

∂x5
(3.3.17)

Central Difference

Second Order Accuracy(
∂3u
∂x3

)
i
= 1

2�x3
(ui+2 − 2ui+1 + 2ui−1 − ui−2) − 1

4
�x2 ∂5u

∂x5
(3.3.18)

Fourth Order Accuracy(
∂3u
∂x3

)
i
= 1

8�x3
(−ui+3 + 8ui+2 − 13ui+1 − 13ui−1 − 8ui−2 + ui−3) + 7

120
�x4 ∂7u

∂x7

(3.3.19)
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Central Difference – Half Integer Points

Second Order Accuracy(
∂3u
∂x3

)
i
= 1

�x3

(
ui+ 3

2
− 3ui+ 1

2
+ 3ui− 1

2
− ui− 3

2

) − �x2

8

∂5u
∂x5

(3.3.20a)

Fourth Order Accuracy(
∂3u
∂x3

)
i
= 1

8�x3

(−ui+ 5
2
+ 13ui+ 3

2
− 34ui+ 1

2
+ 34ui− 1

2
− 13ui− 3

2
+ ui− 5

2

)

+ 37

1920
�x4 ∂7u

∂x7
(3.3.20b)

Fourth Order Derivative

Forward Difference (first order accuracy)(
∂4u
∂x4

)
i
= 1

�x4
(ui+4 − 4ui+3 + 6ui+2 − 4ui+1 + ui ) − 2�x

∂5u
∂x5

(3.2.21)

Backward Difference (first order accuracy)(
∂4u
∂x4

)
i
= 1

�x4
(ui − 4ui−1 + 6ui−2 − 4ui−3 + ui−4) + 2�x

∂5u
∂x5

(3.2.22)

Central Difference (second order accuracy)(
∂4u
∂x4

)
i
= 1

�x4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2) − �x2

6

∂6u
∂x6

(3.2.23)

Various order finite difference formulas up to fourth order derivatives are summarized

in Table 3.3.1.

3.4 MULTIDIMENSIONAL FINITE DIFFERENCE FORMULAS

Multidimensional finite difference formulas can be derived using the results of one-

dimensional formulas. For two-dimensions, we consider

xi = x0 + i�x

yj = y0 + j�y

as defined in Figure 3.4.1. The forward and backward operators are now given by �±
x

and �±
y for x- and y-directions, respectively. The first partial derivatives in the x- and

y-directions are(
∂u
∂x

)
i j

= 1

�x
�+

x ui j + O(�x) = ui+1, j − ui, j

�x
+ O(�x) (3.4.1)

(
∂u
∂y

)
i j

= 1

�y
�+

y ui j + O(�x) = ui, j+1 − ui, j

�y
+ O(�y) (3.4.2)
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Table 3.3.1 Various Order Finite Difference Formulas

(a) Forward Difference, O(�x) (d) Forward Difference, O(�x2)

ui ui+1 ui+2 ui+3 ui+4 ui ui+1 ui+2 ui+3 ui+4 ui+5

�x
∂u
∂x

–1 1 2�x
∂u
∂x

–3 4 –1

�x2
∂2u
∂x2

1 –2 1 �x2
∂2u
∂x2

2 –5 4 –1

�x3
∂3u
∂x3

–1 3 –3 1 2�x3
∂3u
∂x3

–5 18 –24 14 –3

�x4
∂4u
∂x4

1 –4 6 –4 1 �x4
∂4u
∂x4

3 –14 26 –24 11 –2

(b) Backward Difference, O(�x) (e) Backward Difference, O(�x2)

ui –4 ui−3 ui−2 ui−1 ui ui –5 ui−4 ui−3 ui−2 ui−1 ui

�x
∂u
∂x

–1 1 2�x
∂u
∂x

1 –4 3

�x2
∂2u
∂x2

1 –2 1 �x2
∂2u
∂x2

–1 4 –5 2

�x3
∂3u
∂x3

–1 3 –3 1 2�x3
∂3u
∂x3

3 –14 24 –18 5

�x4
∂4u
∂x4

1 –4 6 –4 1 �x4
∂4u
∂x4

–2 11 –24 26 –14 3

(c) Central Difference, O(�x2) (f) Central Difference, O(�x4)

ui –2 ui−1 ui ui+1 ui+2 ui –3 ui –2 ui –1 ui ui+1 ui+2 ui+3

2�x
∂u
∂x

–1 0 1 12�x
∂u
∂x

1 –8 0 8 –1

�x2
∂2u
∂x2

1 –2 1 12�x2
∂2u
∂x2

–1 16 –30 16 –1

2�x3
∂3u
∂x3

–1 2 0 2 1 8�x3
∂3u
∂x3

1 –8 13 0 –13 8 –1

�x4
∂4u
∂x4

1 –4 6 –4 1 6�x4
∂4u
∂x4

–1 12 –39 56 –39 12 –1

Similarly, the second order central difference formulas for the second order derivatives

are of the form

(
∂2u
∂x2

)
i j

= ui+1, j − 2ui, j + ui−1, j

�x2
− �x2

12

∂4u
∂x4

(3.4.3)

(
∂2u
∂y2

)
i j

= ui, j+1 − 2ui, j + ui, j−1

�y2
− �y2

12

∂4u
∂x4

(3.4.4)
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(i−1, j+1) (i, j+1)

(i−1, j)
(i, j)

(i−1, j−1)

(i+1, j+1)

(i+1, j−1)

(i+1, j)

(i, j-1)

Figure 3.4.1 Two-dimensional mesh.

Let us now consider the Laplace equation

∇2u = ∂2u
∂x2

+ ∂2u
∂y2

= 0

whose finite difference formula is obtained as the sum of (3.4.3) and (3.4.4), resulting

in a five-point scheme

�ui j =
(

�2
x

�x2
+ �2

y

�y2

)
ui j = ui−1, j − 2ui, j + ui+1, j

�x2
+ ui, j−1 − 2ui, j + ui, j+1

�y2

+ O(�x2, �y2) (3.4.5a)

For �x = �y

�(1)ui j = ui+1, j + ui−1, j + ui, j−1 + ui, j+1 − 4ui, j

�x2
− �x2

12

(
∂4u
∂x4

+ ∂4u
∂y4

)
(3.4.5b)

as graphically shown in Figure 3.4.2a.

An alternative representation of (3.4.5a) is given by

�(2)ui j =
[(

1

�x
�y�x

)2

+
(

1

�y
�x�y

)2
]

ui j

=
[

1

4�x2

(
Ey + 2 + E−1

y

)(
Ex − 2 + E−1

x

)
+ 1

4�y2

(
Ex + 2 + E−1

x

)(
Ey − 2 + E−1

y

)]
ui j (3.4.6)

1 

1 1 

1 

-4 1 

1 

1 

1 -4 

(a) (b)

Figure 3.4.2 Five-point finite difference mesh. (a) Reg-

ular operator. (b) Shift operator.
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where Ex and Ey are the shift operators resulting from

�2
x = (

E
1
2
x − E

− 1
2

x
)2 = Ex − 2 + E−1

x

�2
y =

[
1

2

(
E

1
2
y + E

− 1
2

y
)]2

= 1

4

(
Ey + 2 + E−1

y

)
etc.

For �x = �y, (3.4.6) is simplified as (Figure 3.4.2b)

�(2)ui j = 1

4�x2
(ui+1, j+1 + ui+1, j−1 + ui−1, j−1 + ui−1, j+1 − 4ui, j ) (3.4.7)

For higher order terms, we may write

�(2)ui j =
(

1 + �y2

4

∂2

∂y2

)(
∂2u
∂x2

+ �x2

12

∂4u
∂x4

)
i j
+

(
1 + �x2

4

∂2

∂x2

)(
∂2u
∂y2

+ �y2

12

∂4u
∂y4

)
i j

= �ui j + 1

12
�x2 ∂4u

∂x4
+ 1

12
�y2 ∂4u

∂y4
+

(
�x2 + �y2

4

)
∂4u

∂x4∂y4
+ · · · (3.4.8)

with the truncation error being O(�x2, �y2). Note that this scheme involves the odd-

numbered nodes detached from the even-numbered nodes (Figure 3.4.3). Note that

point (i, j) is coupled to the points marked by a square, while there is no connection

to the even-numbered points marked by a circle. Thus, the solution oscillates between

the two values a and b when passing from an even to odd-numbered point, satisfying

the difference equation �(2)ui j = 0. However, it will not satisfy the difference equation

(3.4.5).

The well-known nine-point formula can be derived by combining (3.4.8) with �(1)ui j .

�(3)ui j = (
a�(1) + b�(2)

)
ui j

= 1

�x2

[
(�x2 + �y2) + b

2
�x2�y2

]
ui j = �(1)ui j + b

2
�x2�y2ui j

= �ui j + �x2

12

[
∂4u
∂x4

+ ∂4u
∂y4

+ 6b
∂4u

∂x4∂y4

]
(3.4.9)

where a + b = 1. For b = 2/3, we arrive at the scheme depicted in Figure 3.4.4a, which

can also be obtained from finite elements. For b = 1/3, the Dahlquist and Bjorck scheme

a b a b 

a b a b 

-4a 

-4b -4a

-4b 

Figure 3.4.3 Odd-even oscillations of the five-point

scheme.
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1 1 1 

-8 

1 1 1 

1 1 

1 1 1 

-20 

1 1 1 

1 1 

(a) (b) 

Figure 3.4.4 Nine-point molecule. (a) Nine-point formula with b = 2/3.

(b) Nine-point formula with b = 1/3.

[1974] arises as shown in Figure 3.4.4b, providing the truncation error

−�x2

12

(
∂2

∂x2
+ ∂2

∂y2

)2

u = −�x2

12
�2u

For �u = �u, the nine-point operator with �(3) = 2
3
�(1) + 1

3
�(2) gives a truncation error

−�2 �x2

12
u

Therefore, the corrected difference scheme

�(3)ui, j =
(

� + �2 �x2

12

)
u

has a fourth order truncation error.

An extension to three-dimensional geometries is straightforward. Some applications

to 3-D problems will be discussed in Chapter 7.

3.5 MIXED DERIVATIVES

The simplest, second order central formula for the mixed derivative is obtained from

the application of (3.2.3) in both directions x and y.

(
∂2u
∂x∂y

)
i j

= 1

�x�y
�x�x

[(
1 − �x2

6
+ O(�x4)

)]
�y�y

[(
1 − �y2

6
+ O(�y4)

)]
ui, j

(3.5.1)

This leads to a second order accuracy (Figure 3.5.1a),(
∂2u
∂x∂y

)
i j

= 1

�x�y
(�x�x�y�y) ui, j + O(�x2, �y2)

= ui+1, j+1 − ui+1, j−1 − ui−1, j+1 + ui−1, j−1

4�x�y
+ O(�x2, �y2) (3.5.2)
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Summing (3.5.4) and (3.5.6), we obtain a second order formula,(
∂2u
∂x∂y

)
i
= 1

2�x�y
[�+

x �+
y + �−

x �−
y ]ui j + O(�x2, �y2)

= 1

2�x�y
[ui+1, j+1 − ui+1, j − ui, j+1 + ui−1, j−1 − ui−1, j − ui, j−1 + 2ui j ]

+ O(�x2, �y2) (3.5.7)

This is shown in Figure 3.5.1d. Another form can be obtained by combining forward

and backward differences as (Figure 3.5.1e)(
∂2u
∂x∂y

)
i
= 1

2�x�y
[�+

x �−
y + �−

x �+
y ] ui j + O(�x2, �y2)

= 1

2�x�y
[ui+1, j − ui+1, j−1 + ui, j+1 + ui, j−1 − ui−1, j+1 + ui−1, j − 2ui j ]

= 1

2�x�y

(
�x�yui+ 1

2
, j− 1

2
+ �x�yui− 1

2
, j+ 1

2

) + O(�x2�y2) (3.5.8)

Combining (3.5.7) and (3.5.8), we recover the fully central second order approximation

(3.5.2). Therefore, the most general second order mixed derivative approximation can

be obtained by an arbitrary linear combination of (3.5.7) and (3.5.8) [Mitchell and

Griffiths, 1980].(
∂2u
∂x∂y

)
i
= 1

2�x�y
�x�y

(
aui+ 1

2
, j+ 1

2
+ aui− 1

2
, j− 1

2
+ bui+ 1

2
, j− 1

2
+ bui− 1

2
, j+ 1

2

)
+ O(�x2, �y2) (3.5.9)

with a + b = 1.

3.6 NONUNIFORM MESH

The standard Taylor series expansion may be applied to nonuniform meshes. The first

derivative one-sided first order formula takes the form(
∂u
∂x

)
i
= ui+1 − ui

�xi+1

− �xi+1

2

∂2u
∂x2

(3.6.1a)

The backward formula becomes(
∂u
∂x

)
i
= ui − ui−1

�xi
+ �xi

2

∂2u
∂x2

(3.6.1b)

where �xi = xi − xi−1, etc.

The central difference is obtained by combining (3.6.1a) and (3.6.1b), which will

lead to the second order formula(
∂u
∂x

)
i
= 1

�xi + �xi+1

[
�xi

�xi+1

(ui+1 − ui ) + �xi+1

�xi
(ui − ui−1)

]
− �xi�xi+1

6

∂3u
∂x3

(3.6.2)
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It can also be shown that Taylor expansion leads to a forward or backward scheme. For

example, for a forward scheme, we obtain(
∂u
∂x

)
i
=

(
�xi+1 + �xi+2

�xi+2

ui+1 − ui

�xi+1

− �xi+1

�xi+2

ui+2 − ui

�xi+1 + �xi+2

)

+ �xi+1(�xi+1 + �xi+2)

6

∂3u
∂x3

(3.6.3)

The three-point central difference formula for the second derivative is of the form(
∂2u
∂x2

)
i
=

(
ui+1 − ui

�xi+1

− ui − ui−1

�xi

)
2

�xi+1 + �xi
+ 1

3
(�xi+1 − �xi )

∂3u
∂x3

− �x3
i+1 + �x3

i

12(�xi+1 + �xi )

∂4u
∂x4

(3.6.4)

Note that a loss of accuracy in nonuniform meshes is expected to occur and abrupt

changes in mesh size in (3.6.4) result in the first order accuracy. For example, the third

order accuracy of (3.6.4) is reduced to the second order for �xi+1 = �xi .

3.7 HIGHER ORDER ACCURACY SCHEMES

For many applications in fluid dynamics with discontinuities and/or high gradients such

as in shock waves and turbulence, it is necessary that higher order accuracy be pro-

vided in constructing difference equations for the first order, second order, and higher

order derivatives. Lele [1992] presents various finite difference schemes which are gen-

eralization of the Padé scheme [Hildebrand, 1956; Kopal, 1961; Collatz, 1966]. These

generalizations for the first order derivatives are given by

�u′
i−2 + �u′

i−1 + u′
i + �u′

i+1 + �u′
i+2 = a

ui+1 − ui−1

2�x
+ b

ui+2 − ui−2

4�x
+ c

ui+3 − ui−3

6�x

(3.7.1)

with u′ = du/dx. The relations between the coefficients a, b, c and � and � are derived by

matching the Taylor series coefficients of various orders. Similarly, the generalizations

for the second order derivatives are given by

�u′′
i−2 + �u′′

i−1 + u′′
i + �u′′

i+1 + �u′′
i+2

= a
ui+1 − 2ui + ui−1

�x2
+ b

ui+2 − 2ui + ui−2

4�x2
+ c

ui+3 − 2ui + ui−3

9�x2
(3.7.2)

with u′′ = d2u/dx2. Again, the relations between the coefficients a, b, c and � and � are

derived by matching the Taylor series coeffcients of various orders.

Higher Order Accuracy for the First Order Derivatives

Fourth Order Accuracy. Note that, for � = � = 0 and a = 4/3, b = −1/3, and c = 0

inserted in (3.7.1), the first order derivative in (3.7.1) leads to the well-known fourth

order central difference scheme.

u′
i = dui

dx
= 1

12�x
(ui−2 − 8ui−1 + 8ui+1 − ui+2) (3.7.3)
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Other higher order accuracy schemes for the first order derivative are obtained from

(3.7.1) as follows:

Sixth Order Accuracy

� = 1/3, � = 0, a = 14/9, b = 1/9, c = 0

Eighth Order Accuracy

� = 4/9, � = 1/36, a = 40/27, b = 25/54, c = 0

Higher Order Accuracy for the Second Order Derivatives

Fourth Order Accuracy. The fourth order accuracy for the second order derivative

arises from (3.7.2) by inserting the same constants as in the first order derivative.

u′′
i = d2ui/dx2 = 1

12�x2
(−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2) (3.7.4)

Higher order accuracy schemes for the second order derivative are obtained by

inserting the following constants in (3.7.2):

Sixth Order Accuracy

� = 2/11, � = 0, a = 12/11, b = 3/11, c = 0

Eighth Order Accuracy

� = 344/1179, � = 38� − 9

214
,

a = 696 − 1191�

428
, b = 2454� − 294

535
, c = 1179� − 344

2140

These higher order accuracy derivatives have been used extensively in the analysis

of shock waves and turbulence, as will be discussed in Part Five, Applications.

3.8 ACCURACY OF FINITE DIFFERENCE SOLUTIONS

The finite difference formulas and their subsequent use in boundary value problems

must assure accuracy in portraying the physical aspect of the problem that has been

modeled. The accuracy depends on consistency, stability, and convergence as defined

below:

(a) Consistency A finite difference equation is consistent if it becomes the corre-

sponding partial differential equation as the grid size and time step approach

zero, or truncation errors are zero. This is usually the case if finite difference

formulas are derived from the Taylor series.

(b) Stability A numerical scheme used for the solution of finite difference equa-

tions is stable if the error remains bounded. Certain criteria must be satisfied in

order to achieve stability. This subject will be elaborated upon in Sections 4.2

and 4.3.
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(c) Convergence A finite difference scheme is convergent if its solution approaches

that of the partial differential equation as the grid size approaches zero. Both

consistency and stability are prerequisite to convergence.

The ultimate goal of any numerical scheme is a convergence to the exact solution

as the mesh size is reduced. Discrete time step sizes are chosen adequately as related

to the mesh sizes so that the solution process is stable. The finite difference formulas

studied in this chapter will be used for developing such numerical schemes. Here, the

stability and convergence are important factors for the success in CFD projects and will

be addressed continuously for the rest of this book.

3.9 SUMMARY

In this chapter, we have demonstrated that finite difference equations can be derived in

many different ways. Simple methods and more rigorous general methods by means of

finite difference operator, derivative operator, forward difference operator, and back-

ward difference operator are introduced. Applications to various order derivatives in

multidimensions are presented.

We have also shown how to obtain finite difference equations for higher order

accuracy. They are particularly useful for complex physical phenomena such as in shock

waves and turbulence, as will be shown in Part Five, Applications.

Our ultimate goal is the accuracy of the solution of differential equations. In order

to achieve this accuracy, it is necessary that difference equations satisfy three crite-

ria: consistency, stability, and convergence. Among these, the properties of consistency

and stability reside in the realm of the development of finite difference equations.

Convergence prevails if the requirements of consistency and stability are satisfied.

The consequence of satisfaction of these criteria leads to the assurance of accuracy

in CFD.
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CHAPTER FOUR

Solution Methods of Finite Difference Equations

In this chapter, solution methods for elliptic, parabolic, hyperbolic equations, and

Burgers’ equations are presented. These equations do not represent actual fluid dynam-

ics problems, but the methods discussed in this chapter will form the basis for solving

incompressible and compressible flow problems which are presented in Chapters 5

and 6, respectively. Although the computational schemes for these equations have been

in existence for many years and are well documented in other text books, they are

summarized here merely for the sake of completeness and for references in later

chapters.

4.1 ELLIPTIC EQUATIONS

Elliptic equations represent one of the fundamental building blocks in fluid mechanics.

Steady heat conduction, diffusion processes in viscous, turbulent, and boundary layer

flows, as well as chemically reacting flows are characterized by the elliptic nature of the

governing equations. Various difference schemes for the elliptic equations and some

solution methods are also presented in this chapter.

4.1.1 FINITE DIFFERENCE FORMULATIONS

Consider the Laplace equation which is one of the typical elliptic equations,

∂2u
∂x2

+ ∂2u
∂y2

= 0 (4.1.1)

The five-point and nine-point finite differences for the Laplace equation are, respec-

tively,

ui+1, j − 2ui, j + ui−1, j

�x2
+ ui, j+1 − 2ui, j + ui, j−1

�y2
= 0 (4.1.2)

−ui−2, j + 16ui−1, j − 30ui, j + 16ui+1, j − ui+2, j

12�x2

+ −ui, j−2 + 16ui, j−1 − 30ui, j + 16ui, j+1 − ui, j+2

12�y2
= 0 (4.1.3)

63



64 SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS

3uu =

i = 1 2 3 4 5

4uu =

j = 1

2

3

4

5

1uu =

2uu =

Figure 4.1.1 Finite difference grids with Dirichlet boundary con-

ditions specified at all boundary nodes.

as discussed in Chapter 3. For illustration, let us consider the five-point scheme (4.1.2)

for the geometry given in Figure 4.1.1.

ui+1, j + ui−1, j + �2ui, j+1 + �2ui, j−1 − 2(1 + �2)ui, j = 0 (4.1.4)

where � is defined as � = �x/�y. For Dirichlet boundary conditions, the values of u at

all boundary nodes are given. Thus, writing (4.1.4) at all interior nodes and setting

� = −2(1 + �2)

we obtain for the discretization as shown in Figure 4.1.1,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 1 0 �2 0 0 0 0 0

1 � 1 0 �2 0 0 0 0

0 1 � 0 0 �2 0 0 0

�2 0 0 � 1 0 �2 0 0

0 �2 0 1 � 1 0 �2 0

0 0 �2 0 1 � 0 0 �2

0 0 0 �2 0 0 � 1 0

0 0 0 0 �2 0 1 � 1

0 0 0 0 0 �2 0 1 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2,2

u3,2

u4,2

u2,3

u3,3

u4,3

u2,4

u3,4

u4,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u1,2 − �2u2,1

−�2u3,1

−u5,2 − �2u4,1

−u1,3

0

−u5,3

−u1,4 − �2u2,5

−�2u3,5

−u5,4 − �2u4,5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1.5)

Notice that the matrix on the left-hand side is always pentadiagonalized for the five-

point scheme. The nine-point schemes given by (4.1.3), although more complicated, can

be written similarly as in (4.1.5).

There are two types of solution methods for the linear algebraic equations of

the form (4.1.5). The first kind includes the direct methods such as Gauss elimina-

tion, Thomas algorithm, Chelosky method, etc. The second kind includes the iterative

methods such as Jacobi iteration, point Gauss-Seidel iteration, line Gauss-Seidel itera-

tion, point-successive over-relaxation (PSOR), line successive over-relaxation (LSOR),

alternating direction implicit (ADI), and so on.
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The disadvantage of the direct methods is that they are more time consuming than

iterative methods. Additionally, direct methods are susceptible to round-off errors

which, in large systems of equations, can be catastrophic. In contrast, errors in each

step of an iterative method are corrected in the subsequent step, thus round-off errors

are usually not a concern. We elaborate on some of the iterative methods in Section 4.1.2,

and a direct method of Gaussian elimination in Section 4.1.3. Other methods will be pre-

sented in later chapters, including conjugate gradient methods (CGM) (Section 10.3.1)

and generalized minimal residual (GMRES) algorithm (Section 11.5.3).

4.1.2 ITERATIVE SOLUTION METHODS

Jacobi Iteration Method

In this method, the unknown u at each grid point is solved in terms of the initial

guess values or previously computed values. Thus, from (4.1.4), we compute a new value

of ui, j at the new iteration k + 1 level as

uk+1
i, j = 1

2(1 + �2)

[
uk

i+1, j + uk
i−1, j + �2

(
uk

i, j+1 + uk
i, j−1

)]
(4.1.6)

where k represents the previously computed values or the initial guesses for the first

round of computations. The computation is carried out until a specified convergence

criterion is achieved.

We may use the newly computed values of the dependent variables to compute the

neighboring points when available. This process leads to efficient schemes such as the

Gauss-Seidel method.

Point Gauss-Seidel Iteration Method

In this method, the current values of the dependent variables are used to compute

neighboring points as soon as they are available. This will increase the convergence rate.

The solution for the independent variables is obtained as

uk+1
i, j = 1

2(1 + �2)

[
uk

i+1, j + uk+1
i−1, j + �2

(
uk

i, j+1 + uk+1
i, j−1

)]
(4.1.7)

The k + 1 level on the right-hand side of (4.1.7) indicates that the solution process takes

advantage of the values at i−1 and j−1 which have just been calculated in the previous

step.

Line Gauss-Seidel Iteration Method

Equation (4.1.5) may be solved for the three unknowns at (i − 1, j), (i, j), (i + 1, j),

as follows:

uk+1
i−1, j − 2(1 + �2)uk+1

i, j + uk+1
i+1, j = −�2

(
uk

i, j+1 + uk+1
i, j−1

)
(4.1.8)

which leads to a tridiagonal matrix. Note that uk+1
i, j−1 is known at the k + 1 level, whereas

uk
i, j+1 was determined at the kth level. This method converges faster than the point

Gauss-Seidel method, but it takes more computer time per iteration. The line iteration

technique is useful when the variable changes more rapidly in the direction of the

iteration because of the use of the updated values.
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Point Successive Over-Relaxation Method (PSOR)

Convergence of the point Gauss-Seidel method can be accelerated by rearranging

(4.1.7),

uk+1
i, j = uk

i, j + 1

2(1 + �2)

[
uk

i+1, j + uk+1
i−1, j + �2

(
uk

i, j+1 + uk+1
i, j−1

) − 2(1 + �2)uk
i, j

]
(4.1.9)

The idea is to make uk
i, j approach uk+1

i, j faster. To this end, we introduce the relaxation

parameter, �, to be multiplied to the terms with brackets on the right-hand side of

(4.1.9),

uk+1
i, j = uk

i, j + �

2(1 + �2)

[
uk

i+1, j + uk+1
i−1, j + �2

(
uk

i, j+1 + uk+1
i, j−1

) − 2(1 + �2)uk
i, j

]
or

uk+1
i, j = (1 − �)uk

i, j + �

2(1 + �2)

[
uk

i+1, j + uk+1
i−1, j + �2

(
uk

i, j+1 + uk+1
i, j−1

)]
(4.1.10)

where we choose 1 < � < 2 for convergence. This is known as the point successive

over-relaxation procedure. For certain problems, however, a better convergence may

be achieved by under-relaxation, where the relaxation parameter is chosen as 0 < � < 1.

Note that for � = 1 we recover the Gauss-Seidel iteration method.

For a rectangular domain subjected to Dirichlet boundary conditions with constant

step size, we obtain the optimum relaxation parameter

�opt = 2 − √
1 − a

a
(4.1.11)

with

a =

⎡
⎢⎢⎣

cos

(
�

IM − 1

)
+ �2 cos

(
�

JM − 1

)
1 + �2

⎤
⎥⎥⎦

2

(4.1.12)

where IM and JM refer to the maximum numbers of i and j , respectively. Further

details are found in Wachspress [1966] and Hageman and Young [1981].

Line Successive Over-Relaxation Method (LSOR)

The idea of relaxation may also be applied to the line Gauss-Seidel method,

�uk+1
i−1, j − 2(1 + �2)uk+1

i, j + �uk+1
i+1, j = −(1 − �)�2(1 + �2)�uk

i, j − ��2
(
uk

i, j+1 + uk+1
i, j−1

)
(4.1.13)

where an optimum relaxation parameter � can be determined experimentally, or by

(4.1.11).

Alternating Direction Implicit (ADI) Method

In this method, a tridiagonal system is solved for rows first and then followed by

columns, or vice versa. Toward this end, we recast (4.1.8) into two parts:

u
k+ 1

2

i−1, j − 2(1 + �2)u
k+ 1

2

i, j + u
k+ 1

2

i+1, j = −�2
(

uk
i, j+1 + u

k+ 1
2

i, j−1

)
(4.1.14a)
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and

�2uk+1
i, j−1 − 2(1 + �2)uk+1

i, j + �2uk+1
i, j+1 = −

(
u

k+ 1
2

i+1, j + uk+1
i−1, j

)
(4.1.14b)

Here (4.1.14a) and (4.1.14b) are solved implicitly in the x-direction and y-direction,

respectively. The relaxation parameter � may be introduced to accelerate the

convergence,

�u
k+ 1

2

i−1, j − 2(1 + �2)u
k+ 1

2

i, j + �u
k+ 1

2

i+1, j = −(1 − �)[2(1 + �2)]uk
i, j − ��2

(
uk

i, j+1 + u
k+ 1

2

i, j−1

)
(4.1.15a)

and

��2uk+1
i, j−1 − 2(1 + �2)uk+1

i, j + ��2uk+1
i, j+1 = −(1 − �)[2(1 + �2)]u

k+ 1
2

i, j − �
(

u
k+ 1

2

i+1, j + uk+1
i−1, j

)
(4.1.15b)

with the optimum � being determined experimentally as appropriate for different phys-

ical problems.

4.1.3 DIRECT METHOD WITH GAUSSIAN ELIMINATION

Consider the simultaneous equations resulting from the finite difference approximation

of (4.1.2) in the form

k11u1 + k12u2 + · · · = g1

k21u1 + k22u2 + · · · = g2

...

kn1un· · · · = gn

(4.1.16)

Here, our objective is to transform the system into an upper triangular array. To this

end, we choose the first row as the “pivot” equation and eliminate the u1 term from

each equation below it. To eliminate u1 from the second equation, we multiply the first

equation by k21/k11 and subtract it from the second equation. We continue similarly until

u1 is eliminated from all equations. We then eliminate u2, u3, . . . in the same manner

until we achieve the upper triangular form,⎡
⎢⎢⎣

k11 k12 · ·
k′

22 · ·
· ·

k′
nn

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

·
un

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1

g′
2

·
g′

n

⎤
⎥⎥⎦ (4.1.17)

It is seen that backsubstitution will determine all unknowns.

An example for the solution of a typical elliptical equation is shown in Section 4.7.1.

4.2 PARABOLIC EQUATIONS

The governing equations for some problems in fluid dynamics, such as unsteady heat

conduction or boundary layer flows, are parabolic. The finite difference representation



68 SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS
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i-1 i i+1

Δx
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Δ x

L L

Figure 4.2.1 Fourier representation of the error on interval (−L, L). (a) Error distribution. (b) Maximum and

minimum wavelength.

of these equations may be represented in either explicit or implicit schemes, as illus-

trated below.

4.2.1 EXPLICIT SCHEMES AND VON NEUMANN STABILITY ANALYSIS

Forward-Time/Central-Space (FTCS) Method

A typical parabolic equation is the unsteady diffusion problem characterized by

∂u
∂t

− �
∂2u
∂x2

= 0 (4.2.1)

An explicit finite difference equation scheme for (4.2.1) may be written in the forward

difference in time and central difference in space (FTCS) as (see Figure 4.2.1a)

un+1
i − un

i

�t
= �

(
un

i+1 − 2un
i + un

i−1

)
�x2

+ O(�t, �x2) (4.2.2a)

or

un+1
i = un

i + d
(
un

i+1 − 2un
i + un

i−1

)
(4.2.2b)

where d is the diffusion number

d = ��t
�x2

(4.2.3)

By definition, (4.2.2) is explicit because un+1
i at time step n + 1 can be solved explicitly

in terms of the known quantities at the previous time step n, thus called an explicit
scheme.

In order to determine the stability of the solution of finite difference equations, it is

convenient to expand the difference equation in a Fourier series. Decay or growth of an

amplification factor indicates whether or not the numerical algorithm is stable. This is

known as the von Neumann stability analysis [Ortega and Rheinbolt, 1970]. Assuming
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that at any time step n, the computed solution un
i is the sum of the exact solution ūn

i and

error εn
i

un
i = ūn

i + εn
i (4.2.4)

and substituting (4.2.4) into (4.2.2a), we obtain

ūn+1
i − ūn

i

�t
+ εn+1

i − εn
i

�t
= �

(�x)2

(
ūn

i+1 − 2ūn
i + ūn

i−1

) + �

(�x)2

(
εn

i+1 − 2εn
i + εn

i−1

)
(4.2.5)

or

εn+1
i − εn

i

�t
= �

(�x)2

(
εn

i+1 − 2εn
i + εn

i−1

)
(4.2.6)

Writing (4.2.4) – (4.2.6) for the entire domain leads to

Un = Ūn + �n (4.2.7)

with

�n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

·
εn

i−1

εn
i

εn
i+1

·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2.8)

Ūn+1 + �n+1 = C(Ūn + �n) (4.2.9)

�n+1 = C�n (4.2.10)

with

C = 1 + d(E − 2 + E−1) =

⎡
⎢⎢⎢⎢⎢⎣

· · · . .

d (1 − 2d) d 0 0

. d (1 − 2d) d 0

. 0 d (1 − 2d) d

. . . · ·

⎤
⎥⎥⎥⎥⎥⎦ (4.2.11)

If the boundary conditions are considered as periodic, the error εn can be decom-

posed into a Fourier series in space at each time level n. The fundamental frequency

in a one-dimensional domain between −L and L (Figure 4.2.1) corresponds to the

maximum wave length of �max = 2L. The wave number k = 2�/� becomes minimum

as kmin = �/L, whereas the maximum wave number kmax is associated with the short-

est wavelength � on a mesh with spacing �x corresponding to �min = 2�x, leading to

kmax = �/�x. Thus, the harmonics on a finite mesh are

kj = jkmin = j�/L = j�/(N�x), j = 0, 1, . . . N (4.2.12)
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with �x = L/N. The highest value of j is equal to the number of mesh intervals N.

Any finite mesh function, such as εn
i or the full solution un

i , can be decomposed into a

Fourier series

εn
i =

N∑
j=−N

ε̄n
j eIkj (i�x) =

N∑
j=−N

ε̄n
j eI ji�/N (4.2.13)

with I = √−1, ε̄n
j being the amplitude of the j th harmonic, and the spatial phase angle

� is given as

� = kj�x = j�/N (4.2.14)

with � = � corresponding to the highest frequency resolvable on the mesh, namely the

frequency of the wavelength 2�x. Thus

εn
i =

N∑
j=−N

ε̄n
j eIi� (4.2.15)

Substituting (4.2.15) into (4.2.6) yields

ε̄n+1 − ε̄n

�t
eIi� = �

�x2

(
ε̄neI(i+1)� − 2ε̄neIi� + ε̄neI(i−1)�

)
or

ε̄n+1 − ε̄n − dε̄n(eI� − 2 + e−I�) = 0 (4.2.16)

The computational scheme is said to be stable if the amplitude of any error harmonic

ε̄n does not grow in time, that is, if the following ratio holds:

|g| =
∣∣∣∣ ε̄n+1

ε̄n

∣∣∣∣ ≤ 1 for all � (4.2.17)

where g = ε̄n+1/ε̄n is the amplification factor, and is a function of time step �t , frequency,

and the mesh size �x. It follows from (4.2.16) that

g = 1 + d(eI� − 2 + e−I�) (4.2.18a)

or

g = 1 − 2d(1 − cos �) (4.2.18b)

Thus, the stability condition is

g ≤ 1 (4.2.19)

or

1 − 2d(1 − cos �) ≥ −1 (4.2.20)

Since the maximum of 1 − cos � is 2, we arrive at, for stability,

0 ≤ d ≤ 1/2 (4.2.21)
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The von Neumann stability analysis shown above can be used to determine the

computational stability properties of other finite difference schemes to be discussed

subsequently.

OTHER EXPLICIT SCHEMES

Richardson Method

If the diffusion equation (4.2.1) is modeled by the form

un+1
i − un−1

i

2�t
= �

(
un

i+1 − 2un
i + un

i−1

)
�x2

, O(�t2, �x2) (4.2.22)

This is known as the Richardson method and is unconditionally unstable.

Dufort-Frankel Method

The finite difference equation for this method is given by

un+1
i − un−1

i

2�t
=

�

(
un

i+1 − 2
un+1

i + un−1
i

2
+ un

i−1

)
�x2

(4.2.23a)

or

(1 + 2d)un+1
i = (1 − 2d)un−1

i + 2d
(
un

i+1 + un
i−1

)
, O(�t2, �x2, (�t/�x)2)

(4.2.23b)

This scheme can be shown to be unconditionally stable by the von Neumann stability

analysis.

4.2.2 IMPLICIT SCHEMES

Laasonen Method

Contrary to the explicit schemes, the solution for implicit schemes involves the

variables at more than one nodal point for the time step (n + 1). For example, we

may write the difference equation for (4.2.1a) in the form

un+1
i − un

i

�t
= �

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
�x2

, O(�t, �x2) (4.2.24)

This equation is written for all grid points at n + 1 time step, leading to a tridiagonal form.

The scheme given by (4.2.24) is known as the Laasonen method. This is unconditionally

stable.

Crank-Nicolson Method

An alternative scheme of (4.2.24) is to replace the diffusion term by an average

between n and n + 1,

un+1
i − un

i

�t
= �

2

[
un+1

i+1 − 2un+1
i + un+1

i−1

�x2
+ un

i+1 − 2un
i + un

i−1

�x2

]
, O(�t2, �x2)

(4.2.25)
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This may be rewritten as

A+ B = C + D (4.2.26)

where

A= u
n+ 1

2

i − un
i

�t/2
, B = un+1

i − u
n+ 1

2

i

�t/2
, C = �

(
un

i−1 − 2un
i + un

i+1

)
(�x)2

,

D = �
(
un+1

i−1 − 2un+1
i + un+1

i+1

)
(�x)2

Note that A= C and B = D represent explicit and implicit scheme, respectively. This

scheme is known as the Crank-Nicolson method. It is seen that A= C is solved explic-

itly for the time step n + 1/2 and the result is substituted into B = D. The scheme is

unconditionally stable.

�-Method

A general form of the finite difference equation for (4.2.1) may be written as

un+1
i − un

i

�t
= �

[
�
(
un+1

i+1 − 2un+1
i + un+1

i−1

)
(�x)2

+ (1 − �)
(
un

i+1 − 2un
i + un

i−1

)
(�x)2

]
(4.2.27)

This is known as the �-method. For 1/2 ≤ � ≤ 1, the method is unconditionally stable.

For � = 1/2, equation (4.2.27) reduces to the Crank-Nicolson scheme, whereas � = 0

leads to the FTCS method.

A numerical example for the solution of a typical parabolic equation characterized

by Couette flow is presented in Section 4.7.2.

4.2.3 ALTERNATING DIRECTION IMPLICIT (ADI) SCHEMES

Let us now examine the solution of the two-dimensional diffusion equation,

∂u
∂t

− �

(
∂2u
∂x2

+ ∂2u
∂y2

)
= 0 (4.2.28)

with the forward difference in time and the central difference in space (FTCS). We write

an explicit scheme in the form

un+1
i, j − un

i, j

�t
= �

(un
i+1, j − 2un

i, j + un
i−1, j

�x2
+ un

i, j+1 − 2un
i, j + un

i, j−1

�y2

)
, O(�t, �x2, �y2)

(4.2.29)

It can be shown that the system is stable if

dx + dy ≤ 1

2
(4.2.30)

Here, diffusion numbers dx and dy are defined as

dx = ��t
�x2

, dy = ��t
�y2

(4.2.31)
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For simplicity, let dx = dy = d for �x = �y. This will give d ≤ 1/4 for stability, which is

twice as restrictive. To avoid this restriction, consider an implicit scheme

un+1
i, j − un

i, j

�t
= �

(
un+1

i+1, j − 2un+1
i, j + un+1

i−1, j

�x2
+ un+1

i, j+1 − 2un+1
i, j + un+1

i, j−1

�y2

)
(4.2.32)

or

dxun+1
i+1, j + dxun+1

i−1, j − (2dx + 2dy + 1)un+1
i, j + dyun+1

i, j+1 + dyun+1
i, j−1 = −un

i, j (4.2.33)

This leads to a pentadiagonal system.

An alternative is to use the alternating direction implicit scheme, by splitting (4.2.25)

into two equations:

u
n+ 1

2

i, j − un
i, j

�t/2
= �

⎛
⎝u

n+ 1
2

i+1, j − 2u
n+ 1

2

i, j + u
n+ 1

2

i−1, j

�x2
+ un

i, j+1 − 2un
i, j + un

i, j−1

�y2

⎞
⎠ (4.2.34a)

and

un+1
i, j − u

n+ 1
2

i, j

�t/2
= �

⎛
⎝u

n+ 1
2

i+1, j − 2u
n+ 1

2

i, j + u
n+ 1

2

i−1, j

�x2
+ un+1

i, j+1 − 2un+1
i, j + un+1

i, j−1

�y2

⎞
⎠ (4.2.34b)

This scheme is unconditionally stable. These two equations can be written in a tridiag-

onal form as follows:

−d1u
n+ 1

2

i+1, j + (1 + 2d1)u
n+ 1

2

i, j − d1u
n+ 1

2

i−1, j︸ ︷︷ ︸
implicit in x-direction

= d2un
i, j+1 + (1 − 2d2)un

i, j + d2un
i, j−1︸ ︷︷ ︸

explicit in y-direction

(4.2.35a)

−d2un+1
i, j+1 + (1 + 2d2)un+1

i, j − d2un+1
i, j−1︸ ︷︷ ︸

unknown

= d1u
n+ 1

2

i+1, j + (1 − 2d1)u
n+ 1

2

i, j + d1u
n+ 1

2

i−1, j︸ ︷︷ ︸
known

(4.2.35b)

where

d1 = 1

2
dx = 1

2

��t
�x2

d2 = 1

2
dy = 1

2

��t
�y2

Note that (4.2.35a) is implicit in the x-direction and explicit in the y-direction, known

as the x-sweep. The solution of (4.2.35a) provides the data for (4.2.35b) so that the

y-sweep can be carried out in which the solution is implicit in the y-direction and

explicit in the x-direction.

4.2.4 APPROXIMATE FACTORIZATION

The ADI formulation can be shown to be an approximate factorization of the Crank-

Nicolson scheme. To this end, let us write the Crank-Nicolson scheme for (4.2.25) in
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the form

un+1
i, j − un

i, j

�t
= �

2

⎡
⎢⎢⎢⎣

un+1
i+1, j − 2un+1

i, j + un+1
i−1, j

�x2
+ un

i+1, j − 2un
i, j + un

i−1, j

�x2

+un+1
i, j+1 − 2un+1

i, j + un+1
i, j−1

�y2
+ un

i, j+1 − 2un
i, j + un

i, j−1

�y2

⎤
⎥⎥⎥⎦,

O(�t2, �x2, �y2) (4.2.36)

Introducing a compact notation,

	2
xui, j = ui+1, j − 2ui, j + ui−1, j

	2
yui, j = ui, j+1 − 2ui, j + ui, j−1

we may rewrite (4.2.36) as[
1 − 1

2

(
dx	2

x + dy	2
y

)]
un+1

i, j =
[

1 + 1

2

(
dx	2

x + dy	2
y

)]
un

i, j (4.2.37)

To compare (4.2.37) with the ADI formulation, we use (4.2.36) to rewrite the ADI

equations as

u
n+ 1

2

i, j − un
i, j

�t
2

= �

⎛
⎝	2

xu
n+ 1

2

i, j

�x2
+ 	2

yun
i, j

�y2

⎞
⎠ (4.2.38a)

un+1
i, j − u

n+ 1
2

i, j

�t
2

= �

⎛
⎝	2

xu
n+ 1

2

i, j

�x2
+ 	2

yun+1
i, j

�y2

⎞
⎠ (4.2.38b)

Rearranging (4.2.38a,b)(
1 − 1

2
dx	2

x

)
u

n+ 1
2

i, j =
(

1 + 1

2
dy	2

y

)
un

i, j (4.2.39a)

(
1 − 1

2
dy	2

y

)
un+1

i, j =
(

1 + 1

2
dx	2

x

)
u

n+ 1
2

i, j (4.2.39b)

and eliminating u
n+ 1

2

i, j between (4.2.39a) and (4.2.39b),(
1 − 1

2
dx	2

x

)(
1 − 1

2
dy	2

y

)
un+1

i, j =
(

1 + 1

2
dx	2

x

)(
1 + 1

2
dy	2

y

)
un

i, j (4.2.40)

or [
1 − 1

2

(
dx	2

x + dy	2
y

) + 1

4
dxdy	2

x	2
y

]
un+1

i, j =
[

1 + 1

2

(
dx	2

x + dy	2
y

) + 1

4
dxdy	2

x	2
y

]
un

i, j

(4.2.41)

We note that, compared to (4.2.37), the additional term in (4.2.41)

1

4
dxdy	2

x	2
y

(
un+1

i, j − un
i, j

)
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is smaller than the truncation error of (4.2.37). Thus, it is seen that the ADI formulation

is an approximate factorization of the Crank-Nicolson scheme.

4.2.5 FRACTIONAL STEP METHODS

An approximation of multidimensional problems similar to ADI or approximate

factorization schemes is also known as the method of fractional steps. This method

splits the multidimensional equations into a series of one-dimensional equations and

solves them sequentially. For example, consider a two-dimensional equation

∂u
∂t

= �

(
∂2u
∂x2

+ ∂2u
∂y2

)
(4.2.42)

The Crank-Nicolson scheme for (4.2.36) can be written in two steps:

u
n+ 1

2

i, j − un
i, j

�t
2

= �

2

⎡
⎣u

n+ 1
2

i+1, j − 2u
n+ 1

2

i, j + u
n+ 1

2

i−1, j

�x2
+ un

i+1, j − 2un
i, j + un

i−1, j

�x2

⎤
⎦ (4.2.43a)

un+1
i, j − u

n+ 1
2

i, j

�t
2

= �

2

⎡
⎣un+1

i, j+1 − 2un+1
i, j + un+1

i, j−1

�y2
+ u

n+ 1
2

i, j+1 − 2u
n+ 1

2

i, j + u
n+ 1

2

i, j−1

�y2

⎤
⎦

+ O(�t2, �x2, �y2) (4.2.43b)

This scheme is unconditionally stable.

4.2.6 THREE DIMENSIONS

The ADI method can be extended to three-space dimensions for the time intervals

n, n + 1/3, n + 2/3, and n + 1. Consider the unsteady diffusion problem,

∂u
∂t

= �

(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
(4.2.44)

The three-step FDM equations are written as

u
n+ 1

3

i, j,k − un
i, j,k

�t/3
= �

⎛
⎝	2

xu
n+ 1

3

i, j,k

�x2
+ 	2

yun
i, j,k

�y2
+ 	2

zun
i, j,k

�z2

⎞
⎠ (4.2.45a)

u
n+ 2

3

i, j,k − u
n+ 1

3

i, j,k

�t/3
= �

⎛
⎝	2

xu
n+ 1

3

i, j,k

�x2
+ 	2

yu
n+ 2

3

i, j,k

�y2
+ 	2

zu
n+ 1

3

i, j,k

�z2

⎞
⎠ (4.2.45b)

un+1
i, j,k − u

n+ 2
3

i, j,k

�t/3
= �

⎛
⎝	2

xu
n+ 2

3

i, j,k

�x2
+ 	2

yu
n+ 2

3

i, j,k

�y2
+ 	2

zun+1
i, j,k

�z2

⎞
⎠, O (�t, �x2, �y2, �z2)

(4.2.45c)
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This method is conditionally stable with (dx + dy + dz) ≤ 3/2. A more efficient method

may be derived using the Crank-Nicolson scheme.

u∗
i, j,k − un

i, j,k

�t
= �

[
1

2

	2
xu∗

i, j,k + 	2
xun

i, j,k

�x2
+ 	2

yun
i, j,k

�y2
+ 	2

zun
i, j,k

�z2

]

u∗∗
i, j,k − un

i, j,k

�t
= �

[
1

2

	2
xu∗

i, j,k + 	2
xun

i, j,k

�x2
+ 1

2

	2
yu∗∗

i, j,k + 	2
yun

i, j,k

�y2
+ 	2

zun
i, j,k

�z2

]

un+1
i, j,k − un

i, j,k

�t
= �

[
1

2

	2
xu∗

i, j,k + 	2
xun

i, j,k

�x2
+ 1

2

	2
yu∗∗

i, j,k + 	2
yun

i, j,k

�y2
+ 1

2

	2
zun+1

i, j,k + 	2
zun

i, j,k

�z2

]
(4.2.46)

In this scheme, the final solution un+1
i, j,k is obtained in terms of the intermediate steps

u∗
i, j,k and u∗∗

i, j,k.

4.2.7 DIRECT METHOD WITH TRIDIAGONAL MATRIX ALGORITHM

Consider the implicit FDM discretization for the transient heat conduction equation in

the form,

T n+1
i − Tn

i

�t
= �

�x2

(
T n+1

i+1 − 2T n+1
i + T n+1

i−1

)
(4.2.47)

This may be rewritten as

ai T n+1
i−1 + bi T n+1

i + ci T n+1
i+1 = gi (4.2.48)

with

ai = ci = − ��t
�x2

, bi = 1 + 2��t
�x2

, gi = T n
i (4.2.49)

If Dirichlet boundary conditions are applied to this problem, we obtain the following

tridiagonal form, known as tridiagonal matrix algorithm (TDMA) or Thomas algorithm

[Thomas, 1949]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 · · · ·
a2 b2 c2 0 · · ·
0 a3 b3 c3 0 · ·
· · ∗ ∗ ∗ · ·
· · · ∗ ∗ ∗ ·
· · · · ∗ ∗ cNI−1

0 · · · · aNI bNI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T n+1
1

T n+1
2

T n+1
3

∗
∗
∗

T n+1
NI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

∗
∗
∗

gNI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2.50)



4.3 HYPERBOLIC EQUATIONS 77

An upper triangular form of the tridiagonal matrix may be obtained as follows:

bi = bi − ai

bi−1

ci−1 i = 2, 3, . . . NI

gi = gi − ai

bi−1

gi−1 i = 2, 3, . . . NI

TNI = gNI

bNI

Tj = g j − c j T j+1

bj
j = NI − 1, NI − 2, . . . , 1

It should be noted that Neumann boundary conditions can also be accommodated

into this algorithm with the tridiagonal form still maintained.

4.3 HYPERBOLIC EQUATIONS

Hyperbolic equations, in general, represent wave propagation. They are given by either

first order or second order differential equations, which may be approximated in either

explicit or implicit forms of finite difference equations. Various computational schemes

are examined below.

4.3.1 EXPLICIT SCHEMES AND VON NEUMANN STABILITY ANALYSIS

Euler’s Forward Time and Forward Space (FTFS) Approximations

Consider the first order wave equation (Euler equation) of the form

∂u
∂t

+ a
∂u
∂x

= 0, a > 0 (4.3.1)

The Euler’s forward time and forward space approximation of (4.3.1) is written in the

FTFS scheme as

un+1
i − un

i

�t
= −a

un
i+1 − un

i

�x
(4.3.2)

It follows from (4.2.15) and (4.3.2) that the amplification factor assumes the form

g = 1 − C(eI� − 1) = 1 − C(cos �− 1) − IC sin �= 1 + 2C sin2 �

2
− IC sin � (4.3.3)

with C being the Courant number or CFL number [Courant, Friedrichs, and Lewy,

1967],

C = a�t
�x

and

|g|2 = g g∗ =
(

1 + 2C sin2 �

2

)2

+ C2 sin2 �= 1 + 4C(1 + C) sin2 �

2
≥ 1 (4.3.4)

where g∗ is the complex conjugate of g. Note that the criterion |g| ≤ 1 for all values of

� can not be satisfied (|g| lies outside the unit circle for all values of �, Figure 4.3.1).

Therefore, the explicit Euler scheme with FTFS is unconditionally unstable.
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Im g 

 Re g 

1 

Region of Instability 

Region of 
Stability 

η =  − C sin φ g 

C  φ 

1 − C 

ξ = (1 − C) + C cosφ 

Figure 4.3.1 Complex g plane for upwind scheme with unit circle repre-

senting the stability region.

Euler’s Forward Time and Central Space (FTCS) Approximations

In this method, Euler’s forward time and central space approximation of (4.3.1) is

used:

un+1
i − un

i

�t
= −a

(
un

i+1 − un
i−1

)
2�x

, O(�t, �x) (4.3.5)

The von Neumann analysis shows that this is also unconditionally unstable.

Euler’s Forward Time and Backward Space (FTBS) Approximations –

First Order Upwind Scheme

The Euler’s forward time and backward space approximations (also known as up-

wind method) is given by

un + 1
i − un

i

�t
= − a

un
i − un

i − 1

�x
, O(�t, �x) (4.3.6)

The amplification factor takes the form

g = 1 − C(1 − e − I�) = 1 − C(1 − cos �) − IC sin �

= 1 − 2C sin2 �

2
− IC sin � (4.3.7)

or

g = 
 + I�, |g| =
[

1 − 4C(1 − C) sin2 �

2

]1/2

(4.3.8a,b)

with


 = 1 − 2C sin2 �

2
= (1 − C) + C cos �

� = −C sin �
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Figure 4.3.2 Dissipation and dispersion errors compared to exact solu-

tion. (a) Dissipation error (amplification factor modulus |g|). (b) Disper-

sion error (relative phase error, �/�̃). (c) Comparison of exact solution

with dissipation error and dispersion error for shock tube problem.

which represents the parametric equation of a unit circle centered on the real axis 
 at

(1 − C) with radius C (Figure 4.3.1), whereas the modulus of the amplification factor,

|g|, for various values of C are shown in Figure 4.3.2a.

In this complex plane of g, the stability condition (4.3.7) states that the curve repre-

senting g for all values of � = k�x should remain within the unit circle. It is seen that

the scheme is stable for

0 < g < 1 (4.3.9)

Hence, the scheme (4.3.6) is conditionally stable. Equation (4.3.9) is known as the

Courant-Friedrich-Lewy (CFL) condition.

We have so far discussed the amplification factor g which represents dissipation

error (Figure 4.3.2a). In numerical solutions of finite difference equations, we are also

concerned with dispersion (phase) error as shown in Figure 4.3.2b. The phase � as

determined by the adopted numerical scheme is given by the arctangent of the ratio of

imaginary and real parts of g,

� = tan−1 Im(g)

Re(g)
= tan−1 �



= tan−1 −C sin �

1 − C + C cos �
(4.3.10)
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The phase angle �̃ is

�̃ = ka�t = C� (4.3.11)

The dispersion error or relative phase error is defined as

ε� = �

�̃
= tan−1 [(−C sin �)/(1 − C + C cos �)]

C�
(4.3.12a)

or

ε� ≈ 1 − 1

6
(2C2 − 3C + 1) �2 (4.3.12b)

As shown in Figure 4.3.2b, the dispersion error is said to be “leading” for ε� > 1.

The dissipation error and dispersion error for a shock tube problem can be compared

to the exact solution. This is demonstrated in Figure 4.3.2c. Here, we must choose com-

putational schemes such that dissipation and dispersion errors are as small as possible.

To this end, we review the following well-known methods.

Lax Method

In this method, an average value of un
i in the Euler’s FTCS is used:

un + 1
i = 1

2

(
un

i + 1 + un
i − 1

) − C
2

(
un

i + 1 − un
i − 1

)
(4.3.13)

The von Neumann stability analysis shows that this scheme is stable for C ≤ 1.

Midpoint Leapfrog Method

Central differences for both time and spaces are used in this method:

un + 1
i − un − 1

i

2�t
= −a

(
un

i + 1 − un
i − 1

)
2�x

, O(�t2, �x2) (4.3.14)

This scheme is stable for C ≤ 1. It has a second order accuracy, but requires two sets

of initial values when the starter solution can provide only one set of initial data. This

may lead to two independent solutions which are inaccurate.

Lax-Wendroff Method

In this method, we utilize the finite difference equation derived from Taylor series,

u(x, t + �t) = u(x, t) + ∂u
∂t

�t + 1

2!

∂2u
∂t2

�t2 + O(�t3) (4.3.15a)

or

un+1
i = un

i + ∂u
∂t

�t + 1

2!

∂2u
∂t2

�t2 + O(�t3) (4.3.15b)

Differentiating (4.3.1) with respect to time yields

∂2u
∂t2

= −a
∂

∂x

(
∂u
∂t

)
= a2 ∂2u

∂x2
(4.3.16)
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Substituting (4.3.1) and (4.3.16) into (4.3.15b) leads to

un+1
i = un

i + �t
(

−a
∂u
∂x

)
+ �t2

2

(
a2 ∂2u

∂x2

)
(4.3.17)

Using central differencing of the second order for the spatial derivative, we obtain

un+1
i = un

i − a� t
(

un
i + 1 − un

i − 1

2�x

)
+ 1

2
(a � t)2

(
un

i + 1 − 2un
i + un

i − 1

(�x)2

)
, O(�t2, �x2)

(4.3.18)

This method is stable for C ≤ 1.

4.3.2 IMPLICIT SCHEMES

Implicit schemes for approximating (4.3.1) are unconditionally stable. Two representa-

tive implicit schemes are Euler’s FTCS method and the Crank-Nicolson method.

Euler’s FTCS Method

un+1
i − un

i

� t
= −a

2�x

(
un+1

i+1 − un+1
i−1

)
, O(� t, �x2) (4.3.19)

or

C
2

un+1
i−1 − un+1

i − C
2

un+1
i+1 = −un

i (4.3.20)

Crank-Nicolson Method

un+1
i − un

i

�t
= −a

2

[
un+1

i+1 − un+1
i−1

2�x
+ un

i+1 − un
i−1

2�x

]
, O(�t2, �x2) (4.3.21)

or

C
4

un+1
i−1 − un+1

i − C
4

un+1
i+1 = −C

4
un

i−1 − un
i + C

4
un

i+1 (4.3.22)

Examples of the numerical solution procedure for a typical first order hyperbolic

equation using the explicit and implicit schemes are shown in Section 4.7.3.

4.3.3 MULTISTEP (SPLITTING, PREDICTOR-CORRECTOR) METHODS

Computational stability, convergence, and accuracy may be improved using multistep

(intermediate step between n and n + 1) schemes, such as Richtmyer, Lax-Wendroff,

and McCormack methods. The two-step schemes for these methods are shown below.

Richtmyer Multistep Scheme

Step 1

u
n+ 1

2

i − 1

2

(
un

i+1 + un
i−1

)
�t/2

= −a

(
un

i+1 − un
i−1

)
2�x

(4.3.23a)
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Step 2

un+1
i − un

i

�t
= −a

(
u

n+ 1
2

i+1 − u
n+ 1

2

i−1

)
2�x

(4.3.23b)

These equations can be rearranged in the form

Step 1

u
n+ 1

2

i = 1

2

(
un

i+1 + un
i−1

) − C
4

(
un

i+1 − un
i−1

)
(4.3.24a)

Step 2

un+1
i = un

i − C
2

(
u

n+ 1
2

i+1 − u
n+ 1

2

i−1

)
, O(�t2, �x2) (4.3.24b)

This scheme is stable for C ≤ 2.

Lax-Wendroff Multistep Scheme

Step 1

u
n+ 1

2

i+ 1
2

= 1

2

(
un

i+1 + un
i

) − C
2

(
un

i+1 − un
i

)
, O(�t2, �x2) (4.3.25a)

Step 2

un+1
i = un

i − C
(

u
n+ 1

2

i+ 1
2

− u
n+ 1

2

i− 1
2

)
, O(�t2, �x2) (4.3.25b)

The stability condition is C ≤ 1. Note that substitution of (4.3.25a) into (4.3.25b) re-

covers the original Lax-Wendroff equation (4.3.18). The same result is obtained with

(4.3.24a) and (4.3.24b).

MacCormack Multistep Scheme

Here we consider an intermediate step u∗
i which is related to u

n+ 1
2

i :

u
n+ 1

2

i = 1

2

(
un

i + u∗
i

)
(4.3.26)

Step 1

u∗
i − un

i

�t
= −a

(
un

i+1 − un
i

)
�x

(4.3.27a)

Step 2

un+1
i − u

n+ 1
2

i

�t/2
= −a

(u∗
i − u∗

i−1)

�x
(4.3.27b)

Substituting (4.3.26) into (4.3.27b) yields

Predictor

u∗
i = un

i − C
(
un

i+1 − un
i

)
(4.3.28a)
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Corrector

un+1
i = 1

2

[(
un

i + u∗
i

) − C (u∗
i − u∗

i−1)
]
, O(�t2, �x2) (4.3.28b)

with the stability criterion of C ≤ 1.

The MacCormack multistep method is well suited for nonlinear problems. It be-

comes equivalent to the Lax-Wendroff method for linear problems.

4.3.4 NONLINEAR PROBLEMS

A classical nonlinear first order hyperbolic equation is the Euler’s equation

∂u
∂t

= −u
∂u
∂x

(4.3.29)

which in conservation form may be written as

∂u
∂t

= − ∂

∂x

(
u2

2

)
(4.3.30a)

or

∂u
∂t

= −∂ F
∂x

with F =
(

u2

2

)
(4.3.30b)

The solution of (4.3.30b) may be obtained by several methods: Lax method, Lax-

Wendroff method, MacCormack method, and Beam-Warming implicit method. These

are described below.

Lax Method

In this method, the FTCS differencing scheme is used.

un+1
i − un

i

�t
= − Fn

i+1 − Fn
i−1

2�x
, O(�t, �x2) (4.3.31)

To maintain stability, we replace un
i by its average,

un+1
i = 1

2

(
un

i+1 + un
i−1

) − �t
2�x

(
Fn

i+1 − Fn
i−1

)
(4.3.32)

or

un+1
i = 1

2

(
un

i+1 + un
i−1

) − �t
4�x

[(
un

i+1

)2 − (
un

i−1

)2]
(4.3.33)

The solution will be stable if∣∣∣∣ �t
�x

umax

∣∣∣∣ ≤ 1 (4.3.34)

Lax-Wendroff Method

In this method, the finite difference equation is derived from the Taylor series

expansion,

un+1
i = un

i + ∂u
∂t

�t + 1

2!

∂2u
∂t2

�t2 + · · · (4.3.35)
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Using (4.3.30b) we have

∂2u
∂t2

= − ∂

∂t

(
∂ F
∂x

)
= − ∂

∂x

(
∂ F
∂t

)
(4.3.36)

where

∂F
∂t

= ∂F
∂u

∂u
∂t

= ∂F
∂u

(
−∂F

∂x

)
= −A

∂F
∂x

(4.3.37)

with A being the Jacobian.

A= ∂F
∂u

= ∂

∂u

(
u2

2

)
= u (4.3.38)

Thus

∂2u
∂t2

= − ∂

∂x

(
−A

∂F
∂x

)
= ∂

∂x

(
A

∂F
∂x

)
(4.3.39)

Substituting (4.3.39) and (4.3.30b) into (4.3.35) yields

un+1
i = un

i +
(

−∂F
∂x

)
�t + ∂

∂x

(
A

∂F
∂x

)
�t2

2
+ O(�t3)

or

un+1
i − un

i

�t
= −∂F

∂x
+ ∂

∂x

(
A

∂F
∂x

)
�t
2

+ O(�t2)

Approximating the spatial derivatives by central differencing of order 2,

un+1
i − un

i

�t
= − Fn

i+1 − Fn
i−1

2�x
+ �t

2�x

[(
A

∂ F
∂x

)n

i+ 1
2

−
(

A
∂ F
∂x

)n

i− 1
2

]
(4.3.40)

The last term above is approximated as(
A

∂ F
∂x

)n

i+ 1
2

−
(

A
∂ F
∂x

)n

i− 1
2

�x
=

An
i+ 1

2

Fn
i+1 − Fn

i

�x
− An

i− 1
2

Fn
i − Fn

i−1

�x
�x

=
1

2�x

(
An

i+1 + An
i

)(
Fn

i+1 − Fn
i

) − 1

2�x

(
An

i + An
i−1

)(
Fn

i − Fn
i−1

)
�x

(4.3.41)

For A= u, we obtain

un+1
i = un

i − �t
2�x

(
Fn

i+1 − Fn
i−1

)
+ 1

4

�t2

�x2

[(
un

i+1 + un
i

)(
Fn

i+1 − Fn
i

) − (
un

i + un
i−1

)(
Fn

i − Fn
i−1

)]
(4.3.42)

This is second order accurate with the stability requirement,∣∣∣∣ �t
�x

umax

∣∣∣∣ ≤ 1
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MacCormack Method

In this method, the multilevel scheme is used as given by

u∗
i = un

i − �t
�x

(
Fn

i+1 − Fn
i

)
(4.3.43a)

un+1
i = 1

2

[
un

i + u∗
i − �t

�x
(F∗

i − F∗
i−1)

]
(4.3.43b)

Because of the two-level splitting, the solution performs better than the Lax method

or the Lax-Wendroff method. One of the most widely used implicit schemes is the

Beam-Warming method, discussed below.

Beam-Warming Implicit Method

Let us consider the Taylor series expansion,

u(x, t + �t) = u(x, t) + ∂u
∂t

∣∣∣∣
x,t

�t + ∂2u
∂t2

∣∣∣∣
x,t

�t2

2
+ O(�t3) (4.3.44)

and

u(x, t) = u(x, t + �t) − ∂u
∂t

∣∣∣∣
x,t + �t

�t + ∂2u
∂t2

∣∣∣∣
x,t + �t

�t2

2!
+ O(�t3) (4.3.45)

Subtracting (4.3.45) from (4.3.44)

2u(x, t + �t) = 2u(x, t) + ∂u
∂t

∣∣∣∣
x,t

�t + ∂u
∂t

∣∣∣∣
x,t + �t

�t

+ ∂2u
∂t2

∣∣∣∣
x,t

�t2

2!
− ∂2u

∂t2

∣∣∣∣
x,t + �t

�t2

2!
+ O(�t3)

or

un + 1
i = un

i + 1

2

[(
∂u
∂t

)n

i
+

(
∂u
∂t

)n + 1

i

]
�t + 1

2

[(
∂2u
∂t2

)n

i
−

(
∂2u
∂t2

)n + 1

i

]
�t2

2!
+ O(�t3)

where(
∂2u
∂t2

)n + 1

i
=

(
∂2u
∂t2

)n

i
+ ∂

∂t

(
∂2u
∂t2

)n

i
�t + O(�t2)

Thus, we arrive at

un + 1
i = un

i + 1

2

[(
∂u
∂t

)n

i
+

(
∂u
∂t

)n + 1

i

]
�t + O(�t3) (4.3.46)

For the model equation

∂u
∂t

= −∂ F
∂x

(4.3.47)

Using (4.3.46) in (4.3.47), we obtain

un + 1
i − un

i

�t
= −1

2

[(
∂F
∂x

)n

i
+

(
∂F
∂x

)n + 1

i

]
+ O(�t2) (4.3.48)

This indicates that (4.3.48) leads to the second order accuracy.
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Recall that the nonlinear term F = u2/2 was applied at the known time level n, and

the resulting FDE in explicit form was linear. The resulting FDE in implicit formulation

is nonlinear, and therefore a procedure is used to linearize the FDE. To this end, we

write a Taylor series for F(t + �t) in the form

F(t + �t) = F(t) + ∂ F
∂t

�t + O(�t2)

= F(t) + ∂ F
∂u

∂u
∂t

�t + O(�t2)

or

Fn + 1 = Fn + ∂F
∂u

(
un + 1 − un

�t

)
�t + O(�t2) (4.3.49)

Taking a partial derivative of (4.3.49) yields(
∂F
∂x

)n + 1

=
(

∂F
∂x

)n

+ ∂

∂x
[A(un + 1 − un)] (4.3.50)

Combining (4.3.48) and (4.3.50) gives

un + 1
i − un

i

�t
= −1

2

{(
∂F
∂x

)n

i
+

(
∂F
∂x

)n

i
+ ∂

∂x

[
A
(
un + 1

i − un
i

)]}

or

un + 1
i = un

i − 1

2
�t

{
2

(
∂F
∂x

)n

i
+ ∂

∂x

[
A
(
un + 1

i − un
i

)]}
(4.3.51)

Using a second order central differencing for the terms with A on the right-hand side

of (4.3.51) and linearizing, we obtain

un + 1
i = un

i − 1

2
�t

[
2
(
Fn

i + 1 − Fn
i − 1

)
2�x

+ An
i + 1 un + 1

i + 1 − An
i − 1 un + 1

i − 1

2�x

− An
i + 1 un

i + 1 − An
i − 1 un

i − 1

2�x

]
(4.3.52)

Modifying (4.3.52) to a tridiagonal form

− �t
4�x

An
i − 1 un + 1

i − 1 + un + 1
i + �t

4�x
An

i + 1 un + 1
i + 1

= un
i − 1

2

�t
�x

(
Fn

i + 1 − Fn
i − 1

) + �t
4�x

An
i + 1 un

i + 1 − �t
4�x

An
i − 1 un

i − 1 + D (4.3.53)

This scheme is second order accurate, unconditionally stable, but dispersion errors may

arise. To prevent this, a fourth order smoothing (damping) term is explicitly added:

D = −�

8

(
un

i+2 − 4un
i+1 + 6un

i − 4un
i−1 + un

i−2

)
,

with 0 < � < 1. Since the added damping term is of fourth order, it does not affect the

second order accuracy of the method.
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4.3.5 SECOND ORDER ONE-DIMENSIONAL WAVE EQUATIONS

Let us consider the second order one-dimensional wave equation,

∂2u
∂t2

= a2 ∂2u
∂x2

(4.3.54)

Here we require two sets of initial conditions,

u(x, 0) = f (x)

∂u
∂t

(x, 0) = g(x)

and two sets of boundary conditions,

u(0, t) = h1(t)

u(L, t) = h2(t)

We may use the midpoint leapfrog method for this problem,

un+1
i = 2un

i − un−1
i + C2

(
un

i−1 − 2un
i + un

i+1

)
(4.3.55)

If we choose
∂u(x, 0)

∂t
= 0, then

un+1
i − un−1

i

2�t
= 0

or

un+1
i = un−1

i

Thus, from (4.3.55), we obtain

un+1
i = un

i + 1

2
C2

(
un

i−1 − 2un
i + un

i+1

)
(4.3.56)

This is called the midpoint leapfrog method. An example problem for the second order

hyperbolic equation is demonstrated in Section 4.7.4.

4.4 BURGERS’ EQUATION

The Burgers’ equation is a special form of the momentum equation for irrotational,

incompressible flows in which pressure gradients are neglected. It is informative to

study this equation in the one-dimensional case before we launch upon full-scale CFD

problems.

Consider the Burgers’ equation written in various forms:

∂u
∂t

+ a
∂u
∂x

= �
∂2u
∂x2

(4.4.1)

∂u
∂t

+ u
∂u
∂x

= �
∂2u
∂x2

(4.4.2)

∂u
∂t

+ ∂F
∂x

= �
∂2u
∂x2

(4.4.3)
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with F = 1/2 u2. These equations are mixed hyperbolic, elliptic, and parabolic types.

If steady state is considered, then they become mixed hyperbolic and elliptic equa-

tions. Because of these special properties, various solution schemes have been tested

extensively for the Burgers’ equations. In what follows, we shall examine some of the

well-known numerical schemes.

4.4.1 EXPLICIT AND IMPLICIT SCHEMES

FTCS Explicit Scheme

In this scheme (FTCS), approximations of forward differences in time and central

differences in space are used:

un+1
i − un

i

�t
+ a

un
i+1 − un

i−1

2�x
= �

un
i+1 − 2un

i + un
i−1

�x2
(4.4.4)

where the truncation error is O(�t, �x2). The central difference for the convective

term tends to introduce significant damping.

FTBS Explicit Scheme

This is the same as in FTCS except that backward differences are used for the

convective term,

un+1
i − un

i

�t
+ a

un
i − un

i−1

�x
= �

un
i+1 − 2un

i + un
i−1

�x2
(4.4.5)

Here the first order approximation of the convective term may introduce an excessive

dissipation error. A compromise is to use higher order schemes such as (3.2.20) for

the second order. With (3.2.1) modified for four points, the third order scheme may be

written as

un+1
i − un

i

�t
+ a

(
11ui − 18ui−1 + 9ui−2 − 2ui−3

6�x

)
= �

un
i+1 − 2un

i + un
i−1

�x2
(4.4.6)

DuFort-Frankel Explicit Scheme

In this scheme, we use second order central differences for all derivatives,

un+1
i − un−1

i

2�t
+ a

un
i+1 − un

i−1

2�x
= �

un
i+1 − (

un−1
i + un+1

i

) + un
i−1

�x2
,

O

(
�t2, �x2,

(
�t
�x

)2
)

(4.4.7a)

or

un+1
i =

(
1 − 2d
1 + 2d

)
un−1

i +
(

C + 2d
1 + 2d

)
un

i−1 −
(

C − 2d
1 + 2d

)
un

i+1 (4.4.7b)

This is stable for C ≤ 1.
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MacCormack Explicit Scheme

The two-step or predictor-corrector scheme is written as

Step 1

u∗
i = un

i − a
�t
�x

(
un

i+1 − un
i

) + �
�t
�x2

(
un

i+1 − 2un
i + un

i−1

)
(4.4.8a)

Step 2

un+1
i = 1

2

[
un

i + u∗
i − a

�t
�x

(u∗
i − u∗

i−1) + �
�t
�x2

(u∗
i+1 − 2u∗

i + u∗
i−1)

]
(4.4.8b)

This method is second order accurate with the stability requirement

�t ≤ 1

a
�x

+ 2�

�x2

(4.4.9)

The following alternate form may be used:

Step 1

�un
i = −a

�t
�x

(
un

i+1 − un
i

) + ��t
�x2

(
un

i+1 − 2un
i + un

i−1

)
u∗

i = un
i + �un

i (4.4.10a)

Step 2

�u∗
i = −a

�t
�x

(u∗
i − u∗

i−1) + ��t
�x2

(u∗
i+1 − 2u∗

i + u∗
i−1)

un+1
i = 1

2
(un

i + u∗
i + �u∗

i ) (4.4.10b)

MacCormack Implicit Scheme

One of the most frequently used implicit schemes is the MacCormack scheme.

Step 1(
1 + �

�t
�x

)
	u∗

i = �un
i + �

�t
�x

	u∗
i+1

u∗
i = un

i + 	u∗
i (4.4.11a)

Step 2(
1 + �

�t
�x

)
	un+1

i = �u∗
i + �

�t
�x

	un+1
i−1

un+1
i = 1

2
(un

i + u∗
i + 	un+1

i ) (4.4.11b)

where

� ≥ max

[
1

2

(
|a| + 2�

�x
− �x

�t

)
, 0

]
(4.4.12)
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Note that equations (4.4.11a,b) form a tridiagonal system. The method is uncondition-

ally stable and second order accurate as long as the diffusion number, d = ��t
/
�x2, is

bounded for the limiting process for which �t and �x approach zero.

4.4.2 RUNGE-KUTTA METHOD

The transient nonlinear inviscid Burgers’ equation can be written as

∂u
∂t

+ u
∂u
∂x

= 0

or

∂u
∂t

+ ∂F
∂x

= 0, F = u2

2

For nonlinear transient problems, the Runge-Kutta method is known to be efficient

and has been used extensively. This method is briefly introduced below.

Let us consider an equation of the type

∂u
∂t

= R(u) (4.4.13)

One of the popular approaches is the fourth order Runge-Kutta scheme written as

Step 1

u(1) = un + �t
2

Rn

Step 2

u(2) = un + �t
2

R(1)

Step 3

u(3) = un + �tR(2)

Step 4

un+1 = un + �t
6

(
Rn + 2R(1) + 2R(2) + R(3)

)
(4.4.14)

with

R(1) = R
(
tn+1/2, u(1)

)
R(2) = R

(
tn+1/2, u(2)

)
R(3) = R

(
tn, u(3)

)
It is seen that higher order Runge-Kutta schemes require more steps for the evalu-

ation of R(u), resulting in additional computer time requirements.

An example of the solution procedure for the nonlinear Burgers’ equation is pre-

sented in Section 4.7.5.
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4.5 ALGEBRAIC EQUATION SOLVERS AND SOURCES OF ERRORS

4.5.1 SOLUTION METHODS

As a result of FDM formulations, we obtain linear or nonlinear simultaneous algebraic

equations which must be solved. As we discussed in previous sections, either direct

methods or iterative methods may be used. Recall that, as direct methods, we examined

the Gaussian elimination in Section 4.1.3 and the Thomas algorithm (tridiagonal matrix

algorithm, TDMA) in Section 4.2.7. We also discussed the Runge-Kutta method in

Section 4.4.2 for the nonlinear time dependent equations.

In general, the number of arithmetic operations of a direct method can be very

high particularly for a large system of equations – much larger than the total number

of operations in an iterative method. Therefore, for fluid mechanics problems with

nonlinear sparse matrices, it is more convenient, and often necessary, to work with

iterative methods.

There are many iterative methods other than those already introduced in the earlier

sections of this chapter. They include conjugate gradient method, generalized minimum

residual (GMRES) algorithm, and multigrid method. These methods are well docu-

mented in the literature. Among them are Varga [1962], Wachspress [1966], Dahlquist

and Bjork [1974], and Saad [1996].

Some of these advanced iterative methods will be presented in Parts Three and

Four. Conjugate gradient method, generalized minimum residual method, and multigrid

method are presented in Sections 10.3.1, 11.5.2, and 20.2, respectively. This is because of

the convenience of presentation as appropriate to the topical arrangements of this book.

Namely, the iterative solution methods are included in Part Three since the element-

by element method of FEM assembly requires special treatments of iterative solution

procedures, whereas the multigrid method is included in Part Four as it is related to other

topics including automatic grid generation. Newton-Raphson methods for nonlinear

algebraic equations are discussed in Section 11.5.1. Thus, the reader may find it useful

in visiting these sections as needed for his/her studies in FDM, Part Two.

4.5.2 EVALUATION OF SOURCES OF ERRORS

Recall that computational errors were discussed in terms of an amplification factor g
in Sections 4.2 and 4.3. For g < 1, the result is numerical diffusion (sometimes known

as numerical damping or numerical dissipation). On the other hand, for g > 1, the

result is numerical instability. Both of these cases lead to amplitude errors as shown in

Figure 4.5.1, which may be equivalent to the severely damped shock wave as depicted

in Figure 4.3.2c(2).

If waves of different wavelengths travel in a medium, such a phenomenon is known

as dispersion. The dispersion arises from discrete spatial approximations and results in a

numerical error, called the numerical dispersion or phase error as shown in Figure 4.5.1b

or Figure 4.3.2c(3). The dispersion error occurs in convection or wave equations, but

not in diffusion equations.

In numerical simulations, the so-called Gibb’s phenomenon occurs due to discretiza-

tion of the domain by a limited number of nodal points (Figure 4.5.1c). They appear as

overshoots and undershoots near the steep gradients, similar to the diffusion errors.
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u(x)
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(a) Dissipation error

x

u(x)

0

1

(b) Dispersion error

x

u(x)

0

1

(c) Gibb’s error 
Figure 4.5.1 Various numerical errors.

Next we shall discuss these errors, which are associated with the diffusion transport

and convection transport equations.

Diffusive Transport

Parabolic equations represent the diffusion process associated with both spatial and

temporal variations. A general form of (4.2.2a) may be written in the form

un+1
i − un

i

�t
= �

�x2

(
un + 1

i + 1 − 2un + 1
i + un + 1

i − 1

) + �(1 − )

�x2

(
un

i + 1 − 2un
i + un

i − 1

)
(4.5.1)

with 0 ≤  ≤ 1.

The method is fully explicit for  = 0 and partially implicit for 0 <  < 1, with  = 1

being fully implicit. The scheme with  = 1/2, known as the centered scheme, provides

reasonably stable and accurate solutions in general.

Using the definitions given in (4.2.12–4.2.15), the analytical solution of the diffusion

equation (4.2.1) may be written in the form

u(x, t) = u(t)eIkx (4.5.2)

or

u(x, t) = u0e−�k2t eIkx (4.5.3)

Substituting (4.5.2) into (4.5.1) and using the definition of the amplification factor

(4.2.17), we obtain the amplification factor for various values of ,

|g| = [1 − d(1 − )(1 − cos(k�x))]1/d

[1 + d(1 − cos(k�x))]1/d
(4.5.4)

The amplification factors for explicit scheme (E), centered scheme (C), and fully

implicit scheme (I) for  = 0,  = 1/2,  = 1 are shown in Figure 4.5.2. It is seen that the
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explicit and centered schemes behave irregularly for high values of diffusion number,

whereas the fully implicit scheme is stable.

For multidimensional problems, the implicit method requires the inversion of large

and sparse matrix equations and is computationally expensive. Although the solution

may be stable with large time steps, numerical diffusion becomes excessive, resulting in

inaccuracy. On the other hand, the explicit scheme is less expensive, but small time steps

are necessary in order to achieve accuracy. The amplitude errors are significant in the

diffusive transport equations, whereas dispersion errors and Gibb’s errors dominate in

the convective transport equations.

Convective Transport

Hyperbolic equations represent convection and wave phenomena. A typical con-

vection equation may be written in the finite difference form

un+1
i − un

i

�t
= −a

[


(
un+1

i+1 − un+1
i−1

)
2�x

+
(

(1 − )

(
un

i+1 − un
i−1

)
2�x

)]
(4.5.5)

or in terms of the Courant number C = a�t/�x.

un+1
i + C

2

(
un+1

i+1 − un+1
i−1

) = un
i − (1 − )C

2

(
un

i+1 − un
i−1

)
(4.5.6)

Note that the values of u at n + 1 for  > 0 (implicit scheme) are calculated in terms

of the values at n, but are involved in three different spatial locations, resulting in a

0
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I

(c) d=1.25

Figure 4.5.2 Amplification factors for diffusion equation, E = explicit, C = cen-

tered, I = fully implicit.
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tridiagonal matrix. Although the explicit scheme ( = 0) reduces to a simple algebraic

equation, computational difficulties in stability and accuracy are likely to occur.

In view of (4.2.15), (4.3.3), and (4.5.6), the amplification factors for  = 0,  = 1/2,

and  = 1 can be written in the form, respectively,

|g|E = |1 − IC sin(k�x)| (4.5.7)

|g|C =

∣∣∣∣∣∣∣
1 − I

C
2

sin(k�x)

1 + I
C
2

sin(k�x)

∣∣∣∣∣∣∣ (4.5.8)

|g|I =
∣∣∣∣ 1

1 + IC sin(k�x)

∣∣∣∣ (4.5.9)

Similarly, using (4.3.18), the amplification factor for the Lax-Wendroff scheme is derived

in the form,

|g|L = |1 − C2(1 − cos(k�x)) − IC sin(k�x)| (4.5.10)

These results (Figure 4.5.3) show that the explicit scheme performs poorly in the

region k�x = �/2, whereas the Lax-Wendroff scheme behaves quite satisfactorily in the

high wave number region.

As seen in other schemes studied in Section 3, computational errors including ampli-

tude errors, dispersion errors, and Gibb’s errors must be carefully examined, particularly

in multidimensional problems. Some of the schemes used in one-dimensional problems

may be extended to multidimensional problems, although the conclusions reached for

one-dimensional problems discussed here are by no means universally applicable. In

order to deal with more complicated geometries and physical aspects in CFD, many

other schemes and methodologies will be explored in Chapters 5 and 6 (incompressible

flows and compressible flows, respectively) and in FEM, Part Three.

4.6 COORDINATE TRANSFORMATION FOR ARBITRARY GEOMETRIES

Finite difference formulas developed in Chapter 3 and finite difference solution schemes

discussed so far are applicable only to rectangular cartesian coordinates. If grids are ori-

ented in arbitrary directions of 2-D or 3-D geometries, then it is necessary to transform

the arbitrary physical domain into the computational domain of a rectangular cartesian

system so that finite difference equations can be written in orthogonal directions. Such

transformations are possible as long as the entire grid system is structured.

4.6.1 DETERMINATION OF JACOBIANS AND TRANSFORMED EQUATIONS

Let us consider for simplicity a two-dimensional coordinate system of the physical

domain (x, y), and the computational domain (
 and �) as shown in Figure 4.6.1. We

begin with spatial derivatives of any variable with respect to 
 and � as

∂

∂

= ∂

∂x
∂x
∂


+ ∂

∂y
∂y
∂


∂

∂�
= ∂

∂x
∂x
∂�

+ ∂

∂y
∂y
∂�
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(a) Explicit (θ=0)

(b) Centered (θ=1/2)

(c) Fully implicit (θ=1)

(d) Lax-Wendroff (θ = kΔx) 
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Figure 4.5.3 Amplification factors.
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Figure 4.6.1 Transformation from curvilinear grid system into rectangu-

lar grid system. (a) Original curvilinear grid. (b) Transformed cartesian

grid.
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or ⎡
⎢⎢⎣
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where [J ] is the Jacobian matrix
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Second derivatives of (4.6.2) are given by
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∂�

(
∂x
∂


∂y
∂�

− ∂y
∂


∂x
∂�

)

= ∂2x
∂
∂�

∂y
∂�

+ ∂x
∂


∂2 y
∂�2

− ∂2 y
∂�∂


∂x
∂�

− ∂y
∂


∂2x
∂�2
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Consider the governing equations in the form

∂U
∂t

+ u
∂U
∂x

+ v
∂U
∂y

− �

(
∂2U
∂x2

+ ∂2U
∂y2

)
− f = 0 (4.6.4)

with

U =
[

u
v

]
, f =

[
fx

fy

]

Applying (4.6.3) to (4.6.4) yields

∂U
∂t

+ ū
∂U
∂


+ v̄
∂U
∂�

− �

[
1

|J |2
(

a
∂2U
∂
2

− 2b
∂2U
∂
∂�

+ c
∂2U
∂�2

)
+ p

∂U
∂


+ q
∂U
∂�

]
− f = 0

(4.6.5)

where

ū = 1

|J |
(

u
∂y
∂�

− v
∂x
∂�

)

v̄ = 1

|J |
(

v
∂x
∂


− u
∂y
∂


)

p = 1

|J |3
[
−∂y

∂�

(
a

∂2x
∂
2

− 2b
∂2x
∂
∂�

+ c
∂2x
∂�2

)
+ ∂x

∂�

(
a

∂2 y
∂
2

− 2b
∂2 y
∂
∂�

+ c
∂2 y
∂�2

)]

q = 1

|J |3
[

∂y
∂


(
a

∂2x
∂
2

− 2b
∂2x
∂
∂�

+ c
∂2x
∂�2

)
− ∂x

∂


(
a

∂2 y
∂
2

− 2b
∂2 y
∂
∂�

+ c
∂2 y
∂�2

)]

a =
(

∂x
∂�

)2

+
(

∂y
∂�

)2

b = ∂x
∂


∂x
∂�

+ ∂y
∂


∂y
∂�

c =
(

∂x
∂


)2

+
(

∂y
∂


)2

4.6.2 APPLICATION OF NEUMANN BOUNDARY CONDITIONS

Neumann boundary conditions are applied in the transformed coordinates based on the

same procedure described above. For example, let us consider the gradient of U with

respect to �.

∂U
∂�

= ∂U
∂x

∂x
∂�

+ ∂U
∂y

∂y
∂�

(4.6.6)

Using a first order backward difference for
∂U
∂�

,
∂x
∂�

and
∂y
∂�

, we have

Ui, j − Ui, j−1

��
= ∂U

∂x
xi, j − xi, j−1

��
+ ∂U

∂y
yi, j − yi, j−1

��
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or

Ui, j = Ui, j−1 + ∂U
∂x

�x + ∂U
∂y

�y (4.6.7)

4.6.3 SOLUTION BY MACCORMACK METHOD

The transformed governing equations (4.6.5) may be solved using the MacCormack

method as follows:

Predictor

U∗
i, j = Un

i, j + �t
{
−

(
ū

∂U
∂


+ v̄
∂U
∂�

)n

i, j

+ ��t

[
1

J 2

(
a

∂2U
∂
2

− 2b
∂2U
∂
∂�

+ c
∂2U
∂�2

)
+ p

∂U
∂


+ q
∂U
∂�

]n

i, j
+ fn

i, j

}
(4.6.8a)

Corrector

Un+1
i, j = 1

2

(
U∗

i, j + Un
i, j

) + �t
2

[
−

(
ū

∂U
∂


+ v̄
∂U
∂�

)∗

i, j

]

+ ��t
2

[
1

J 2

(
a

∂2U
∂
2

− 2b
∂2U
∂
∂�

+ c
∂2U
∂�2

)
+ p

∂U
∂


+ q
∂U
∂�

]∗

i, j
+ �t

2
fn+1

i, j

(4.6.8b)

It is now clear that the solution of the governing equation (4.6.4) is replaced by the

solution of transformed equation (4.6.5) in which finite difference formulas of Chapter 3

can be used using the grid system of Figure 4.6.1b. This cumbersome procedure can be

avoided if finite volume methods (Chapter 7) or finite element methods (Part Three)

are used.

4.7 EXAMPLE PROBLEMS

The purpose of this chapter was to list or summarize the existing numerical schemes

for later references in forthcoming chapters. Thus, examples shown in this section are

limited to simple problems for the benefit of the uninitiated reader.

4.7.1 ELLIPTIC EQUATION (HEAT CONDUCTION)

In this example, we demonstrate the solution of steady state heat conduction,

∂2T
∂x2

+ ∂2T
∂y2

= 0

with the geometry and boundary conditions as shown in Figure 4.7.1.1a. The analytical
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Figure 4.7.1.1 Heat conduction problem. (a) Geometry and discretization (40 × 20 mesh).

(b) Computed results.

solution is given by

T = 200

⎡
⎢⎣2

N∑
n = 1

1 − (−1)n

n�

sinh
n�(H − y)

L

sinh
n�H

L

sin
n�x

L

⎤
⎥⎦

Required: Solve using the point successive over-relaxation (PSOR).

Solution: The results for 40 × 20 mesh are shown in Figure 4.7.1.1b. The optimum

relaxation parameter in this case is � = 1.7. The average error is approximately 0.5%

as compared with the analytical solution (N = 100).

Remarks: For this simple problem, all methods introduced in this section will provide

similar results.
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Figure 4.7.2.1 Couette flow. (a) Couette flow geometry. (b) Velocity profiles for FTCS explicit method

(40 elements). (c) Velocity profiles for Crank-Nicolson method (40 elements).

4.7.2 PARABOLIC EQUATION (COUETTE FLOW)

Consider the Couette flow characterized by the parabolic equation,

∂u
∂t

− �
∂2u
∂y2

= 0, � = 0.000217 m2/s

with the geometry given in Figure 4.7.2.1a and
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Initial conditions at t = 0

{
u = u0 = 40 m/s, y = 0

u = 0, 0 < y ≤ h

Boundary conditions at t > 0

{
u = uo = 40 m/s, y = 0

u = 0, y = h

Required: Solve by FTCS and Crank-Nicolson methods with the initial and bound-

ary conditions as shown below.

Solution: The results are shown in Figure 4.7.2.1b. As expected, FTCS for

d = .5034 > 1/2 is unstable whereas Crank-Nicolson gives stable results regardless of

diffusion number ranges.

4.7.3 HYPERBOLIC EQUATION (FIRST ORDER WAVE EQUATION)

The governing equation is given by

∂u
∂t

+ a
∂u
∂x

= 0, a = 300
m
s

with

Initial conditions at t = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) = 0 0 ≤ x ≤ 50

u(x) = 100 sin �
(x − 50)

60
50 ≤ x ≤ 110

u(x) = 0 110 ≤ x ≤ 300

Boundary conditions at t > 0

{
u(x) = 0 x = 0

u(x) = 0 x = L

Explicit Schemes

Required: Solve by explicit schemes, (a) first order upwind scheme (FTBS),

(b) Lax-Wendroff scheme, and FTCS implicit scheme.

�x = 5, �t = 0.01666 (C = 0.9996) (CFL number)

�x = 5, �t = 0.015 (C = 0.9)

�x = 5 �t = 0.0075 (C = 0.45)

Solution: The results are as shown in Figure 4.7.3.1. Note that the exact solution is

obtained for both methods for C = 1. However, as C decreases, FTBS becomes dissi-

pative, whereas the Lax-Wendroff scheme (second order accurate) becomes dispersive.

Implicit Schemes

Required: Solve by implicit scheme (FTCS).

Solution: The results are shown in Figure 4.7.3.2. This scheme is very dissipative at

high C values. Although unconditionally stable, the results are poor, particularly with

large time steps (large Courant number).
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Figure 4.7.3.1 Solutions of first order wave

equation by FTBS and Lax-Wendroff

schemes, 60 nodes. (a) First order upwind

(FTBS). (b) Lax-Wendroff scheme.

Figure 4.7.3.2 Solution of first order wave equation by FTCS implicit scheme.
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4.7.4 HYPERBOLIC EQUATION (SECOND ORDER WAVE EQUATION)

The second order wave equation is considered in this example.

∂2u
∂t2

= a2 ∂2u
∂x2

Two sets of initial conditions are required:

Initial conditions

(a) at t = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) = 0 0 ≤ x ≤ 100

u(x) = 100 sin

[
�(x − 100)

120

]
100 ≤ x ≤ 220

u(x) = 0 220 ≤ x ≤ 300

(b) at t = 0
∂u(x)

∂t
= 0

Boundary conditions

t = 0

{
u(x) = 0 x = 0

u(x) = 0 x = L

Required: Solve by the midpoint leapfrog scheme.

Solution: The results (Figure 4.7.4.1) are obtained at t = 0.28 seconds. The best

solution occurs for C = 1. Note that dispersion errors occur for C less than 1.

Figure 4.7.4.1 Solution of second order wave equation by midpoint leapfrog

scheme, 60 nodes.
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4.7.5 NONLINEAR WAVE EQUATION

Consider the nonlinear wave equation in the form

∂u
∂t

+ u
∂u
∂x

= 0

or

∂u
∂t

+ ∂F
∂x

= 0 with F = 1

2
u2

Figure 4.7.5.1 Solution of nonlinear wave equation by various methods. (a) Lax method (80 elements).

(b) Lax-Wendroff method (80 elements). (c) MacCormack method (80 elements).
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The following initial and boundary conditions are to be used:

u(x, 0) = 1 0 ≤ x ≤ 2

u(x, 0) = 0 2 ≤ x ≤ 4

Required: Solve by (a) Lax method, (b) Lax-Wendroff method, and (c) MacCormack

method.

Solution: The results are obtained with �t/�x = 1 and �t/�x = 0.5. Referring to

Figure 4.7.5.1, the Lax method is dissipative, whereas the Lax-Wendroff method is

dispersive. This trend is worse when the Courant number is smaller. The MacCormack

method gives better results particularly with Courant number near 1. It is still dispersive

at lower Courant number, but better than the Lax-Wendroff scheme.

4.8 SUMMARY

In this chapter, FDM schemes for typical elliptic, parabolic, and hyperbolic partial

differential equations and Burgers’ equation have been presented. These equations

do not represent complete fluid dynamics phenomena, but the computational schemes

described herein do constitute the basis for computations involved in incompressible

and compressible flows. Concepts of explicit and implicit schemes with von Neumann

stability analyses are expected to play significant roles in all aspects of computational

methods in fluid dynamics and heat transfer.

Although most of the computational schemes for FDM presented in this chapter are

in terms of one-dimensional applications, their extensions to multidimensions including

noncartesian orientations of physical domain can be accomplished by transformation

into the cartesian computational domain.

In practical applications, most physical phenomena in fluid mechanics and heat

transfer are multidimensional. Thus, significant modifications and improvements over

the simple approaches introduced in this chapter are required in dealing with incom-

pressible and compressible flows, which are the subjects of the subsequent chapters.
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CHAPTER FIVE

Incompressible Viscous Flows via Finite

Difference Methods

5.1 GENERAL

The basic concepts in FDM and applications to simple partial differential equations

have been presented in the previous chapters. This chapter will focus on incompressible

viscous flows in which the physical property of the fluid, incompressibility, requires

substantial modifications of computational schemes discussed in Chapter 4.

In general, a flow becomes incompressible for low speeds, that is, M< 0.3 for air, and

compressible for higher speeds, that is, M≥ 0.3, although the effect of compressibility

may appear at the Mach number as low as 0.1, depending on pressure and density

changes relative to the local speed of sound. Computational schemes are then dictated

by various physical conditions: viscosity, incompressibility, and compressibility of the

flow. The so-called pressure-based formulation is used for incompressible flows to keep

the pressure field from oscillating, which may arise due to difficulties in preserving

the conservation of mass or incompressibility condition as the sound speed becomes

so much higher than convection velocity components. The pressure-based formulation

for incompressible flows uses the primitive variables (p, vi , T), whereas the density-

based formulation applicable for compressible flows utilizes the conservation variables

(�, �vi , �E).

Incompressible viscous flows are usually computed by means of the continuity and

momentum equations. If temperature changes in natural and/or forced convection heat

transfer are considered, then the energy equation is also added. For simplicity in demon-

strating the computational strategies for incompressible flows in general, we shall con-

sider only the isothermal case in this chapter. In Chapter 6, it will be shown that compu-

tational schemes for incompressible flows can also be developed from preconditioning

processes of the density-based formulation which is originally intended for compress-

ible flows. This process leads to implementations of an algorithm applicable for both

compressible and incompressible flows [Merkle et al., 1998].

In dealing with incompressible flows, there are two approaches: primitive variable

methods and vortex methods. The primitive variable approach includes the artificial

compressibility method (ACM) [Chorin, 1967], and the pressure correction methods

(PCM) including the marker and cell (MAC) method [Harlow and Welch, 1965], the

semi-implicit method for pressure linked equations (SIMPLE) [Patankar and Spalding,

1972], and the pressure implicit with splitting of operators (PISO) [Issa, 1985]. The

106
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main difficulty in incompressible flows is the accurate solution for pressure. Thus, the

purpose of the vortex methods is to remove the pressure terms from the momentum

equations, which can be achieved by solving the vorticity transport equation(s) (one

scalar equation for 2-D and three vector component equations for 3-D).

In view of the fact that the transition between incompressible and compressible

flows involves a complex process of interactions between inviscid and viscous prop-

erties, it is reasonable to seek a unified approach in which both incompressible and

compressible flows can be accommodated. This subject will be discussed in Section 6.4,

Preconditioning Process for Compressible Flows and Viscous Flows, and in Section 6.5

on the flowfield-dependent variation (FDV) methods. For this reason, treatments of

incompressible flows in this chapter will be brief.

5.2 ARTIFICIAL COMPRESSIBILITY METHOD

The governing equations for incompressible viscous flows, known as the incompressible

Navier-Stokes system of equations, are written in nondimensionalized form as

Continuity

vi,i = 0 (5.2.1)

Momentum
∂ vi

∂t
+ vi, j v j = −p,i + 1

Re
vi, j j (5.2.2)

where the following nondimensional quantities are used:

vi = v∗
i

v∞
, xi = x∗

i

L
, p = p∗

�v2∞
, t = t∗v∞

L
, Re = v∞L

�

with asterisks implying the physical variable and Re being the Reynolds number.

In the artificial compressibility method (ACM), the continuity equation is modified

to include an artificial compressibility term which vanishes when the steady state is

reached [Chorin, 1967]:

∂ �̃

∂ t̃
+ vi,i = 0 (5.2.3)

where �̃ is an artificial density, equated to the product of artificial compressibility factor

� and pressure,

�̃ = �−1 p (5.2.4)

Here ∂ �̃
∂ t̃ → 0 at the steady state and t̃ is a fictitious time.

With these definitions and combining (5.2.1–5.2.4), we may write the incompressible

Navier-Stokes system of equations in the form

∂W
∂t

+ Ai
∂W
∂xi

= 1

Re
∂

∂xi

(
Bi j

∂W
∂xj

)
(5.2.5)
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with

W =
[

p
v j

]
, Ai = ∂Di

∂W
, Di =

[
�vi

vi v j + p�i j

]
, Bi j =

[
0

�i j

]

A1 = ∂D1

∂W
=

⎡
⎢⎢⎣

0 � 0 0

1 2u 0 0

0 v u 0

0 w 0 u

⎤
⎥⎥⎦ A2 = ∂D2

∂W
=

⎡
⎢⎢⎣

0 0 � 0

0 v u 0

1 0 2v 0

0 0 w v

⎤
⎥⎥⎦

A3 = ∂D3

∂W
=

⎡
⎢⎢⎣

0 0 0 �

0 w 0 u
0 0 w v

1 0 0 2w

⎤
⎥⎥⎦

Let us now investigate the eigenvalues of Ai ,

|Ai − �i I| = 0

where the eigenvalues of Ai (i = 1, 2, 3) are, respectively,

(u, u, u ±
√

u2 + �), (v, v, v ±
√

v2 + �), (w, w, w ±
√

w2 + �) (5.2.6)

in which
√

� is the artificial speed of sound (often called the artificial compressibility

factor) with � being chosen adequately (between 0.1 and 10 as suggested by Kwak

et al. [1986]). The idea is to maintain low enough � (close to the convective velocity)

to overcome stiffness associated with a disparity in the magnitudes of the eigenvalues,

but high enough such that pressure waves (moving with infinite speed at incompress-

ible limit) be allowed to travel far enough to balance viscous effects. As a result, the

conservation of mass or incompressibility condition is assured by means of an artificial

compressibility. In this process, it is possible to obtain the correct pressure distributions.

The solution of (5.2.5) is usually obtained by the Crank-Nicolson method.

From the point of view of linear algebra, the finite difference algebraic equations

resulting from (5.2.5) are well conditioned (with a proper choice of �), as compared to

the original equations (5.2.1) and (5.2.2). This is due to the well-conditioned eigenvalues

given by (5.2.6). All other solution schemes for incompressible flows without using the

artificial compressibility must employ special approaches as discussed below.

5.3 PRESSURE CORRECTION METHODS

5.3.1 SEMI-IMPLICIT METHOD FOR PRESSURE-LINKED EQUATIONS (SIMPLE)

It is well known that, if the finite difference equation is written in control volume grids

(Section 1.4) for continuity vi,i = 0, this will lead to nonphysical, checkerboard-type

oscillations of velocity in each one-dimensional direction (same values repeated at every

other node, assuming that the velocity distribution between the adjacent nodes is linear).

As a consequence, the mass is not conserved, thus causing the pressure to undergo

similar oscillations. This is particularly true when pressure becomes constant (p,i = 0)

for the same reason as vi,i = 0. These difficulties can be shown to be remedied by using

staggered grids [velocity nodes staggered with respect to pressure nodes (Figure 5.3.1)]
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(a) Guess the pressure p at each grid point.

(b) Solve the momentum equation to find vi at the staggered grid (i + 1/2,

i − 1/2, j + 1/2, j − 1/2), discretized in control volumes and control surfaces

(Section 1.4) as shown in Figure 5.3.1.

(c) Solve the pressure correction equation (5.3.5) to find p′ at (i, j), (i, j − 1),

(i, j + 1), (i − 1, j), (i + 1, j). Since the corner grid points are avoided, the

scheme is “semi-implicit,” not fully implicit, as shown in Figure 5.3.1.

(d) Correct the pressure and velocity using (2.2.9b), (5.3.2), and (5.3.4).

p = p + p′

u = u − �t
2��x

(p′
i+1, j − p′

i−1, j ) − �t
�

(
A(1)

i+ 1
2
, j

− A(1)

i− 1
2
, j

)
(5.3.6)

v = v − �t
2��y

(p′
i, j+1 − p′

i, j−1) − �t
�

(
A(2)

i, j+ 1
2

− A(2)

i, j− 1
2

)
where

A(1) = (�v′
kv′

1),k − �

(
v′

1,kk + 1

3
v′

k,k1

)
(k = 1, 2)

A(2) = (�v′
kv′

2),k − �

(
v′

2,kk + 1

3
v′

k,k2

)
(k = 1, 2)

with � being the dynamic viscosity.

(e) Replace the previous intermediate values of pressure and velocity (p, vi ) with

the new corrector values (p, vi ) and return to (b).

(f) Repeat Steps (b) through (e) until convergence.

Often the convergence of the above process is not satisfactory because of the ten-

dency for overestimation of p′. A remedy to this difficulty may be found by the use of

under-relaxation parameter �,

p = p + �p′ (5.3.7)

However, in many cases a proper choice of � is not easy (� ∼= 0.8 is often used). Thus, a

further corrective measure is to use SIMPLER (SIMPLE revised) in which a complete

Poisson equation is used for pressure corrections.

∇2 p = −�(vi, j v j ),i (5.3.8a)

or

∇2 p = 2�

(
∂u
∂x

∂v

∂y
− ∂v

∂x
∂u
∂y

)
(5.3.8b)

Here u and v will be replaced by (5.3.2) and subsequently (5.3.5) replaced by (5.3.8).

Instead of using the time-dependent formulation described above, it is conven-

ient to use a steady state approach with finite volume discretizations as shown in

Figure 5.3.2.

ap	p = �
(∑

anb	nb + b
)

+ (1 − �)ap	0
p (5.3.9)
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5.3.2 PRESSURE IMPLICIT WITH SPLITTING OF OPERATORS

We note that the SIMPLE method requires an iterative procedure. To obtain solutions

without iterations, and with large time steps and less computing effort, Issa [1985] pro-

posed the PISO (Pressure Implicit with Splitting of Operators) scheme. In this scheme,

the conservation of mass is designed to be satisfied within the predictor-corrector steps.

The governing equations consist of the momentum equation and pressure correction

equation written as follows:

Momentum
�

�t

(
vn+1

j − vn
j

) = −sn+1
i j,i − pn+1

, j (5.3.13)

Pressure Corrector

pn+1
, j j = − �

�t

(
vn+1

j, j − vn
j, j

) − sn+1
i j,i j (5.3.14)

where si j,i j refers to the derivatives of the sum of convection and viscous diffusion terms,

si j,i .

si j,i = (�vi v j ),i − 
i j,i (5.3.15a)


i j = �(vi, j + v j,i ) − 2�

3
vk,k�i j (5.3.15b)

(a) Predictor
�

�t

(
v∗

j − vn
j

) = −s∗
i j,i − pn

, j (5.3.16)

(b) Corrector I

p∗
, j j = − �

�t

(
v∗

j, j − vn
j, j

) − s∗
i j,i j = �

�t
vn

j, j − s∗
i j,i j (5.3.17)

�

�t

(
v∗∗

j − vn
j

) = −s∗
i j,i − p∗

, j (5.3.18)

with v∗
j, j set equal to zero in (5.3.17) in order to enforce the conservation of mass.

(c) Corrector II

p∗∗
, j j = �

�t
vn

j, j − s∗∗
i j,i j (5.3.19)

�

�t

(
v∗∗∗

j − vn
j

) = −s∗∗
i j,i − p∗∗

, j (5.3.20)

with v∗∗
j, j = 0 being once again enforced in (5.3.19). Thus, in the above process, there

are no iterative steps involved.

In order to increase stability and accuracy, we may split si j,i into diagonal and non-

diagonal terms.

si j,i = s(D)
i j,i + s(N)

i j,i = A(D)
j i vi + s(N)

i j,i (5.3.21)
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To illustrate this splitting of diagonal term, consider a one-dimensional case

si j,i ⇒ ∂

∂x

(
�u	 − k

∂	

∂x

)
(5.3.22)

or

si j,i ⇒ (�u	)i+1 − (�u	)i−1

2�x
− (k	)i+1 − 2(k	)i + (k	)i−1

�x2

⇒ 1

�xi

[
(�u	)i+ 1

2
− (�u	)i− 1

2
−

ki+ 1
2

�xi+ 1
2

(	i+1 − 	i ) +
ki− 1

2

�xi− 1
2

(	i − 	i−1)

]

Construct an upwind scheme to get

(�u	)i+ 1
2
− (�u	)i− 1

2
⇒

{
(�u)i+ 1

2
	i − (�u)i− 1

2
	i−1 for (+u)

(�u)i+ 1
2
	i+1 − (�u)i− 1

2
	i for (−u)

Then we arrive at

(�u	)i+ 1
2

= (�u)+
i+ 1

2

	i + (�u)−
i+ 1

2

	i+1

(�u	)i− 1
2

= (�u)
+
i− 1

2

	i−1 + (�u)−
i− 1

2

	i

}
with (�u)± = 1

2
(�u ± |�u|)

Thus si j,i can be written as

si j,i ⇒ 1

�xi
(�	i+1 + �	i + �	i−1) (5.3.23)

where

� = (�u)−
i+ 1

2

−
ki+ 1

2

�xi+ 1
2

, � = (�u)+
i+ 1

2

− (�u)−
i− 1

2

+
ki+ 1

2

�xi+ 1
2

+
ki− 1

2

�xi− 1
2

,

� = −(�u)+
i− 1

2

−
ki− 1

2

�xi− 1
2

Rewriting (5.3.23), we have⎡
⎢⎢⎣

� �

� � �

� � �

� �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

	1

	2

	3

	4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

	1

	2

	3

	4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 � 0 0

� 0 � 0

0 � 0 �

0 0 � 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

	1

	2

	3

	4

⎤
⎥⎥⎦
(5.3.24)

or for multidimensions, we write (5.3.24) as

si j,i = A(D)
j i v∗

i + s(N)
i j,i (5.3.25)

Note that si j,i is diagonally dominant for low Mach number flows,

(�u)i+ 1
2

> (�u)i− 1
2

or

� > |�| + |� |
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If Mach number increases (high speed or compressible flow), then (�u)i− 1
2

> (�u)i+ 1
2

>

0, or

� < |�| + |� |.
This implies that the diagonal dominance diminishes at high speed or compressible

flows. We discuss a remedy for this problem in Section 6.3.3 on the PISO scheme for

compressible flows.

With the splitting of si j,i into the diagonal and nondiagonal parts, we proceed as

follows:

(a) Predictor(
�

�t
�i j + A(D)

j i

)
v∗

i = −s∗(N)
i j,i − pn

, j + �

�t
vn

j (5.3.26)

(b) Corrector I(
�

�t
�i j + A(D)

j i

)
(v∗∗

i − v∗
i ) = −(

p∗
, j − pn

, j

)
(5.3.27)

[(
�

�t
�i j + A(D)

j i

)−1

(p∗ − pn), j

]
,i

= v∗
i,i (5.3.28)

Solve (p∗ − pn) and insert the result into (5.3.26) to obtain new v∗∗
i .

(c) Corrector II(
�

�t
�i j + A(D)

j i

)
v∗∗

i − �

�t
vn

i = −s∗(N)
i j,i − p∗

, j (5.3.29)

(
�

�t
�i j + A(D)

j i

)
v∗∗∗

i − �

�t
vn

j = −s∗∗(N)
i j,i − p∗∗

, j (5.3.30)

Subtracting (5.3.29) from (5.3.30), we obtain(
�

�t
�i j + A(D)

j i

)
(v∗∗∗

i − v∗∗
i ) = −

(
s∗∗(N)

i j,i − s∗(N)
i j,i

)
− (p∗∗ − p∗), j (5.3.31)

For v∗∗∗
i,i = 0, we must have[(

�

�t
�i j + A(D)

j i

)−1

(p∗∗ − p∗),i

]
, j

= −
(

�

�t
�ik + A(D)

ki

)−1(
s∗∗(N)

i j,k − s∗(N)
i j,k

)
, j

+ v∗∗
i,i

(5.3.32)

Solution of (5.3.32) leads to

v∗∗∗
i = vn+1

i (5.3.33)

p∗∗ = pn+1 (5.3.34)

This completes the splitting process in which the v∗∗∗
i and p∗∗ fields imply the exact

solution vn+1
i and pn+1. For additional information on this procedure, see Issa, Gosman,

and Watkins [1986].
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5.3.3 MARKER-AND-CELL (MAC) METHOD

This is one of the earliest methods developed for the solution of incompressible flows,

although its use in the original form is no longer pursued, but it has been altered to

other more efficient schemes. The basic idea of MAC as originally introduced by Harlow

and Welch [1965] is one of the pressure correction schemes developed on a staggered

mesh, seeking to trace the paths of fictitious massless marker particles introduced on

the free surface. The solution is advanced in time by solving the momentum equations

for velocity components using the current estimates of the pressure distributions. The

pressure is improved by numerically solving the Poisson equation,

p,i i = f (5.3.35)

with

f = S − ∂ D
∂t

(5.3.36)

S = �−(�vi v j ),i + �v j,i i�, j (5.3.37)

D = vi,i (5.3.38)

Here, the correction in pressure is required to compensate for the nonzero dilatation

D (5.3.38) at the current iteration level. The Poisson equation is then solved for the

revised pressure field. The improved pressure may then be used in the momentum

equations for a better solution at the present time step. If D does not vanish, cyclic

process of solving the momentum equations and the Poisson equation is repeated until

the velocity field is divergent free.

The original MAC method was based on an explicit time-marching scheme. Sub-

sequently, implicit schemes have been implemented by various authors [Briley, 1974;

Ghia, Hankey, and Hodge, 1979].

5.4 VORTEX METHODS

Two-Dimensional Vorticity Transport Equation

In the previous sections, we dealt with primitive variables, vi and p. An alternative

approach is to use the vortex methods in which we utilize the vorticity and stream

functions as variables.

� = ∇ × v (5.4.1)

v = εi j � , j ii (5.4.2)

where � is the vorticity vector, εi j is the second order tensor of the permutation symbol

for 2-D,

εi j =
⎧⎨
⎩

1 for ε12

−1 for ε21

0 otherwise

and � is the stream function.
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Notice that for the simultaneous solutions of (5.4.2), (5.4.3), (5.4.4), and (5.4.6),

we may use the finite difference schemes presented in Chapter 3. For example, the

nonlinear terms on the right-hand side of (5.4.6) may be represented as

∇2 p = 2�i, j

[(
� i+1, j − 2� i, j + � i−1, j

(�x)2

) (
� i, j+1 − 2� i, j − � i, j−1

(�y)2

)

−
(

� i+1, j+1 − � i+1, j−1 − � i−1, j+1 + � i−1, j−1

4�x�y

)2
]

(5.4.9)

where the alternative mixed derivative may be chosen as shown in Section 3.5.

For a steady state problem, the Poisson equation for pressure is solved once, that is,

after the steady-state values of  and � have been computed.

For time dependent problems, the solution of the vorticity transport equation and

the Poisson equation requires that boundary conditions for � and  be specified. At

the wall, � is a constant and may be set equal to a reference value, that is, � = 0. To

find  at the wall surface, we write � in terms of Taylor series about the wall point

(i , 1),

� i,2 = � i,1 + ∂�

∂y

∣∣∣∣
i,1

�y + 1

2

∂2�

∂y2

∣∣∣∣
i,1

(�y)2 + · · · (5.4.10)

where

∂�

∂y

∣∣∣∣
i,1

= ui,1 = 0 (5.4.11a)

∂2�

∂y2

∣∣∣∣
i,1

= ∂u
∂y

∣∣∣∣
i,1

(5.4.11b)

i,1 = ∂�

∂x

∣∣∣∣
i,1

− ∂u
∂y

∣∣∣∣
i,1

= −∂2�

∂y2

∣∣∣∣
i,1

(5.4.11c)

thus, rewriting (5.4.10) as

� i,2 = � i,1 − 1

2
i,1�y2 + O(�y3) (5.4.12)

i,1 = 2(� i,1 − � i,2)

�y2
+ O(�y)

ui,1 = ∂�

∂y

∣∣∣∣
i,2

= −3� i,1 + 4� ,2 + � i,3

4�y
(5.4.13)

Three-Dimensional Vorticity Transport Equations

For three-dimensional problems, the vorticity transport equations are of the form

[Chung, 1996]:

∂�

∂t
+ (v · ∇)� − (� · ∇)v = �∇2� (5.4.14)

v = ∇� × n̂ = ∇ × Ψ (5.4.15)
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with

vi = εi jk�k, j (5.4.16)

i = 1 v1 = �3,2 − �2,3

i = 2 v2 = �1,3 − �3,1 (5.4.17)

i = 3 v3 = �2,1 − �1,2

�k = n̂k�

and

� = −∇2Ψ (5.4.18)

Note that ∇� is perpendicular to the velocity vector v and n̂ is perpendicular to the

plane ∇� and v, whereas Ψ is known as the three-dimensional stream function vector.

The geometric properties of the stream function vector are presented in Section 12.2.

Another approach is to use the fourth order stream function vector equation of the

form

∂

∂t
∇2Ψ + (∇ × Ψ · ∇)∇2Ψ − (∇2Ψ · ∇)(∇ × Ψ) = �∇4Ψ (5.4.19)

with the boundary conditions extended to three-dimensional geometries.

Solutions may be obtained from either (5.4.14) or (5.4.19) using the definitions given

by (5.4.15) and (5.4.18). These and other subjects on applications in three-dimensional

stream function vector components are further detailed in Section 12.2.

The Curl of Vorticity Transport Equations

We have noted that the advantage of the vorticity transport equation(s) is the numer-

ical stability accrued from removing pressure gradient terms from the solution process.

However, the velocity must be calculated from solving simultaneously (5.4.14) through

(5.4.18) or from (5.4.19). These steps can be eliminated if we take a curl of the vorticity

transport equation (5.4.14), in which the velocity is the only variable. This subject will

be discussed in Section 12.2.1.

5.5 SUMMARY

The incompressible flow analysis based on the artificial compressibility method and

the pressure-based formulation using SIMPLE, SIMPLER, SIMPLEC, and PISO have

been presented. It was shown that these methods are devised in order to ensure the

conservation of mass so that pressure oscillations can be prevented. Vortex methods

in which pressure terms are absent are preferred in dealing with rotational incom-

pressible flows as they are computationally efficient. Accurate physics of fluids can be

obtained without difficulties which may arise from inaccurate pressure calculations in

other methods.

The current trend appears to be in favor of preconditioning of the time-dependent

term of the density-based formulation so that both compressible and incompressible

flows can be treated. This is because, in many practical situations, high- and low-speed
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regions are coupled particularly in high-speed boundary layer flows and the analysis ca-

pable of handling both compressible and incompressible flows is frequently in demand.

Details of the preconditioning process for the combined density- and pressure-based

formulations for the incompressible flow analysis are presented in Section 6.4.

Since the solution of incompressible flows can be obtained as a part of the compress-

ible flow formulation, it appears that more attention is given to the compressible flow

analysis. This leads to a motivation toward attempting to develop a general purpose

program, anticipating that the results of incompressible flows arise automatically when

the flow velocity decreases at low Mach number. This topic is addressed in Section 6.5.

The theoretical basis for three-dimensional vorticity transport equations is exam-

ined. Numerical examples for the three-dimensional vortex methods based on the three-

dimensional stream function vector components will be discussed in Section 12.2.

Although not presented in this chapter, other methods have been used in the past.

One of the significant developments in the late 1950s was the particle-in-cell (PIC)

method [Evans and Harlow, 1957, 1959], particularly efficient in the flows with large

distortions (see Section 16.4.3). Recent developments dealing with multiphase incom-

pressible flows will be presented in Chapter 25.
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CHAPTER SIX

Compressible Flows via Finite Difference Methods

In general, the physical behavior of compressible flows is more complicated than in

incompressible flows. Compressible flows may be viscous or inviscid, depending on

flow velocities. Compressible inviscid flows are analyzed using the potential or Euler

equations, whereas compressible viscous flows are solved from the Navier-Stokes sys-

tem of equations. Shock waves may occur in compressible flows and require special

attention as to the solution methods. Furthermore, shock wave turbulent boundary

layer interactions in compressible viscous flows constitute one of the most important

physical phenomena in computational fluid dynamics. Let us consider air flows at speeds

greater than 100 m/s, which corresponds to a Mach number of approximately 0.3, but

less than 1700 m/s, or approximately Mach 5. Air flows in this range (0.3 ≤ M≤ 5) may

be considered as compressible and inviscid. This range is usually subdivided into re-

gions identified as subsonic (0.3 < M< 0.8), transonic (0.8 ≤ M≤ 1.2), and supersonic

(1.2 < M≤ 5). For M> 5, the flow is referred to as hypersonic. Hypersonic flows around

a solid body are usually coupled with viscous boundary layers. Effects of dilatational

dissipation due to compressibility, high temperature gradients, vortical motions within

the secondary boundary layers, radiative heat transfer, vibrational and electronic ener-

gies, and chemical reactions are examples of some of the complex physical phenomena

associated with hypersonic flows.

In order to take into account the compressibility and variations of density in high-

speed flows, we utilize the conservation form of the governing equations, using the

density-based formulation. This is in contrast to the pressure-based formulation for

incompressible flows discussed in Chapter 5. For compressible flows, we encounter

some regions of the flow domain (close to the wall, for example) in which low Mach

numbers or incompressible flows prevail. In this case, the density-based formulations

become ineffective, with the solution convergence being extremely slow. To resolve such

problems, various schemes have been developed. Among them are the preconditioning

process for the time-dependent term toward improving the stiff convection eigenvalues

and the flowfield-dependent variation (FDV) methods allowing the transitions and

interactions of various flow properties as well as all speed flows.

For simple cases of compressible inviscid flows (irrotational, isentropic, isother-

mal), the potential equation can be used, whereas the Euler equations are preferred

for more general compressible inviscid flows. For compressible viscous flows, various

approximate governing equations such as boundary layer equations or parabolized

120
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Navier-Stokes system of equations are utilized. However, the most general and com-

plete analysis is to invoke the full Navier-Stokes system of equations, which is the

emphasis in this book.

FDM formulations and solution procedures for the potential equation are presented

in Section 6.1, with Euler equations and the Navier-Stokes system of equations in

Sections 6.2 and 6.3, respectively. The solution of the Navier-Stokes system of equations

for compressible and incompressible flows using the preconditioning process will be

presented in Section 6.4, followed by the flowfield-dependent variation (FDV) meth-

ods in Section 6.5 and various other methods in Section 6.6. Finally, the boundary

conditions for compressible flows in general are discussed in Section 6.7.

6.1 POTENTIAL EQUATION

6.1.1 GOVERNING EQUATIONS

The governing equation for steady-state compressible inviscid flows may be represented

by the potential equation of the form (2-D),[
1 −

(
u
a

)2]
∂u
∂x

+
[

1 −
(

v

a

)2]
∂v

∂y
− uv

a2

(
∂u
∂y

+ ∂v

∂x

)
= 0 (6.1.1a)

or [
1 −

(
u
a

)2]
∂u
∂x

+
[

1 −
(

v

a

)2]
∂v

∂y
− 2

a2
uv

∂u
∂y

= f (6.1.1b)

with

f = 1

a2
uv

(
∂v

∂x
− ∂u

∂y

)
(6.1.2)

and f = 0 for irrotational flow. In terms of the velocity potential function �, (6.1.1) may

be written as

�,i i − 1

a2
�,i �, j �,i j = 0

or

(
1 − M2

x

)∂2�

∂x2
+ (

1 − M2
y

)∂2�

∂y2
− 2

a2

∂�

∂x
∂�

∂y
∂2�

∂x∂y
= 0 (6.1.3)

with u = ∂�/∂x, v = ∂�/∂y, Mx = u/a, and My = v/a.

For small perturbation approximations in irrotational flow, we obtain

(
1 − M2

∞
)∂2�

∂x2
+ ∂ 2�

∂y2
= M2

∞

(
1 + �

U∞

)
∂�

∂x
∂2�

∂x2
(6.1.4)

For unsteady flows, using the first and second laws of thermodynamics for isentropic

and irrotational flows, (6.1.1) is modified to

�,i i − 1

a2
�,i �, j �,i j − 1

a2

[
∂2�

∂t2
+ ∂

∂t
(�,i �,i )

]
= 0 (6.1.5)



122 COMPRESSIBLE FLOWS VIA FINITE DIFFERENCE METHODS

where

a2 = ∂p
∂�

= � p
�

= (� − 1)H = (� − 1)

[
H0 − 1

2
�,i �,i − ∂�

∂t

]
In the case of isentropic flows with stagnation density �0 and stagnation enthalpy H0,

we have

�

�0

=
[

1 − 1

2H0

�,i �,i − 1

H0

∂�

∂t

] 1
�−1

(6.1.6)

with

H0 = H + 1

2
v · v (6.1.7)

For steady flows, (6.1.6) takes the form

�

�0

=
[

1 − 1

2H0

�,i �,i

] 1
�−1

(6.1.8)

or

�

�0

=
[

1 − � − 1

2a2
0

�,i �,i

] 1
�−1

=
[

1 − � − 1

2
M2

] 1
�−1

(6.1.9)

If a nonisentropic process with rotational flows is considered, the momentum equa-

tion is written as

T∇S + v × � − ∇H0 = 0 (6.1.10)

where S is the entropy per unit mass. Combining (6.1.10) and (6.1.2), we obtain for two

dimensions

f = − 1

V∗

(
H0,i ni − a2

� R
S,i ni

)
uv

a2
(6.1.11)

with

V∗ = vn1 − un2

It follows from (6.1.10) and (6.1.9) that

�

�0

=
[

exp

(−�S
c�

)(
1 − 1

2H0

�,i �,i

) 1
�−1

]
(6.1.12)

where �S is the entropy increase over the shock. This is equivalent to a modification

of the stagnation density �0

�

�02

=
(

1 − 1

2H0

�,i �,i

) 1
�−1

(6.1.13)

with

�02 = �01

(
p02

p01

) 1
�

where the subscripts 1 and 2 denote upstream and downstream of the shock, respectively.
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6.1.2 SUBSONIC POTENTIAL FLOWS

For irrotational flow [ f = 0 in (6.1.3)] with �x = �y = 1, the finite difference scheme

may be written as(
1 − M2

x

)
i, j (�i+1, j − 2�i, j + �i−1, j ) + (

1 − M2
y

)
i, j (�i, j+1 − 2�i, j + �i, j−1)

− 1

2
(Mx My)i, j (�i+1, j+1 − �i+1, j−1 − �i−1, j+1 + �i−1, j−1) = 0 (6.1.14)

It is interesting to note that (6.1.14) is diagonally dominant for subsonic flows, while

this is not true for transonic and supersonic flows. This implies that the elliptic nature

of (6.1.14) changes to parabolic and hyperbolic forms.

Another scheme is to use the continuity equation,

∇ · (�v) = ∇ · (�∇�) = (��,i ),i = 0 (6.1.15)

Thus, the finite difference form of (6.1.15) may be written as

�i+ 1
2
, j (�i+1, j − �i, j ) − �i− 1

2
, j (�i, j − �i−1, j ) + �i, j+ 1

2
(�i, j+1 − �i, j )

− �i, j− 1
2
(�i, j − �i, j−1) = 0 (6.1.16)

To solve (6.1.16), the so-called Taylor linearization [Murman and Cole, 1971] may be

used:

∇ · (�n∇�n+1) = 0 (6.1.17)

or

∇ · [
�
(|∇�n|2)∇�n+1

] = 0 (6.1.18)

where density is calculated from the known values of the velocities obtained at the

previous iteration step n.

6.1.3 TRANSONIC POTENTIAL FLOWS

As the Mach number approaches unity, the potential equation tends toward parabolic,

leading to instability or nonconvergence of the numerical scheme. To cope with this

difficulty, a number of numerical methods have been developed. They include artificial

viscosity, artificial compressibility, artificial flux or upwinding, and iterations with over-

relaxation, among others.

(a) Artificial Viscosity with Nonconservative Equation

In order to resolve shock discontinuities, we consider two forms of finite differences:

Central Differences

∂2�

∂x2

∣∣∣∣
(c)

i, j
= 1

(�x)2
(�i+1, j − 2�i, j + �i−1, j ) (6.1.19)
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Figure 6.1.2 Local streamlines.

where

��� = 1

q2
(u2�xx + 2uv�xy + v2�yy) (6.1.26a)

�nn = 1

q2
(v2�xx − 2uv�xy + u2�yy) (6.1.26b)

with q = (u2 + v2)
1
2 and

�(C)
xy = 1

4�x�y
(�i+1, j+1 − �i+1, j−1 − �i−1, j+1 + �i−1, j−1)

�(B)
xy = 1

4�x�y
(�i, j − �i−1, j − �i, j−1 + �i−1, j−1)

= �(C)
xy − �x

2
�xxy − �y

2
�xyy

�
(B)
�� = �

(C)
�� − u2

q
�x�xxx − v2

q
�y�yyy − uv

q
(�x�xxy + �y�xyy)

Thus, the rotational difference scheme takes the form

(1 − M2)�
(C)
�� − �(C)

nn = g (6.1.27)

g = 1

q2
(1 − M2)[�x(u2�xxx + uv�xxy) + �y(v2�yyy + uv�xyy)]

(b) Artificial Viscosity with Conservative Equation

The potential equation in conservation form with artificial viscosity is written as

∇ · (�∇� + A) = 0 (6.1.28)

where A is the artificial viscosity vector,

A = −�(u�x�xix + v�y�yiy) (6.1.29)

�x = − �

a2
v · ∂v

∂x
= − �

a2

(
u

∂u
∂x

+ v
∂v

∂x

)

�y = − �

a2
v · ∂v

∂y
= − �

a2

(
u

∂u
∂y

+ �
∂�

∂y

)
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with � being the switching function,

� = max

[
0,

(
1 − 1

M2

)]
(6.1.30)

and the derivatives of the density are upwind differenced.

(c) Artificial Compressibility

Equation (6.1.28) may be rewritten in the form [Holst and Ballhaus, 1979],

∂

∂x
(��x) + ∂

∂y
(��y) = 0 (6.1.31)

where

� = � − ��x�x (6.1.32a)

� = � − ��y�y (6.1.32b)

The artificial densities are prescribed at the midpoints (i ± 1
2
, j) and (i, j ± 1

2
).

For ui+ 1
2
, j > 0

� i+ 1
2
, j = �i+ 1

2
, j − �i j

(
�i+ 1

2
, j − �i− 1

2
, j

)
(6.1.33a)

For ui+ 1
2
, j < 0

� i+ 1
2
, j = �i+ 1

2
, j + �i+1, j

(
�i+ 1

2
, j − �i+ 3

2
, j

)
(6.1.33b)

For vi, j+ 1
2

> 0

� i, j+ 1
2

= �i, j+ 1
2
− �i j

(
�i. j+ 1

2
− �i, j− 1

2

)
(6.1.34a)

For vi, j+ 1
2

< 0

� i, j+ 1
2

= �i, j+ 1
2
+ �i, j+1

(
�i, j+ 1

2
− �i, j+ 3

2

)
(6.1.34b)

An alternative form for artificial compressibility may be given as

∇ · (�̃∇�) = 0 (6.1.35)

where

�̃ = � − �
∂�

∂�
�� = � − ���

(
u
q

�x + v

q
�y

)
(6.1.36a)

or

�̃ = � − �

(
u
q

�x�x + v

q
�y�y

)
(6.1.36b)

Various switching functions have been suggested for stability, such as

� = max

[
0,

(
1 − M2

c

M2

)
CM2

]
(6.1.37)

where Mc is a cutoff Mach number of the order of M ∼= 0.95, 1 ≤ C ≤ 2. The cutoff
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Mach number Mc activates the switching function in the small subsonic region Mc ≤
M ≤ 1 close to the sonic lines.

(d) Artificial Flux or Flux Upwinding

For switching at sonic points to avoid unwanted expansion peaks, we may utilize

controlled monotone schemes such as those used in Euler equations [Engquist and

Osher, 1980; Osher, Hafez, and Whitlow, 1985]. To this end, we may write the continuity

equation in the form

∂�

∂�
= −�q

a2

∂q
∂�

(6.1.38)

and

∂�q
∂�

= − �

a2
q2 ∂q

∂�
+ �

∂q
∂�

= �(1 − M2)
∂q
∂�

(6.1.39)

= q
(

1 − 1

M2

)
∂�

∂�

The corrected upwinded flux �̃q can be written in supersonic regions as

�̃q = �q − q
(

1 − 1

M2

)
∂�

∂�
�� (6.1.40)

or

�̃q = �q − ∂

∂�
(�q)�� (6.1.41)

A modification of (6.1.41) results in

�q = �q − ∂

∂�
[�(�q − �∗q∗)]�� (6.1.42)

where �∗q∗ denotes the sonic flux, � = 0 for subsonic flow (M ≤ 1, q ≤ q∗, � ≥ �∗) and

� = 1 for supersonic flows (M > 1, q > q∗, � < �∗) (see Figure 6.1.3). The discrete form

M < 1 M > 1 

   i 

Shock

M < 1 M > 1 

 i-   i+ i 

Sonic line 

 (a) Sonic cell  (b) Shock cell 

1/2 1/2 1/2 1/2 i-  i+

Figure 6.1.3 Flux upwinding at sonic and shock point transitions.
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of (6.1.42) becomes

(�q)i+ 1
2
, j = (�q)i+ 1

2
, j − �i+ 1

2
, j (�q − �∗q∗)i+ 1

2
, j + �i− 1

2
, j (�q − �∗q∗)i− 1

2
, j (6.1.43)

It is similar for other points. Thus, we have

For M < 1

(�q)i+ 1
2
, j = (�q)i+ 1

2
, j (6.1.44)

For M > 1

(�q)i+ 1
2
, j = (�q)i− 1

2
, j (6.1.45)

For M = 1

(�q)i+ 1
2
, j = (�∗q∗) (6.1.46)

Notice that this scheme guarantees that expansion shocks will not occur when

(�q)i+ 1
2
, j < (�∗q∗).

At a shock transition, we obtain

(�q)i+ 1
2
, j = (�q)i+ 1

2
, j + (�q − �∗q∗)i− 1

2
, j (6.1.47)

At shock points, the switching ensures that there is only one mesh point in the shock

region since the corresponding cell is treated as fully supersonic or fully subsonic as

soon as the shock cell is left. This results in a very sharp shock.

(e) Over-Relaxation Scheme

To solve (6.1.22) in the supersonic region, we write

(1 − M2)
(
�n+1

i−2, j − 2�n+1
i−1, j + �n+1

i, j

) + (
�n+1

i, j+1 − 2�n+1
i, j + �n+1

i, j−1

) = 0 (6.1.48)

where

�n+1 = �n + �
(

�n+1 − �n
)

(6.1.49)

Denoting that

�� = �n+1 − �n (6.1.50)

we have

(M2 − 1)i, j (���i−2, j − 2���i−1, j + ��i, j ) − (��i, j+1 − 2��i, j + ��i, j−1) = �Rn
i, j

(6.1.51)

or

(M2 − 1)
[
�E−1

x �2
x + (1 − �)

]
��i, j − �2

y�i, j = �Rn
i, j (6.1.52)

where E is the shift operator (Ex�i, j = �i+1, j ) and �2 is the central second difference



6.2 EULER EQUATIONS 129

operator. The equivalent artificial time dependent formulation is

(M2 − 1)[��xxt + (1 − �)�t ] − �yyt = �

�
R (6.1.53)

where

�t
∼= ��

�
(6.1.54)

with � being a fictitious time step and where �xxt is backward differenced and R is the

differential potential equation.

In (6.1.53), �yy is represented by

�yy = �2
y�n+1 + (� − 1)�2

y�n (6.1.55)

but the appropriate procedure in the supersonic region is to march in the flow direction,

such that �n+1
i, j can be determined only as a function of the new values �n+1

i−2, j and �n+1
i−1, j

determined on the previous columns. This implies that �yy should be represented by

�2
y�n+1 in the supersonic region. Note that the scheme (6.1.48) satisfies this requirement

for � = 1. For a general relaxation procedure, this condition can be satisfied by taking the

y-derivative terms at the new level n + 1, instead of the intermediate level, introducing

a factor � in front of the y second difference operator of (6.1 52).

The analysis using the potential equation has been well established, but important

physical phenomena such as rotational, nonisentropic, or nonisothermal effects are not

taken into account in the governing equation. For this reason, the most general approach

to the analysis of compressible inviscid flows must resort to the Euler equations. This is

the subject of the next section.

6.2 EULER EQUATIONS

Compressible inviscid flows including rotational, nonisentropic, and nonisothermal

effects require simultaneous solutions of continuity, momentum, and energy equations.

In this approach, however, specialization for small perturbation or linearization outside

of transonic flow as done in the potential equation can not be allowed. Thus, the diffi-

culty encountered in transonic flows with shock discontinuities must be resolved with

special computational schemes.

The most basic requirement for the solution of the Euler equations is to assure that

solution schemes provide an adequate amount of artificial viscosity required for rapid

convergence toward an exact solution. Furthermore, eigenvalues and compatibility

relations associated with convection terms are important factors in the resolution of

shock and expansion waves.

Solution schemes for the Euler equations may be grouped into three major cate-

gories: (1) central schemes, (2) first order upwind schemes, and (3) second order upwind

schemes and essentially nonoscillatory schemes. These schemes are tabulated in Table

6.2.1 and elaborated in the following subsections.
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Table 6.2.1 Various Computational Schemes for Euler Equations

Central Schemes First Order Upwind Schemes Second Order Upwind Schemes

1. Combined Space-Time Integration
(a) Explicit Schemes

Lax-Friendrichs – First

order (1954)

Lax-Wendroff – Second

order (1960)

(b) Two-Step Explicit Schemes
Richtmyer and Morton (1967)

MacCormack (1969)

LeRat and Peyret (1974)

(c) Implicit Schemes
MacCormack (1981)

Casier, Deconinck, Hirsch (1983)

LeRat (1979, 1983)

2. Separate Space-Time Integration
(a) Implicit Schemes

Briley and McDonald (1975)

Beam and Warming (1976)

(b) Explicit Schemes (Multistage
Runge-Kutta)

Jameson, Schmidt, Turkel (1981)

1. Flux Vector Splitting
Courant, Isaacson, and

Reeves (1952)

Moretti (1979)

Steger and Warming (1981)

VanLeer (1982)

2. Godunov Methods-Riemann
Solvers

(a) Exact Riemann Solvers
Godunov (1959) –

First order

VanLeer (1979) –

Second order

Woodward and

Colella (1984)

Ben-Artzi and

Falcovitz (1984)

(b) Approximate Riemann
Solvers

Roe (1981)

Enquist and

Osher (1980)

Osher (1982)

Harten, Lax,

Van Leer (1983)

1. Extrapolation
(a) Variable Extrapolation

(MUSCL)
Van Leer (1979)

(b) Flux Extrapolation
Van Leer (1979)

2. Explicit TVD Upwind
VanLeer (1974)

Harten (1983)

Osher (1984)

Osher and Chakravarthy

(1984)

3. Implicit TVD Upwind
Yee (1986)

4. Central TVD Implicit or
Explicit

Davis (1984)

Roe (1985)

Yee (1985)

5. Essentially Nonoscillatory
Scheme

Harten and Osher (1987)

6. Flux Corrected Transport
Boris and Book (1973)

6.2.1 MATHEMATICAL PROPERTIES OF EULER EQUATIONS

6.2.1.1 Quasilinearization of Euler Equations

The Euler equations may be linearized in terms of conservation variables or

primitive (nonconservation) variables. Consider the conservation form of the Euler

equations,

∂U
∂t

+ ∂Fi

∂xi
= 0, or

∂U
∂t

+ ai
∂U
∂xi

= 0 (i = 1, 2, 3) (6.2.1)

with

U =

 �

�v j

�E


 , Fi =


 �vi

�vi v j + p�i j

� Evi + pvi


 , ai = ∂Fi

∂U
, (6.2.2)
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For two dimensions, components of the convection Jacobian ai (i = 1, 2) are given by

a1 =




0 1 0 0

(� − 3)u2

2
+ (� − 1)v2

2
(3 − �)u −(� − 1)v � − 1

−uv v u 0

−�uE + (� − 1)uq2 � E − � − 1

2
(v2 + 3u2) −(� − 1)uv �u



(6.2.3a)

a2 =




0 0 1 0
−uv v u 0

(� − 3)v2

2
+ (� − 1)u2

2
−(� − 1)u (3 − �)v � − 1

−�vE + (� − 1)vq2 −(� − 1)uv � E − � − 1

2
(u2 + 3v2) �v



(6.2.3b)

Alternatively, the Euler equations may be written in nonconservation form for isen-

tropic flow in terms of the primitive variable V as

∂V
∂t

+ Ai
∂V
∂xi

= 0 (6.2.4)

with

V =




�

u
v

p


 =




�

u
v

(� − 1)

(
� E − �

(u2 + v2)

2

)

 (6.2.5)

A1 =




u � 0 0

0 u 0
1

�

0 0 u 0

0 �a2 0 u




, A2 =




v 0 � 0

0 v 0 0

0 0 v
1

�

0 0 �a2 v




(6.2.6)

Introducing a transformation between the conservation and nonconservation

variables,

M = ∂U
∂V

(6.2.7)
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or

M =




1 0 0 0

u � 0 0

v 0 � 0

q2

2
�u �v

1

� − 1


 M−1 =




1 0 0 0

−u
�

1

�
0 0

−v

�
0

1

�
0

� − 1

2
q2 −(� − 1)u −(� − 1)v � − 1




(6.2.8)

and combining (6.2.1), (6.2.4), and (6.2.7), we obtain

M
∂V
∂t

+ ai M
∂V
∂xi

= 0 (6.2.9)

Multiplying (6.2.9) by M−1 , we obtain the form given by (6.2.4):

∂V
∂t

+ Ai
∂V
∂xi

= 0 (6.2.10)

with

Ai = M−1ai M, ai = MAi M−1 (6.2.11)

Note that M represents the transformation matrix between the conservation variables

U and the primitive variables V.

6.2.1.2 Eigenvalues and Compatibility Relations

In order to examine the oscillatory behavior of the equations such as (6.2.4), we write

V in the form

V = VeI(�·x−�t) = VeI(	ixi−�t) (6.2.12)

Substituting (6.2.12) into (6.2.10) leads to

(−� + Ai 	i )V = 0 (6.2.13)

or

|K − 
I| = 0 (6.2.14)

with

� = 
I, Ai 	i = K
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For one dimension, (6.2.14) becomes∣∣∣∣∣∣∣∣∣

u − 
 � 0

0 u − 

1

�

0 �a2 u − 


∣∣∣∣∣∣∣∣∣
= 0 (6.2.15)

where 
1 = u, 
2 = u + a, 
3 = u − a, constitute eigenvalues.

Return to (6.2.10) for one-dimensional case and write

L−1 ∂V
∂t

+ L−1A
∂V
∂x

= 0, with L = ∂V
∂W

(6.2.16)

where L−1 is the matrix which will diagonalize the matrix K = Ai 	i . Using (6.2.7)

in (6.2.16) leads to

L−1M−1

(
∂U
∂t

+ A
∂U
∂x

)
= 0 (6.2.17)

Similarly, we may define the variable P in the form

P = ∂U
∂W

= ∂U
∂V

∂V
∂W

= ML, P−1 = L−1M−1

so that the diagonalized eigenvalue matrix becomes

Λ= L−1M−1KML = P−1KP (6.2.18)

where P−1 and P denote the left eigenvector and right eigenvector, respectively.

Let us now postulate an existence of the characteristic variables W such that

�W = L−1�V (6.2.19)

Substituting (6.2.19) into (6.2.16) yields

∂W
∂t

+ L−1AL
∂W
∂x

= 0 (6.2.20)

which is known as the compatibility equation.

The characteristic variables are also related by

�W = P−1�U, or �U = P�W (6.2.21)

Thus, the relations between the three sets of variables (Equations 6.2.7, 6.2.19, and

6.2.21) may be summarized as shown in Figure 6.2.1.

 V  W 

 U 

V

U
M

∂
∂=

W

U
P

∂
∂=

W

V
L

∂
∂=

Figure 6.2.1 Relation between conservation variable U, primitive

variable V, and characteristic variables W.
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6.2.1.3 Characteristic Variables

The existence of characteristic variables postulated in (6.2.19) and (6.2.21) may now be

examined for one-dimensional flow.

For the eigenvalues determined from (6.2.15), the three left eigenvectors of K are

given by


 �(1)

�(2)

�(3)


 =




� 0 − �

a2

0 �
�

�a

0 �
−�

�a




(6.2.22)

where �, �, � are the three normalization coefficients for the eigenvalues, 
1 = u, 
2 =
u + a, 
3 = u − a. With � = � = � = 1, the diagonalization matrices are

L−1 =




1 0 − 1

a2

0 1
1

�a

0 1
−1

�a




, L =




1
�

2a
− �

2a

0
1

2

1

2

0
�a
2

−�a
2




(6.2.23)

where L−1 and L denote left and right eigenvector of K, respectively.

Similarly, transformation matrices P−1 and P can be derived.

P−1 = L−1M−1 =




1 − � − 1

2

u2

a2
(� − 1)

u
a

−(� − 1)

a2(
� − 1

2
u2 − ua

)
1

�a
1

�a
[a − (� − 1)u]

−(� − 1)

�a

−
(

� − 1

2
u2 + ua

)
1

�a
1

�a
[a + (� − 1)u]

−(� − 1)

�a




(6.2.24a)

P = ML =




1
�

2a
− �

2a

u
�

2a
(u + a) − �

2a
(u − a)

u2

2

�

2a

(
u2

2
+ ua + a2

� − 1

)
− �

2a

(
u2

2
− ua + a2

� − 1

)




(6.2.24b)

where P−1 and P denote left and right eigenvectors of ai , respectively.

Rewriting (6.2.16) in one dimension,

L−1 ∂V
∂t

+ L−1ALL−1 ∂V
∂x

= 0 (6.2.25a)

or

L−1 ∂V
∂t

+ ΛL−1 ∂V
∂x

= 0 (6.2.25b)
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where

Λ=

u

u + a
u − a


 (6.2.26)

Expanding (6.2.25b) results in the continuity and momentum equations written in the

form

∂�

∂t
− 1

a2

∂p
∂t

+ u
∂�

∂x
− u

a2

∂p
∂x

= 0 (6.2.27a)

∂u
∂t

+ 1

�a
∂p
∂t

+ (u + a)

(
∂u
∂x

+ 1

�a
∂p
∂x

)
= 0 (6.2.27b)

∂u
∂t

− 1

�a
∂p
∂t

+ (u − a)

(
∂u
∂x

− 1

�a
∂p
∂x

)
= 0 (6.2.27c)

which are known as compatibility equations. It follows from (6.2.19) or (6.2.27), by

introducing an arbitrary variation �, that

�W1 = �� − 1

a2
�p = 0 (6.2.28a)

�W2 = �u + 1

�a
�p = 0 (6.2.28b)

�W3 = �u − 1

�a
�p = 0 (6.2.28c)

and subsequently from (6.2.20) or (6.2.28) that

∂

∂t




W1

W2

W3


 +




u

u + a

u − a


 ∂

∂x




W1

W2

W3


 = 0 (6.2.29)

If the characteristic variables W1, W2, W3 remain constant, they are known as

Riemann variables, Riemann invariants, or Riemann solution, defined as follows:

W1 = � −
∫

dp
a2

= constant along the C0 characteristic, stream line

W2 = u +
∫

dp
�a

= constant along the C+ characteristic

W3 = u −
∫

dp
�a

= constant along the C− characteristic

These characteristic lines are schematically shown in Figure 6.2.2, and propagation of

flow lines associated with characteristic lines are shown in Figure 6.2.3.
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 t 

 
x
 

C− 

Co 

C+ 

dx

dt
u a= −

dx

dt
u=

dx

dt
u a= +

Figure 6.2.2 Characteristic lines for one-dimensional flow.

For isentropic flow it can be shown that

W1 = p
��

(6.2.30a)

W2 = u + 2a
� − 1

= J+ (6.2.30b)

W3 = u − 2a
� − 1

= J− (6.2.30c)

or

a = � − 1

4
(J+ − J−) (6.2.31a)

u = 1

2
(J+ J−) (6.2.31b)

If the values of J+ and J− are known at a given point in the x–t plane , then (6.2.31a,b)

immediately give the local values of u and a at that point.

The propagation of flow lines associated with characteristic lines as related to

expansion wave and shock waves are shown in Figure 6.2.3. The number of bound-

ary conditions to be specified at inflow and outflow boundaries is determined by the

eigenvalue spectrum of the Jacobian matrices (6.2.6) in terms of the primitive variables

associated with the normal to the boundaries. Details for boundary conditions will be

presented in Section 6.7.

6.2.2 CENTRAL SCHEMES WITH COMBINED SPACE-TIME DISCRETIZATION

Central finite differences may be formulated using combined space-time discretization

(often known as Lax-Wendroff scheme). An alternative is to use independent space-

time discretization which is discussed in Section 6.2.3. In this section, we shall examine

the combined space-time discretization schemes.
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6.2.2.1 Lax-Friedrichs First Order Scheme

Consider the two-dimensional system of Euler equations in the form

∂U
∂t

+ ∂f
∂x

+ ∂g
∂y

= 0 (6.2.32)

This may be discretized by forward differencing U in time and central differencing f and

g in space.

Un+1
i, j = 1

4

(
Un

i+1, j + Un
i−1, j + Un

i, j+1 + Un
i, j−1

) − �x

2

(
fn
i+1, j − fn

i−1, j

) − �y

2

(
gn

i, j+1 − gn
i, j−1

)
(6.2.33)

with

�x = �t
�x

, �y = �t
�y

(6.2.34)

It can be shown that the von Neumann analysis leads to the stability condition,

J 2
x + J 2

y ≤ 1

2
(6.2.35)

or

� 2
x (u + a)2 + � 2

y (v + a)2 ≤ 1

2
(6.2.36)

where Jx and Jy represent a circle with the radius equal to
√

1
2
.

6.2.2.2 Lax-Wendroff Second Order Scheme

We rewrite (6.2.32) in the form

Un+1 = Un + �tUt + �t2

2
Ut t + O(�t3) (6.2.37)

and combining (6.2.33) and (6.2.37), we obtain the one-step algorithm,

Un+1
i, j = Un

i, j − �x�xfn
i, j − �y�ygn

i, j + � 2
x

2
�x(ai, j �xfi, j ) + � 2

y

2
�y(bi, j �ygi, j )

+ �x�y

2
[�x(ai, j �ygi, j ) + �y(bi, j �xfi, j )] (6.2.38)

where

�xfi, j = 1

2
(fi+1, j − fi−1, j ), �ygi, j = 1

2
(gi, j+1 − gi, j−1) (6.2.39)

�xfi, j = fi+1, j − fi−1, j , �ygi, j = gi, j+1 − gi, j−1 (6.2.40)

etc.

Determination of Jacobians in (6.2.38) is cumbersome. To avoid this, it is preferable

to employ a two-step scheme [Lerat and Peyret, 1974].
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Step 1

U
n+ 1

2

i, j = 1

4

(
Un

i+1, j + Un
i−1, j + Un

i, j+1 + Un
i, j−1

)
− �x

2

(
fn
i+1, j − fn

i−1, j

) − �y

2

(
gn

i, j+1 − gn
i, j−1

)
(6.2.41)

Step 2

Un+1
i, j = Un

i, j − �x

(
f

n+ 1
2

i+1, j − f
n+ 1

2

i−1, j

)
− �y

(
g

n+ 1
2

i, j+1 − g
n+ 1

2

i, j−1

)
(6.2.42)

The stability condition is shown to be, for �x = �y

�t
�x

(|v| + a) ≤ 1√
2

The following two-step scheme was introduced by MacCormack and Paullay [1972]:

Ui, j = Un
i, j − �x

(
fn
i+1, j − fn

i, j

) − �y
(
gn

i, j+1 − gn
i, j

)
(6.2.43)

Ui, j = Un
i, j − �x

(
fi, j − fi−1, j

) − �y
(
gi, j − gi, j−1

)
(6.2.44)

Un+1 = 1

2
(Ui, j + Ui, j ) (6.2.45)

The corresponding stability condition is

�t ≤
[ |
(A)| max

�x
+ |
(B)| max

�y

]−1

(6.2.46)

or

�t ≤ 1

(|u| + a)/�x + (|v| + a)/�y
≤ �x�y

|u|�y + |v|�x + a
√

(�x)2 + (�y)2
(6.2.47)

6.2.2.3 Lax-Wendroff Method with Artificial Viscosity

The Lax-Wendroff approaches with three-point central schemes lead to oscillations

around sharp discontinuities. For one dimension,

Un+1
i − Un

i = −�
(

fi+ 1
2
− fi− 1

2

)
(6.2.48)

where fi+ 1
2

and fi− 1
2
, called the numerical flux, are equal at steady state

fi+ 1
2

= fi+1 + fi

2
− �

2
ai+ 1

2
(fi+1 − fi ) (6.2.49a)

fi− 1
2

= fi + fi−1

2
− �

2
ai− 1

2
(fi − fi−1) (6.2.49b)

Now with the artificial viscosity added to (6.2.49), we write

fi+ 1
2

= fi+1 + fi

2
− 1

2
�ai+ 1

2
(fi+1 − fi ) + Di+ 1

2
(Ui+1 − Ui ) (6.2.50)
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where D is any positive function of Ui+1 − Ui which vanishes at least linearly with

Ui+1 − Ui .

Substituting (6.2.50) into (6.2.48) leads to

Un+1
i − Un

i = −�
(
fi+ 1

2
− fi− 1

2

)
LW

+ �
[
Di+ 1

2
(Ui+1 − Ui ) − Di− 1

2
(Ui − Ui−1)

]
where it is seen that the artificial viscosity terms are those discretized as

�x
∂

∂x

(
D

∂U
∂x

)

Hence, the addition of an artificial viscosity term can be seen as

f(AV) = f − �xD
∂U
∂x

or

f(AV)

i+ 1
2

= f(LW)

i+ 1
2

− Di+ 1
2
(Ui+1 − Ui )

6.2.2.4 Explicit MacCormack Method

Let us consider a quasi–one-dimensional problem such as occurs in a nozzle with a

variable cross-sectional area S.

∂SU
∂t

+ ∂SF
∂x

− dS
dx

B = 0, S = Ŝ(x) (6.2.51)

with

U =

 �

�u
�E


 , F =


 �u

�u2 + p
(�E + p)u


 , B =


 0

p
0




An explicit MacCormack predictor-corrector scheme is formulated as follows:

Predictor

SU∗
i − SUn

i

�t
+ SFn

i+1 − SFn
i

�x
− dS

dx

∣∣∣∣
i
Bn

i = 0 (6.2.52)

or

SU∗
i = SUn

i − �t
�x

(
SFn

i+1 − SFn
i

) + �t
(

dS
dx

)
i
Bn

i + Di (U) (6.2.53)

where the artificial viscosity term D j may be given by

Di (U) = �

8

[
SUn

i+2 − 4SUn
i+1 + 6SUn

i − 4SUi−1 + SUn
i−2

]
(6.2.54)

with 0 ≤ � ≤ 2, �t = C�x/u + a.
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Corrector

SUn+1
i = 1

2

{
SUn

i + SU∗
i − �t

�x
(SF∗

i − SF∗
i−1) + �t

(
dS
dx

)
i
B∗

i + D∗
i (U)

}
(6.2.55)

Numerical applications for this case are demonstrated in Section 6.8.1.

6.2.3 CENTRAL SCHEMES WITH INDEPENDENT SPACE-TIME DISCRETIZATION

Instead of using combined space-time discretization, we may employ independent time

discretization while maintaining central differences for space [Briley and McDonald,

1975; Beam and Warming, 1976, 1978]. We begin with the general form

dUi, j

dt
= −1

2

[
fi+1, j − fi−1, j

�x
+ gi, j+1 − gi, j−1

�y

]

where various finite difference schemes of the time derivative term may be applied. The

two level time integration of (6.2.51) leads to

(1 + )�Un+1 − �Un = �t�
[(

∂f
∂x

+ ∂g
∂y

)n+1

−
(

∂f
∂x

+ ∂g
∂y

)n]

with  > −1/2, � ≥ 1/2( + 1) for linear stability.

The two-level integration scheme takes the form

(1 + )�Un+1 + �t�
(

∂f
∂x

+ ∂g
∂y

)n+1

= −�t
(

∂f
∂x

+ ∂g
∂y

)n

+ �Un

or [
(1 + ) + �t�

(
∂a
∂x

+ ∂b
∂y

)]
�Un+1 = −�t

(
∂f
∂x

+ ∂g
∂y

)n

+ �Un

Introducing a central discretization, we obtain

[(1 + ) + �(�x�xa + �y�yb)]�Un+1
i, j = −�x�xfn

i, j + �y�ygn
i, j + �Un

i, j (6.2.56)

or

(1 + )�Un+1
i, j + �

�t
2�x

(ai+1, j�Ui+1, j − ai−1, j�Ui−1, j )
n+1

+ �
�t

2�y
(bi, j+1�Ui, j+1 − bi, j−1�Ui, j−1)n+1

= −�t
( fn

i+1, j − fn
i−1, j

2�x
+ gn

i, j+1 − gn
i, j−1

2�y

)
+ �Un

i, j (6.2.57)

and with an ADI factorization, for  = 0

(1 + ��x�x)(1 + ��y�ybn)�Ui, j = −(
�x�xfn

i, j + �y�ygn
i, j

)
(6.2.58a)

(1 + ��y�ybn)�Un+1
i, j = �Ui, j (6.2.58b)

Notice that each step is a tridiagonal system along the x lines for �U and along the y
lines for �Un+1.
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6.2.4 FIRST ORDER UPWIND SCHEMES

In general, the central schemes tend to provide excessive damping with shock discon-

tinuities not well resolveld. To compensate for this trend, first order upwind schemes

can be used. However, overshoots and undershoots may occur at discontinuities. A

remedy for this difficulty can be provided by low- or high-resolution second order up-

wind schemes. In this section, we discuss the first order upwind schemes, followed by the

second order upwind schemes in Section 6.2.5. High-resolution second order upwind

schemes will be discussed in Section 6.2.6. The first order upwind schemes are divided

into two groups: flux vector splitting schemes and Godunov schemes. These and other

topics are presented below.

6.2.4.1 Flux Vector Splitting Method

The basic strategy here is to split the flux and eigenvalues into positive and negative

components and apply the one-dimensional splitting to each flux component separately

according to the sign of the associated eigenvalues. This method is known as the flux

vector splitting method.

Consider the two-dimensional flow in the form

∂U
∂t

+ ∂f
∂x

+ ∂g
∂y

= 0 (6.2.59a)

or

∂U
∂t

+ A
∂U
∂x

+ B
∂U
∂y

= 0 (6.2.59b)

with the convection Jacobians A and B as related by diagonalized eigenvalue matrices,

�1 = P−1
1 AP1 =




u
u

u + a
u − a


 (6.2.60a)

�2 = P−1
2 BP2 =




v

v

v + a
v − a


 (6.2.60b)

For the one-dimensional problem, we have

f+ = f, f− = 0 for supersonic flow

f+ = 0, f− = f for subsonic flow

and

�+
1 =




u
u

u + a
0


 , �−

1 =




0

0

0

u − a
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with

A+ = P1�
+
1 P−1

1 , A− = P1�
−
1 P−1

1

and similarly for B. The split fluxes are defined by

f± = A±U g± = B±U

The general eigenvalue matrix may written as given by Steger and Warming [1980]

� =





1


2


3


4


 (6.2.61)

which will allow the split flux components to be written as follows:

f = �

2�




�

�u + a(
2 − 
3)

�v

�
u2 + v2

2
+ ua(
2 − 
3) + a2


2 + 
3

� − 1


 (6.2.62a)

g = �

2�




�

�u
�v + a(
2 − 
3)

�
u2 + v2

2
+ va(
2 − 
3) + a2


2 + 
3

� − 1


 (6.2.62b)

with

� = 2(� − 1)
1 + 
2 + 
3

Rewriting (6.2.59a) in a discrete form for a variable cross section S(x):

Un+1
i, j − Un

i, j = − �t
�x

(
f∗
i+ 1

2
, j

− f∗
i− 1

2
, j

)
− �t

�y

(
g∗

i, j+ 1
2

− g∗
i, j− 1

2

)
(6.2.63)

with

f∗
i+ 1

2
, j

= f−
i+1, j + f+

i, j , g∗
i, j+ 1

2

= g−
i, j+1 + g+

i, j (6.2.64)

For quasi–one-dimensional problems such as a nozzle with variable cross-section

area considered in (6.2.51), the solution procedure using the flux vector splitting is

presented below.

∂SU
∂t

+ ∂SF
∂x

− dS
dx

B = 0 (6.2.65)

Linearizing the above,

Fn+1 = Fn + ∂Fn

∂t
�t = Fn + ∂Fn

∂U
�U = Fn + a�U

Bn+1 = Bn + ∂Bn

∂t
�t = Bn + ∂Bn

∂U
�U = Bn + b�U
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where

F1 = �u = U2

F2 = �u2 + p= �2u2

�
+ (� − 1)

(
�E − � 2u2

2�

)
= U2

2

U2

+ (� − 1)

(
U3 − U2

2

2U1

)

= 3 − �

2

(
U2

2

U1

)
+ (� − 1)U3

F3 = (�E + p)u = �U3U2

U1

− (� − 1)
U2

2

2U2
1

The flux vector F can be split into subvectors such that each is associated with either

positive or negative eigenvalues of a.

a = a+ + a− = PΛ+P−1 + PΛ−P−1

� = �+ + �− =

u 0 0

0 u + a 0

0 0 0


 +


0 0 0

0 0 0

0 0 u − a




F+ = a+U, F− = a−U, a+ = PΛ+P−1, a− = PΛ−P−1

For M < 1 (u < a)

u > 0

u + a > 0

u − a < 0


 a+ = 0, a− = a

For M > 1 (u > a)

u > 0

u + a > 0

u − a > 0


 , a+ = a, a− = 0

The above criteria require that backward differencing (upwinding) be used for terms

associated with positive eigenvalues, whereas forward differencing should be used for

terms involved in negative eigenvalues. Furthermore, the number of boundary condi-

tions to apply are also dictated by the eigenvalues, compatibility relations, and charac-

teristic variables as discussed in Sections 6.2.1 and 6.7.

In order to write the finite difference equations, we return to the governing equa-

tion (6.2.65) and obtain the discretized form

S
�U
�t

+ ∂

∂x

[
S
(

F + ∂F
∂U

�U
)]

− dS
dx

[
B + ∂B

∂U
�U

]
= 0

In terms of the Jacobians,

S
�U
�t

+ ∂

∂x
(Sa�U) − dS

dx
(b�U) = −∂SF

∂x
+ dS

dx
B

or [
SI + �t

∂

∂x
Sa − �t

dS
dx

b
]
�U = −�t

[
∂SF
∂x

− dS
dx

B
]
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Introducing the flux vector splitting, we write{
SI + �t

[
∂

∂x
(Sa+ + Sa−) − dS

dx
b
]}

�U = −�t
[

∂

∂x
(SF+ + SF−) − dS

dx
B

]

A backward (upwind) differencing is used for a+ and F+ as follows:{
SI + �t

�x
[(Sa−

j − Sa+
j−1) + (Sa−

j+1 − Sa−
j )] − �t

dS
dx

b j

}
�U

= − �t
�x

[(SF+
j − SF+

j−1) + (SF−
j+1 − SF−

j )] + �t
dS
dx

B j

The above results may be rearranged in the form:

��U j+1 + ��U j + ��U j−1 = � (6.2.66)

where

� = �t
�x

Sj+1a−
j+1

� = SI + �t
�x

(Sj a+
j − Sj a−

j ) − �t
dS
dx

∣∣∣∣
j
b j

� = − �t
�x

Sj−1a+
j−1

� = − �t
�x

(Sj F+
j − Sj−1F+

j−1 + Sj+1F−
j+1 − Sj F−

j ) + �t
dS
dx

∣∣∣∣
j
B j

with

�U = Un+1 − Un

Here it is seen that for supersonic flow, a− = 0, making the scheme upwinded with the

diagonal term � being maximum. For subsonic flow, the diagonal term � is still large

with the eigenvalue �− or a− being negative. The scheme provides a stable solution. A

numerical example for this problem is demonstrated in Section 6.8.1.

The flux vector splitting has been applied to many first and second order upwind

schemes such as in MUSCL (monotone upstream centered schemes for conservation

laws) and TVD (total variation diminishing). For example, in the construction of the

second order schemes, MUSCL approach has been used to extrapolate the primitive

variables to the cell interface rather than the fluxes. Similar approaches and various

other versions of flux vector splitting were used for TVD. These and other topics on the

flux vector splitting will be discussed in Section 6.2.5.

6.2.4.2 Godunov Methods

The basic idea of a Godunov scheme is to use the finite volume structure of spatial

discretization (Figure 6.2.4a) and a piecewise constant distribution of the variable u
with the shock discontinuities occurring at each cell interface in order to obtain the
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Figure 6.2.4 Control volume and piecewise constant distribution of u. (a) Control volume for Godunov

method. (b) Piecewise constant distribution of u at t = n�t. (c) Compression shock and expansion wave.

exact Riemann solution (Figure 6.2.4b). Here, the dependent variable u may be written

as

un+1
i = un

i − �t
�x

[ f (ui+1/2

) − f
(
ui−1/2)] (6.2.67a)

with the value of u over the volume element given by the average value ui ,

ui = 1

�x

∫ x+�x/2

x−�x/2

u(x, t) dx

and the flux time-averaged at the control volume surface:

f = 1

�t

∫ t+�t

t
f dt

As an exact Riemann solution, we note that (6.2.67a) can be reduced to

un+1
i = un

i − a�t
�x

[
un

i − un
i−1

]
for a > 0 (6.2.67b)

un+1
i = un

i − a�t
�x

[
un

i+1 − un
i

]
for a < 0 (6.2.67c)

with |amax|�t/�x ≤ 1/2 for stability. This is because the wave can travel at almost half

the cell.

Godunov’s idea has been extended for improvements by various investigators

including Roe [1981] and Enquist and Osher [1980] among others. One of the most

widely used schemes is the Roe’s approximate Riemann solver. This scheme is described

below.
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Roe’s Approximate Riemann Solver

The original Godunov scheme (6.2.67) may be approximated by splitting the Jacobian

a into positive and negative components as

ai−1/2 = a+
i−1/2 − a−

1−1/2, ai+1/2 = a+
i+1/2 − a−

1+1/2

For a > 0, the upwinding scheme is given by

un+1
i = un

i − �t
�x

( fi − fi−1)

with the flux terms split in terms of positive and negative Jacobians,

fi−1/2 − fi−1 = a−
i−1/2(ui − ui−1)

(6.2.68a,b)
fi − fi−1/2 = a+

i−1/2(ui − ui−1)

Subtracting (6.2.68b) from (6.2.68a) leads to

fi−1/2 = fi + fi−1

2
− 1

2
|ai−1/2|(ui − ui−1) = f ∗

i−1/2 (6.2.69a)

with the symbol ∗ representing the first order upwind numerical flux at i − 1/2.

Similarly, for a < 0, the upwinding scheme is written as

un+1
i = un

i − �t
�x

( fi+1 − fi )

with

fi+1/2 − fi = a−
i+1/2(ui+1 − ui )

fi+1 − fi+1/2 = a+
i+1/2(ui+1 − ui )

from which we obtain

fi+1/2 = fi+1 + fi

2
− 1

2
|ai+1/2|(ui+1 − ui ) = f ∗

i+1/2 (6.2.69b)

with ∗ denoting the first order upwind numerical flux at i + 1/2.

Unfortunately, the scheme given by (6.2.68b) above does not recognize the possible

occurrence of expansion wave at a sonic transition identified by

|ai+1/2| = a+
i+1/2 − a−

i+1/2 = 0

at which the scheme computes as a shock discontinuity that represents a nonphysical

behavior, violating the entropy condition. A remedy for this situation can be found in

Harten and Hyman [1983] in which the following modification is made to (6.2.69b):

|ai+1/2| =
{ |ai+1/2| for |ai+1/2| ≥ ε

ε for |ai+1/2| < ε , ε = max

(
0,

∣∣∣ai+1 − ai

2

∣∣∣) (6.2.70)

Note that for expansion we have ε = (ui+1 − ui )/2 and this requires a modification. On

the other hand, for compression (ε = 0), no modification is needed. This accommodation

will allow a correct expansion wave to develop instead of the nonphysical discontinuity

as shown in Figure 6.2.4c(ii).
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The expressions given by (6.2.69a,b) can be substituted into (6.2.67a) in the form of

finite volume discretization. This process can easily be formulated in terms of diagonal-

ized Jacobians with eigenvalues and eignevectors for multidimensional Euler equations

as shown in Section 6.2.1. Thus, the first order upwind scheme for the solution of Euler

equations is of the form:

un+1
i = un

i − �t
�x

[
f ∗
i+1/2 − f ∗

i−1/2

]
(6.2.71)

with the numerical fluxes determined from (6.2.69a,b).

6.2.5 SECOND ORDER UPWIND SCHEMES WITH LOW RESOLUTION

There are two approaches for the second order upwind schemes with low resolution:

(1) variable extrapolation and (2) flux extrapolation. In each of these approaches, an

additional predictor step may or may not be included. In these schemes it is intended

that the second order upwind approaches lead to greater accuracy.

(1) Variable Extrapolation – MUSCL Approach

In this approach, known as Monotone Upstream-Centered Schemes for Conserva-

tion Laws (MUSCL) [Van Leer, 1979], the variables are extrapolated instead of the flux

terms.

f∗∗
i+ 1

2

= 1

2

[
f
(

UL
i+ 1

2

)
+ f

(
UR

i+ 1
2

)
− |a|i+ 1

2

(
UR

1+ 1
2

− UL
i+ 1

2

)]
(6.2.72)

with ∗∗ representing the second order scheme and

UL
i+ 1

2

= Ui + 1

4
[(1 − 	)(Ui − Ui−1) + (1 + 	)(Ui+1 − Ui )]

UR
i+ 1

2

= Ui+1 − 1

4
[(1 + 	)(Ui+1 − Ui ) + (1 − 	)(Ui+2 − Ui+1)]

where the superscripts L and R refer to the left and right sides at the considered bound-

ary and 	 denotes a weight (	 = −1, 0, 1) leading to various extrapolation schemes

Figure 6.2.5a,b).

The final solution is obtained as

Un+1
i = Un

i − �
(

f∗∗
i+ 1

2

− f∗∗
i− 1

2

)
(6.2.73)

Second order upwind schemes in space and time are obtained with an additional

predictor step

UL∗
i+ 1

2

= Ui + 1

4
[(1 − 	)(Ui − Ui−1) + (1 + 	)(Ui+1 − Ui )] (6.2.74)

Ui = Un
i − �t

2�x

(
f∗
i+ 1

2

− f∗
i− 1

2

)
(6.2.75a)

UR∗
i+ 1

2

= Ui+1 − 1

4
[(1 + 	)(Ui+1 − Ui ) + (1 − 	)(Ui+2 − Ui+1)] (6.2.75b)
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Figure 6.2.5 Variable extrapolation. (a) Piecewise linear representation

within cells. (b) Linear one-sided extrapolation of interface values for

	 = −1.

with ∗ indicating the first order approximation. Thus, (6.2.72) may be replaced by

f∗∗
i+ 1

2

= 1

2

[
f∗

(
UL∗

i+ 1
2

)
+ f∗

(
UR∗

i+ 1
2

)
− |a|i+ 1

2

(
UR∗

i+ 1
2

− UL∗
i+ 1

2

)]
Finally, we obtain

Un+1
i = Un

i − �
(

f∗∗
i+ 1

2

− f∗∗
i− 1

2

)
(6.2.76)

This is one of the most widely used schemes for capturing discontinuities in capturing

shock discontinuities in compressible flows.

(2) Flux Extrapolation Approach

In the previous approach, the state variables are directly extrapolated to the cell

interfaces. The fluxes at the cell boundaries are then calculated from these values. In

the flux extrapolation approach, the fluxes in the cell are directly extrapolated to the

boundaries.

The extrapolation formulas for the fluxes are the same as the formulas applied to

the variables. A general backward extrapolation of the positive flux is given by

f+b
i+ 1

2

= f+
i + 1

4

[
(1 − 	)

(
fi − f∗

i− 1
2

)
+ (1 + 	)

(
fi+1 − f∗

i+ 1
2

)]
(6.2.77a)
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whereas a forward extrapolation is applied to the negative part of the flux,

f− f
i+ 1

2

= f−
i+1 − 1

4

[
(1 + 	)

(
f∗
i+ 1

2

− fi

)
+ (1 − 	)

(
f∗
i+ 3

2

− fi+1

)]
(6.2.77b)

Thus, the second order upwind scheme based on flux extrapolation becomes

f∗∗
i+ 1

2

= f+b
i+ 1

2

+ f− f
i+ 1

2

(6.2.78)

Similarly, as in the variable extrapolation, we obtain the second order accuracy in

time by adding a first integration step over �t/2 with the associated first order scheme

(6.2.74). Defining

f∗
i+ 1

2

= f∗(Ui , Ui+1) (6.2.79)

we obtain the numerical flux as

f∗∗
i+ 1

2

= f∗
i+ 1

2

+ 1

2

[
(1 − 	)

2

(
fi − f∗

i− 1
2

)
+ (1 + 	)

2

(
fi+1 − f∗

i+ 1
2

) ]

+ 1

2

[
(1 + 	)

2

(
fi − f∗

i+ 1
2

)
+ (1 − 	)

2

(
fi+1 − f∗

i+ 1
2

) ]
(6.2.80)

Finally,

Un+1
i = Un

i − �
(

f∗∗
i+ 1

2

− f∗∗
i− 1

2

)
(6.2.81)

Unfortunately, the above schemes have had some difficulty; they are unable to con-

trol overshoots and undershoots at shock discontinuities. A remedy is found in second

order upwind schemes with high resolution, discussed in the following subsection.

6.2.6 SECOND ORDER UPWIND SCHEMES WITH HIGH RESOLUTION (TVD SCHEMES)

The most important development in computational fluid dynamics may be the second

order upwind schemes with high resolution, known as the total variation diminishing

(TVD) schemes, pioneered by Godunov [1959], VanLeer [1973, 1979], Harten and Lax

[1981], Harten [1983, 1984], Osher [1984], Osher and Chakravarthy [1984] as reviewed

by Hirsch [1990], which are based on the following physical properties:

� Entropy condition – A decrease of entropy associated with expansion shocks must

not be admitted.
� Monotonicity condition – This condition must be enforced to prevent oscillatory

behavior in the numerical scheme.
� Total Variation Diminishing (TVD) – The total variation of any physically admis-

sible solution must not be allowed to increase in time.

In general, undesirable gradients, undershoots, overshoots which may occur in sec-

ond order upwind schemes with low resolution may be controlled by providing non-

linear corrections, called limiters, which satisfy the above properties: entropy condition,

monotonicity condition, and total variation diminishing.
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(1) Definition of High Resolution Schemes

(a) Entropy Condition. The solution of the Euler equations may contain discontinu-

ities of variable gradients involving an entropy increase (or compression shocks) and,

unfortunately, an unrealistic entropy decrease (or expansion shocks) which violate the

second law of thermodynamics. In order to eliminate such undesirable (numerically

generated) entropy decrease or expansion shocks, we must guarantee that

aR < a < aL (6.2.82)

where a is the speed of propagation of the discontinuity satisfying the Rankine-

Hugoniot relations and

aR = dfR

du
, aL = dfL

du
(6.2.83)

with R and L being the right and left sides of the discontinuity. The requirement (6.2.82)

is schematically shown in Figure 6.2.6, implying that aR and aL must intersect along the

surface of discontinuity, resulting in a compression shock. In terms of eigenvalues, the

entropy condition is given by


k(UR) < a < 
k(UL) (6.2.84)

Another treatment of the entropy condition may be given by the smooth and positive

entropy function S(ui ) such that

∂2S
∂ui∂u j

> 0 (6.2.85)

as proposed by Lax [1973]. This is equivalent to the existence of a system of equations

with an artificial viscosity � such that

Ut + aUx = �Uxx (6.2.86)

the solution of which confirms the entropy condition given by (6.2.85) in the limit as the

L  R 

Surface of 

discontinuity 

 t 

 x 

dx

dt
aL=

dx

dt
a R=   

dx

dt
a=

aR < a < aL 

Figure 6.2.6 Intersection of two characteristics aL and aR leading

to compression shock discontinuity.
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artificial viscosity vanishes. In general, however, the satisfaction of entropy conditions

alone may lead to oscillatory motions (overshoots and undershoots) along the discon-

tinuities. Remedies can be found in the concepts of monotonicity and total variation

diminishing, which are described below.

(b) Monotonicity Condition. A monotonicity condition refers to the nonoscillatory be-

havior of the numerical solution. Consider the solution of Euler equation to be in the

form

un+1
i = H

(
un

i−k, un
i−k+1, . . . , un

i+k

)
(6.2.87)

This scheme is monotone if H is a monotonically increasing function such that

∂ H
∂u j

(ui−k, ui−k+1, . . . , ui+k) ≥ 0 (6.2.88)

for all i − k ≤ j ≤ i + k, with

un+1
i = un

i − �
(

f ∗
i+ 1

2

− f ∗
i− 1

2

)
(6.2.89)

f ∗
i+ 1

2

= f ∗ (
un

i−k+1, un
i−k+2, . . . , un

i+k

)
(6.2.90)

The condition for monotonicity is given by

∂ f ∗
i+ 1

2

∂ui−k+1

≥ 0,
∂ f ∗

i+ 1
2

∂ui+k
≤ 0 (6.2.91)

This represents a severe limitation, resulting in a scheme that is too diffusive. A

compromise is the total variation diminishing concept, described next.

(c) Total Variation Diminishing (TVD) Schemes. As we have seen that the satisfaction of

entropy and monotonicity conditions may still be restricted with oscillatory motions

and excessive damping, respectively, our air now is to look to the concept of total

variation diminishing to resolve these problems. To this end, we define the total variation

[Lax, 1973] as

TV =
∫ ∣∣∣∣∂u

∂x

∣∣∣∣ dx (6.2.92)

A numerical scheme is said to be total variation diminishing (TVD) if

TV(un+1) ≤ TV(un) (6.2.93)

Let us consider the semi-discretized system

dui

dt
= − 1

�x

(
f ∗
i+ 1

2

− f ∗
i− 1

2

)
(6.2.94)

or

dui

dt
= − 1

�x

(
C−

i+ 1
2

�ui+ 1
2
+ C+

i− 1
2

�ui− 1
2

)
(6.2.95)
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with

C−
i+ 1

2

�ui+ 1
2

= f ∗
i+ 1

2

− fi = a−
i+ 1

2

(ui+1 − ui ) (6.2.96a)

C+
i− 1

2

�ui− 1
2

= fi − f ∗
i− 1

2

= a+
i− 1

2

(ui − ui−1) (6.2.96b)

and

C+
i+ 1

2

+ C−
i+ 1

2

= fi+1 − fi

ui+1 − ui
=

�fi+ 1
2

�ui+ 1
2

≡ ai+ 1
2

(6.2.97)

To compare the results above with the central scheme, we consider

f ∗
i+ 1

2

= 1

2
( fi + fi+1) − 1

2
Di+ 1

2
�ui+ 1

2
(6.2.98)

where D denotes the numerical viscosity coefficient. Combining (6.2.96) and (6.2.98),

we obtain the wave speeds C−
i+ 1

2

and C+
i+ 1

2

in the form

C−
i+ 1

2

= 1

2

(
ai+ 1

2
− Di+ 1

2

)
(6.2.99)

C+
i+ 1

2

= 1

2

(
ai+ 1

2
+ Di+ 1

2

)
(6.2.100)

from which the numerical viscosity coefficient becomes

Di+ 1
2

= C+
i+ 1

2

− C−
i+ 1

2

(6.2.101)

Thus the viscosity is expected to be proportional to the difference between the positive

and negative wave speeds.

It follows from (6.2.101) that the semi-discrete system (6.2.95) is TVD if and only if

C−
i+ 1

2

≥ 0 and C+
i+ 1

2

≤ 0 (6.2.102)

Once again from (6.2.95) we obtain, using the sign function si+ 1
2

= sign(�ui− 1
2
),

d
dt

[TV(u)] =
∑

i

si+ 1
2

d
dt

(ui+1 − ui ) = 1

�x

∑
i

si+ 1
2

[
(C− − C+)i+ 1

2
�ui+ 1

2

− C−
i+ 3

2

�ui+ 3
2
+ C+

i− 1
2

�ui− 1
2

]
= 1

�x

∑
i

[
si+ 1

2

(
C−

i+ 1
2

− C+
i+ 1

2

) − si− 1
2
C−

i+ 1
2

+ si+ 3
2
C+

i+ 1
2

]
�ui+ 1

2
(6.2.103)

The TVD condition requires that the right-hand side of (6.2.103) be nonpositive to

ensure (6.2.102). This condition is satisfied for �ui+ 1
2

= 1 and �ui+ 3
2

= �ui− 1
2

= 0. Thus,

from (6.2.95) with an explicit Euler method

un+1
i = un

i − �t
�x

(
C−

i+ 1
2

�ui+ 1
2
+ C−

i− 1
2

�ui− 1
2

)n
(6.2.104)

with the CFL-like condition

�
(

C+
i+ 1

2

− C−
i+ 1

2

)
≤ 1 (6.2.105)
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Integrating (6.2.95) and (6.2.103) and combining the results, together with (6.2.102),

we obtain [Harten, 1983],

TV(un+1) ≤
∑

i

{[
1 − �(C+ − C−)i+ 1

2

]∣∣�ui+ 1
2

∣∣ − �C−
i+ 1

2

∣∣�ui+ 1
2

∣∣ + �C+
i+ 1

2

∣∣�ui+ 1
2

∣∣}
=

∑
i

∣∣�ui+ 1
2

∣∣ = TV(un) (6.2.106)

This is the basic requirement for the total variation diminishing.

Note that the second order upwind scheme (6.2.77a,b) with 	 = −1 can be written

as

dui

dt
= − 1

2�x
(3 f +

i − 4 f +
i−1 + f +

i−2) − 1

2�x
(−3 f −

i + 4 f −
i+1 − f −

i+2)

= − a+

2�x
[3(ui − ui−1) − (ui−1 − ui−2)] − a−

2�x
[3(ui+1 − ui ) − (ui+2 − ui+1)]

(6.2.107)

in which oscillations along discontinuities may still prevail. In what follows, we shall dis-

cuss the TVD schemes with limiters to achieve accuracy and stability based on (6.2.107).

(2) TVD Schemes with Limiters

The TVD scheme described above may have over- and under-shoots which can

be treated with the concept of limiters [Roe, 1984; Sweby, 1984]. To this end, rewrite

(6.2.107) in the form,

dui

dt
= − a+

�x

[
(ui − ui−1) + 1

2
(ui − ui−1) − 1

2
(ui−1 − ui−2)

]

− a−

�x

[
(ui+1 − ui ) + 1

2
(ui+1 − ui ) − 1

2
(ui+2 − ui+1)

]
(6.2.108)

Here, the variations in the second and third terms within the square brackets will be

limited as follows:

dui

dt
= − a+

�x

[
(ui − ui−1) + 1

2
�+

i− 1
2

(ui − ui−1) − 1

2
�+

i− 3
2

(ui−1 − ui−2)

]

− a−

�x

[
(ui+1 − ui ) + 1

2
�−

i+ 1
2

(ui+1 − ui ) − 1

2
�−

i+ 3
2

(ui+2 − ui+1)

]
(6.2.109)

Now the TVD conditions are obtained by rewriting (6.2.109) in the form similar to

(6.2.95),

dui

dt
= − a+

�x


1 + 1

2
�+

i− 1
2

− 1

2

�i− 3
2

r+
i− 3

2


 (ui − ui−1)

− a−

�x


1 + 1

2
�−

i+ 1
2

− 1

2

�−
i+ 3

2

r−
i+ 3

2


 (ui+1 − ui ) (6.2.110)
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with

r+
i+ 1

2

= ui+2 − ui+1

ui+1 − ui
, r−

i+ 1
2

= ui − ui−1

ui+1 − ui

r+
i− 1

2

= ui+1 − ui

ui − ui−1

, r−
i− 1

2

= ui−1 − ui−2

ui − ui−1
(6.2.111)

r+
i− 3

2

= ui − ui−1

ui−1 − ui−2

, r−
i− 3

2

= ui−2 − ui−3

ui−1 − ui−2

r−
i+ 3

2

= ui+3 − ui+2

ui+2 − ui+1

, r−
i+ 3

2

= ui+1 − ui

ui+2 − ui+1

�+
i− 1

2

= �
(

r+
i− 1

2

, r+
i+ 3

2

)
, �−

i+ 1
2

= �
(

r−
i+ 1

2

, r−
i+ 3

2

)
(6.2.112)

Thus, the TVD conditions are

�+ = 1 + 1

2
�+

i− 1
2

− 1

2

�+
i− 3

2

r+
i− 3

2

≥ 0 (6.2.113a)

�− = 1 + 1

2
�−

i+ 1
2

− 1

2

�−
i+ 3

2

r−
i+ 3

2

≥ 0 (6.2.113b)

It is interesting to note that the basic Godunov’s scheme (6.2.67b) is recovered for

�+ = �− = 1. With more restricted definitions for the limiter,

�+
i− 1

2

= �
(

r+
i− 1

2

)
, �+

i− 3
2

= �
(

r+
i− 3

2

)
(6.2.114)

�−
i+ 1

2

= �
(

r−
i+ 1

2

)
, �−

i+ 3
2

= �
(

r−
i+ 3

2

)
the TVD conditions (6.2.113a,b) may be written in the form [Roe, 1984, 1985; Swevy,

1984] as

�
(

r+
i− 3

2

)
r+

i− 3
2

− �
(

r+
i− 1

2

)
≤ 2 (6.2.115a)

�
(

r−
i+ 3

2

)
r−

i+ 3
2

− �
(

r−
i+ 1

2

)
≤ 2 (6.2.115b)

which may be generalized in the following form for all values of r and s:

�(r)

r
− �(s) ≤ 2 (6.2.116)

with the following constraints:

�(r) ≥ 0 for r ≥ 0 (6.2.117a)

�(r) = 0 for r < 0 (6.2.117b)

where (6.2.117b) is designed to avoid nonmonotone behavior. Thus, the sufficient
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condition becomes

0 ≤ �(r) ≤ 2r (6.2.118)

Let us examine the above condition with another scheme such as the explicit second

order Warming and Beam scheme:

un+1
i − un

i = −�(ui − ui−1)n − �

2
(1 − �)(ui − 2ui−1 + ui−2)n (6.2.119)

which may be rewritten as

un+1
i = un

i − �(ui − ui−1)n − �

2
(1 − �)�−

[
�

(
r+

i− 1
2

)
(ui − ui−1)n

]
(6.2.120)

Using the conditions (6.2.107) and (6.2.120), we obtain

0 ≤ � C+
i− 1

2

= �


1 + 1

2
(1 − �)


�

(
r+

i− 1
2

)
− 1

2

�
(

r+
i− 3

2

)
r+

i− 3
2





 ≤ 1 (6.2.121a)

C−
i−1/2 = 0 (6.2.121b)

This requires, for arbitrary values of r and s,

�(r)

r
− �(s) ≤ 2

1 − �
(6.2.122a)

and

�(s) − �(r)

r
≤ 2

�
(6.2.122b)

Combining (6.2.118) and (6.2.122), the second order upwind scheme is TVD for

0 ≤ �(r) ≤ min(2r, 2) (6.2.123)

with � = 1 for the Warming and Beam Scheme and �(r) = r for the Lax-Wendroff

scheme.

Various limiters for second order schemes are summarized below:

(a) TVD regions for �(r) in general

(b) Van Leer’s limiter � = r + |r |
1 + r

(6.2.124)

(c) Minimum modulus (minmod) �(r) =
{

min(r, 1) if r > 0

0 if r ≤ 0
(6.2.125a)

minmod(x, y) =



x if |x| < |y|, xy > 0

y if |x| > |y|, xy > 0

0 if xy < 0

(6.2.125b)

(d) Roe’s Superbee limiter �(r) = max[0, min(2r, 1), min(r, 2)] (6.2.126)

(e) General �-limiters � = max[0, min(�r, 1), min(r, �)], 1 ≤ � ≤ 2 (6.2.127)

(f) Chakravarthy and Osher limiter �(r) = max[0, min(r, �)], 1 ≤ � ≤ 2 (6.2.128)
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In these limiters, we observe the following features:

(i) For r < 1 or

ui+1 − ui

�x
<

ui − ui−1

�x

Then set �(r) = r and the contribution un
i − un

i−1 to un+1
i is replaced by the

smaller quantity (un
i+1 − un

i ).

(ii) If r > 1, the contribution (ui − ui−1) remains unchanged.

(iii) If the slopes of consecutive intervals change sign, then the updated point i
receives no contribution from the upstream interval.

The limiters as defined above may be applied to numerical fluxes in the form

dui

dt
= − 1

�x


1 + 1

2
�

(
r+

i− 1
2

)
− 1

2

�
(

r+
i− 3

2

)
r+

i− 3
2


 (

fi − f ∗
i− 1

2

)

− 1

�x


1 + 1

2
�

(
r−

i+ 1
2

)
− 1

2

�
(

r−
i+ 3

2

)
r−

i+ 3
2


 (

f ∗
i+ 1

2

− fi
)

(6.2.129)

with

r+
i− 3

2

=
fi − f ∗

i− 1
2

f +
i − f ∗

i−1

, r−
i+ 3

2

=
f ∗
i+ 1

2

− fi

f −
i−1 − f −

i

(6.2.130)

and equivalently,

dui

dt
= − 1

�x


1 + 1

2
�

(
r+

i− 1
2

)
− 1

2

�
(

r+
i− 3

2

)
r+

i− 3
2


 a+

i− 1
2

(ui − ui−1)

− 1

�x


1 + 1

2
�

(
r−

i+ 1
2

)
− 1

2

�
(

r−
i+ 3

2

)
r−

i+ 3
2


 a−

i+ 1
2

(ui+1 − ui ) (6.2.131)

Here it is seen that with redefinition of slope ratios (6.2.130), the limiters are generalized

to nonlinear scalar conservation equations from (6.2.113).

(3) Time Integration Methods for TVD Schemes

So far we have been concerned with the second order space-accurate TVD schemes

only. We are now prepared to discuss integration of the time dependent term.

Recall that there are two types of time integration methods: (1) the combined space

time methods (Section 6.2.2) and (2) separate space-time methods (Section 6.2.3). The

former is more suitable for time dependent problems (time accurate), whereas the latter

are more suitable for steady-state problems (not time accurate).
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(a) Explicit TVD Schemes of First Order Accuracy in Time. Consider the first order time

integration of (6.2.128) in the form

dui

dt
= − 1

�x


1 + 1

2
�

(
r+

i− 1
2

)
− 1

2

�
(

r+
i− 3

2

)
r+

i− 3
2


 (

fi − f ∗
i− 1

2

)n

− 1

�x


1 + 1

2
�

(
r−

i+ 1
2

)
− 1

2

�
(

r−
i+ 3

2

)
r−

i+ 3
2


 (

f ∗
i+ 1

2

− fi
)n

(6.2.132)

This scheme without the limiter (� = 1) is unstable, whereas the nonlinear TVD version

with � > 1 is conditionally stable, as seen from (6.2.107).

Define the local, positive, and negative CFL numbers,

�+
i+ 1

2

= �
fi+1 − f ∗

i+ 1
2

ui+1 − ui
= �

f +
i+1 − f +

i

ui+1 − ui
(6.2.133a)

�−
i+ 1

2

= �
f ∗
i+ 1

2

− fi

ui+1 − ui
= �

f −
i+1 − f −

i

ui+1 − ui
(6.2.133b)

with

�i+ 1
2

= �+
i+ 1

2

+ �−
i+ 1

2

= �
fi+1 − fi

ui+1 − ui
= �ai+ 1

2
(6.2.134)

|�|i+ 1
2

= �+
i+ 1

2

− �−
i+ 1

2

= �

∣∣∣∣ fi+1 − fi

ui+1 − ui

∣∣∣∣ = � |a|i+ 1
2

(6.2.135)

and

�C+
i− 1

2

= �+
i− 1

2


1 + 1

2
�

(
r+

i− 1
2

)
− 1

2

�
(

r+
i− 3

2

)
r+

i− 3
2


 (6.2.136a)

�C−
i+ 1

2

= �−
i+ 1

2


1 + 1

2
�

(
r−

i+ 1
2

)
− 1

2

�
(

r−
i+ 3

2

)
r−

i+ 3
2


 (6.2.136b)

Thus, the TVD condition (6.2.107) with (6.2.115) is given by

�
(

C+
i+ 1

2

− C−
i+ 1

2

)
≤ � |a|i+ 1

2

(
1 + �

2

)
≤ 1 (6.2.137)

where∣∣∣∣�(s) − �(r)

r

∣∣∣∣ ≤ �

with 0 < � ≤ 2. The CFL condition for this case is

|�| ≤ 2

2 + �
(6.2.138)
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The stability conditions for various limiters are

minmod limiter: |�| < 2

3

superbee limiter: |�| < 1

2
and so on.

(b) Implicit TVD Schemes. An implicit multistep method for the second order TVD

scheme may be written as

�un
i + ��

(
f ∗n+1

i+ 1
2

− f ∗n+1

i− 1
2

)
= −�(1 − �)

(
f ∗n
i+ 1

2

− f ∗n
i− 1

2

)
(6.2.139)

Using (6.2.104), we may rewrite (6.2.139) as[
1 + ��

(
C−

i+ 1
2

�+ + C+
i− 1

2

�−
) ]n

�un
i = −�

(
f ∗
i+ 1

2

− f ∗
i− 1

2

)n
(6.2.140)

or

[1 + ��(C+ − C−)]�ui + ��C−�ui+1 − ��C+ = −�
(

f ∗
i+ 1

2

− f ∗
1− 1

2

)
(6.2.141)

It is now seen from (6.2.105) that the left-hand side of (6.2.141) is diagonally dominant.

The CFL-like condition is given as

�(1 − �)
(

C−
i+ 1

2

− C+
i− 1

2

)
≤ 1 (6.2.142)

(c) Explicit Second Order TVD Schemes. Consider (6.2.74) with 	 = −1 in (6.2.80),

ui = un
i − �

2
�− f ∗

i+ 1
2

(6.2.143a)

f
∗
i+ 1

2
= f ∗(ui , ui+1) (6.2.143b)

un+1
i = un

i − ��−1

[
f

∗
i+ 1

2
+ 1

2
�+

i− 1
2

(
f n
i − f ∗

i− 1
2

)
+ �−

i+ 3
2

(
f n
i+1 − f ∗

i+ 3
2

)]
(6.2.143c)

Applying (6.2.143c) to the linear convection equation, we obtain

un+1
i = un

i − �


1 + 1

2

(
�+

i− 1
2

− �
)

− 1

2

(
�+

i− 3
2

− �
)

r+
i− 3

2


 (

un
i − un

i−1

)
(6.2.144)

with the TVD conditions,

0 ≤ �

[
2 + �(s) − � − �(r) − �

r

]
≤ 2 (6.2.145)

where

s = r+
i− 1

2

, r = r+
i− 3

2
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and

0 ≤ �(r) ≤ (2 − �)r + � (6.2.146a)

0 ≤ �(r) ≤ 2

�
(6.2.146b)

These conditions lead to, for 0 < � ≤ 1,

�(r) ≤ min(2, 2r) (6.2.147)

It is interesting to recognize that the limited terms in (6.2.143c) represent the dif-

ference (prior to limiting) between the second and the first order numerical fluxes,

f ∗∗ − f ∗, and that this is the antidiffusive flux of the Flux Corrected Transport (FCT)

[Boris and Book, 1973].

Various second order TVD schemes are identified as follows:

(i) Explicit Second-Order Schemes with Variable Extrapolation (MUSCL) Approach. Once again,

from (6.2.74), (6.2.80), and (6.2.72a,b), we obtain

ui = un
i − �t

2�x

(
f ∗
i+ 1

2

− f ∗
i− 1

2

)
(6.2.148a)

ũL
i+ 1

2

= ui + 1

2
�̂L(ui − ui−1) (6.2.148b)

ũR
i+ 1

2

= ui+1 − 1

2
�̂R(Ui+1 − ui ) (6.2.148c)

with the tilde indicating monotonicity conditions, leading to

un+1
i − un

i = −�
(

f
∗∗
i+ 1

2
− f

∗∗
i− 1

2

)
(6.2.149)

where

f
∗∗
i+ 1

2
= f ∗

(
ũL

i+ 1
2

, ũR
i+ 1

2

)
(6.2.150)

(ii) Lax-Wendroff TVD Scheme. This is an application of TVD to the Lax-Wendroff

Scheme [Davis, 1984; Roe, 1984]. Here, the Lax-Wendroff numerical flux,

fi+ 1
2

= 1

2
( fi + fi+1)

is transformed into an equivalent flux split form by decomposing the fluxes and the

Jacobians into their positive and negative parts,

f ∗(LW)

i+ 1
2

∣∣∣
TVD

= f +
i + f −

i+1 + 1

2

(
1 + � A+

i+ 1
2

)
�f +

i+ 1
2

− 1

2

(
1 + � A−

i+ 1
2

)
�f −

i+ 1
2

(6.2.151)



6.2 EULER EQUATIONS 161

Thus, the TVD Lax-Wendroff scheme becomes

f ∗(LW)

i+ 1
2

∣∣
TVD = f +

i + f −
i+1 + 1

2
�

(
1

r+
i− 1

2

) (
1 − �+

i+ 1
2

)
�f +

i+ 1
2

− 1

2
�

(
1

r−
i+ 3

2

) (
1 + �−

i+ 1
2

)
�f −

i+ 1
2

(6.2.152)

where the symmetry property

�(r)

r
= �

(
1

r

)

is utilized. Note that the presence of the functional dependence on ri+3/2 is required,

leading to a five-point scheme to satisfy the TVD and second order accuracy conditions.

(iii) Harten’s Modified Flux Method. The first order upwind scheme has a truncation error

hx such that

ut + fx + hx = 0 (6.2.153)

with

h = �t�(u)ux (6.2.154)

Equation (6.2.153) represents a second order approximation to ut + fx = 0. For the first

order upwind scheme,

f ∗
i+ 1

2

= 1

2
( fi + fi+1) − 1

2
|a|i+ 1

2
(ui+1 − ui ) (6.2.155)

the truncation error becomes

h = �x
2

|a|(1 − � |a|)ux + O(�x2) = �x
2�

|�|(1 − |�|)ux + O(�x2) (6.2.156)

Thus, the numerical flux for (6.2.153) assumes the second order form,

f ∗∗
i+ 1

2

= 1

2
( fi + fi+1) + 1

2
(hi + hi+1) − 1

2
|a + b|i+ 1

2
(ui+1 − ui ) (6.2.157)

with

hi+ 1
2

= |a|i+ 1
2

(
1 − |�|i+ 1

2

)ui+1 − ui

2
= hi+1 + hi

2
(6.2.158a)

bi+ 1
2

= hi+1 − hi

ui+1 − ui
(6.2.158b)

This scheme is TVD with

� |a + b|i+ 1
2

≤ 1 (6.2.159)

and

hi = min mod
(

hi− 1
2
, hi+ 1

2

)
(6.2.160)
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(d) Artificial Dissipation and TVD Schemes. Let us rearrange (6.2.152) in the form

f ∗(LW)

i+ 1
2

∣∣
TVD = 1

2
( fi + fi+1) − 1

2
|a|i+ 1

2
(ui+1 − ui )

+ 1

2
[�+(1 − �+)a+ − �−(1 − �−)a−]i+ 1

2
(ui+1 − ui ) (6.2.161)

where

�+a− = 0 or �+ f − = 0
(6.2.162)

�−a+ = 0 or �− f + = 0

Thus

f ∗(LW)

i+ 1
2

∣∣
TVD = 1

2
( fi + fi+1) − 1

2
|a|i+ 1

2
(ui+1 − ui )

+ 1

2
(�+ + �−)[(1 − �+)a+ − (1 + �−)a−]i+ 1

2
(ui+1 − ui ) (6.2.163a)

or

f ∗(LW)

i+ 1
2

∣∣
TVD = 1

2
( fi + fi+1) − 1

2
|a|i+ 1

2
(ui+1 − ui )

+ 1

2
(�+ + �−)[|a|(1 − |�|)]i+ 1

2
(ui+1 − ui ) (6.2.163b)

Written alternatively,

f ∗(LW)

i+ 1
2

∣∣
TVD = 1

2
( fi + fi+1) − 1

2
�a2

i+ 1
2

(ui+1 − ui )

+ 1

2
(�+ + �− − 1)[|a|(1 − |�|)]i+ 1

2
(ui+1 − ui ) (6.2.164)

Comparing with (6.2.50), �± are identified as

Di+ 1
2

= 1

2
(1 − �+ − �−)[|a|(1 − |�|)]i+ 1

2
(6.2.165)

Similarly, a TVD MacCormack scheme is given by

ui = un
i − �( fi+1 − fi )

n

u = un
i − �( f i − f i−1) (6.2.166)

un+1
i = 1

2
(ui + ui ) + �

[
Di+ 1

2
(ui+1 − ui ) − Di− 1

2
(ui − ui−1)

]
Although the artificial viscosity of the central schemes is analogous to the TVD schemes,

accuracy and efficiency of the TVD schemes have proven to be superior.

In summary, the TVD schemes, although capable of resolving shock waves, are not

uniformly high order accurate. They are reduced to first order accurate at local extrema

of the solutions, while maintaining second order accuracy in other smooth regions.

To circumvent this difficulty, the essentially nonoscillatory (ENO) schemes have been

introduced. This is the subject of the next section.
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6.2.7 ESSENTIALLY NONOSCILLATORY SCHEME

In the previous sections, we have studied low- and high-resolution schemes of Godunov,

MUSCL, and TVD. In this section we examine a generalization and extension of these

schemes, leading to a uniformly high order accurate essentially nonoscillatory scheme

(ENO) as advanced by Harten and Osher [1987], and subsequently by Shu and Osher

[1988, 1989], among others.

In the ENO scheme, high-order accuracy is obtained, whenever the solution is

smoothed by means of a piecewise polynomial reconstruction procedure, yielding high

order pointwise information from the cell averages of the solution. When applied to

piecewise smooth initial data, this reconstruction enables a flux computation which is

of high order accuracy, whenever the function is smooth, and avoids nonconvergence.

Initially, ENO schemes were developed in terms of cell averages conducive to FVM

applications, followed by numerical fluxes for FDM applications with TVD Runge-

Kutta discretization. These two types of ENO schemes were compared and evaluated

by Casper, Shu, and Atkins [1994]. Recently, the ENO scheme has been extended to

the Navier-Stokes system of equations [Zhong, 1994] and to unstructured triangular

grids [Abgrall,1994; Suresh and Jorgenson, 1995; Stanescu and Habashi, 1998], among

others. The basic theory of ENO is briefly summarized below.

The purpose of ENO is to achieve uniformly high order accuracy by avoiding the

growth of spurious oscillations at shock discontinuities known as Gibb’s phenomena.

To this end, we employ piecewise polynomial reconstruction in the numerical solution

based on an adaptive stencil. Such stencil is chosen according to the local smoothness

of the flow variable.

Although ENO schemes have been applied to multidimensional Euler and Navier-

Stokes system of equations, we illustrate the procedure using one-dimensional hyper-

bolic conservation law,

∂U
∂t

+ ∂F
∂x

= 0 (6.2.167)

For simplicity, we consider a one-dimensional scalar function and reconstruct the point

values u(x) of a piecewise smooth function u from its known values of cell average ui .

ui =
∫ xi +1/2

xi −1/2

u()d (6.2.168)

with hi = xi+1/2 − xi−1/2. Let us now reconstruct u(x) from ui by interpolating the prim-

itive function U(x),

U(x) =
∫ x

x0

u()d (6.2.169)

The point value of the primitive function at x = xi+1/2 is given by

Ui+1/2 =
i∑

i=i0

ui hi (6.2.170)
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Table 6.2.2 Illustration of Divided Difference

xk �0 �1 (1st divided difference) �2 (2nd divided difference) �3 (3rd divided difference)

p0 x0 U0
U1 − U0

x1 − x0

= �U0

p1 x1 U1

�U1 − �U0

x2 − x0

= �2U0

U2 − U1

x2 − x1

= �U1

�2U1 − �2U0

x3 − x0

= �3U0

p2 x2 U2

�U2 − �U1

x3 − x1

= �2U1

U3 − U2

x3 − x2

= �U2

p3 x3 U3

Since we have

u(x) = d
dx

U(x) (6.2.171)

it is now possible to obtain a piecewise polynomial interpolation function Hm(x, U) of

degree m by interpolating the point values of Ui+1/2 from (6.2.170) and arrive at the

reconstruction polynomial of the form

R(x, u) = d
dx

Hm(x, U) (6.2.172)

where, for cell xi−1/2 and xi+1/2, Hm(x, U) represents the mth degree polynomial that

interpolates the values of Ui+1/2 at m + 1 successive points xj+1/2( jm ≤ j ≤ jm + m)

including xi−1/2 and xi+1/2. Thus, our objective is to choose a stencil with Hm(x, U)

being the smoothest. This can be extracted from a table of divided differences of U(x)

such as shown in Table 6.2.2.

The one-dimensional ENO reconstruction described above has been extended to

two dimensions via primitive function [Casper, 1992]. The cell average can be carried

out as follows:

Ui j = 1

�xi

∫ xi +1/2

xi −1/2

U j (x)dx (6.2.173)

with

U j (x) = 1

�y j

∫ yi +1/2

yi −1/2

U(x, y)dy (6.2.174)

Recently, applications of ENO to the Euler equations in unstructured triangular

grids have been reported by Abgrall [1994], Suresh and Jorgenson [1995], and Stanescu

and Habashi [1998]. The reconstruction via extrapolation allows the selection in one

step of all of the cells in the required stencil for each cell. For an r th order-of-accuracy,



6.2 EULER EQUATIONS 165

the approximation polynomials of degree m = r − 1 are written as

Ri [U, r ] =
m∑

p=0

∑
j+k=p

a jkXj Yk (6.2.175)

Here, we have M = (m + 1)(m + 2)/2 unknowns, requiring a stencil of M cells to build

the interpolation polynomial.

The ENO reconstruction such as given by (6.2.175) can be used to compute fluxes

so that the solution procedure of any scheme presented in the previous subsections will

be followed.

6.2.8 FLUX-CORRECTED TRANSPORT SCHEMES

The flux-corrected transport (FCT) scheme was originally developed by Boris and Book

[1973] and subsequently generalized by Zalesak [1979] in which monotonicity is assured

in multidimensional problems. The basic idea is to combine a high order scheme with a

low order scheme in such a way that the high order scheme is employed in smooth regions

of the flow, whereas the low order scheme is used near discontinuities in an attempt to

obtain a monotonic solution. The following six steps are used for the solution.

(1) Compute F L
i+1/2, the transportive flux given by some low order method guaran-

teed to give monotonic results.

(2) Compute F H
i+1/2, the transportive flux given by some high order method. This

flux is mathematically more accurate, but can lead to physically unacceptable

ripples in the solution.

(3) Compute the updated low order, transported and diffused solution,

UTD
i = Uo

i − �t
�xi

(
F L

i+1/2 − F L
i−1/2

)
(6.2.176)

(4) Define the antidiffusive flux which becomes the amount of the monotone trans-

portive flux that we would like to limit before correcting the transported and

diffused conservation variables of step (3).

F AD
i+1/2 = F H

i+1/2 − F L
i+1/2 (6.2.177)

Limit the antidiffusive fluxes F A
i+1/2 so that Un as computed in step (4) is free of the

overshoots and undershoots which also do not appear in UTD
i .

FC
i+1/2 = Ci+1/2 F AD

i+1/2 0 ≤ Ci+1/2 ≤ 1 (6.2.178)

Apply the limited antidiffusive fluxes to get the new values Un
i ,

Un
i = UTD

i − �t
�x

(
FC

i+1/2 − FC
i−1/2

)
(6.2.179)

Note that if FC
i+1/2 = F AD

i+1/2 for Ci+1/2 = 1, the Un
i reduces to the time-advanced higher

order method without the required monotonicity correction.

The procedure described above can be generalized to the two-dimensional case,

Un
i, j = Uo

i, j − �t
Ai, j

[(Fx)i+1/2, j − (Fx)i−1/2, j + (Fy)i, j+1/2 − (Fy)i, j−1/2] (6.2.180)
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where Ai, j is the two-dimensional area element centered on grid point (i, j). Here, two

sets of transportive fluxes Fx and Fy are treated as follows:

a. Compute (Fx)L
i+1/2, j and (Fy)L

i, j+1/2 by a lower order method.

b. Compute (Fx)H
i+1/2, j and (Fy)H

i, j+1/2 by a higher order method.

c. Compute the previously updated low order, transported and diffused solution.

UTD
i, j = Un

i, j − �t
Ai, j

[
(Fx)L

i+1/2, j − (Fx)L
i−1/2, j + (Fy)L

i, j+1/2 − (Fy)L
i, j−1/2

]
(6.2.181)

d. Define the vector components of the antidiffusive fluxes

F AD
i+1/2, j = (Fx)H

i+1/2, j − F L
i+1/2, j

(6.2.182)
F AD

i, j+1/2, = (Fy)H
i+1/2, j − F L

i, j+1/2

e. Limit the antidiffusive fluxes so that there are no overshoots or undershoots in

Un
i, j of step (f) below that do not appear in Un

i, j of step (c).

FC
i+1/2, j = Ci+1/2, j F AT

i+1/2, j 0 ≤ Ci+1/2, j ≤ 1
(6.2.183)

FC
i, j+1/2, = Ci+1/2, j F AT

i, j+1/2 0 ≤ Ci, j+1/2, j ≤ 1

f. Apply the limited antidiffusive fluxes to get the new values Un
i, j

Un
i, j = UTD

i, j − �t
Ai, j

[
FC

i+1/2, j − FC
i−1/2, j + FC

i, j+1/2 − FC
i, j−1/2

]
(6.2.184)

Here, it is important to limit the antidiffusive fluxes F AT
i+1/2, j and F AT

i, j+1/2 by choosing

the cell-interface flux-correcting factors Ci+1, j and Ci, j+1 such that the combination

of four fluxes acting together, through (6.2.184), does not allow Un
i, j to exceed some

maximum value Umax
i, j or to fall below some minimum value Umin

i, j . It should be noted that

determination of suitable values of flux-correcting factors Ci+1, j and Ci, j+1 is analogous

to the TVD limiters. There are many possible ways to determine these limiters, as

suggested in Zalesak [1979].

6.3 NAVIER-STOKES SYSTEM OF EQUATIONS

Diffusion processes due to viscosity and thermal conductivity are characterized by the

Navier-Stokes system of equations. As the Reynolds number increases, boundary layers

are formed and the laminar flow undergoes a transition toward turbulence. In high

Reynolds number and high Mach number flows, shock waves and turbulent boundary

layer interactions are most likely to occur. Furthermore, diffusivity due to chemical

reactions also adds to the complexity of governing equations and computations. In

general, such physical properties make the length and time scales of the variables widely

disparate, thus causing the resulting algebraic finite difference equations to become

“stiff.” The subjects of turbulence and chemical reactions will not be discussed until

Part Five.

Although implicit schemes are used predominantly in dealing with stiff equations

for compressible viscous flows, explicit schemes have also been used in relatively low



6.3 NAVIER-STOKES SYSTEM OF EQUATIONS 167

Reynolds number flows. In this section, some of the prominent explicit and implicit

schemes are discussed, followed by PISO.

6.3.1 EXPLICIT SCHEMES

The compressible viscous flow in its most general form was presented in Chapter 2. An

expanded form in 3-D is shown below, but without source terms.

∂U
∂t

+ ∂A
∂x

+ ∂B
∂y

+ ∂C
∂z

= 0 (6.3.1)

with

U =




�

�u
�v

�w

�E


 A =




�u
�u2 + p − �xx

�uv − �xy

�uw − �xz

(�E + p)u − u�xx − v�xy − w�xz + qx




B =




�v

�vu − �yx

�v2 + p − �yy

�vw − �yz

(�E + p)v − u�yx − v�yy − w�yz + qy




C =




�w

�wu − �zx

�vw − �zy

�w2 + p − �zz

(�E + p)w − u�zx − v�zy − w�zz + qz




�xx = 2

3
�

(
2
∂u
∂x

− ∂v

∂y
− ∂w

∂z

)
, �yy = 2

3
�

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
,

�zz = 2

3
�

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)

�xy = �

(
∂u
∂y

+ ∂v

∂x

)
= �yx, �xz = �

(
∂u
∂z

+ ∂w

∂x

)
= �zx, �yz = �

(
∂w

∂y
+ ∂v

∂z

)
= �zy

qx = −k
∂T
∂x

, qy = −k
∂T
∂y

, qz = −k
∂T
∂z

In terms of a curvilinear coordinate system (, �, �) (see Section 4.6), equations

(6.3.1) are transformed to

∂

∂t

(
U
J

)
+ ∂

∂

[
1

J
(xA + yB + zC)

]
+ ∂

∂�

[
1

J
(�xA + �yB + �zC)

]

+ ∂

∂�

[
1

J
(�xA + �yB + �zC)

]
= 0 (6.3.2)
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with

J = [x (y�z� − y� z�) − x�(y z� − y� z ) − x� (y z� − y�z )]−1

x = J (y�z� − y� z�), y = −J (x�z� − x� z�), z = J (x�y� − x� y�),

�x = −J (y z� − y� z ), �y = J (x z� − x� z ), �z = −J (x y� − x� y ),

�x = J (y z� − y�z ), �y = −J (x z� − x�z ), �z = J (x y� − x�y )

�xx = 2

3
�[2(xu + �xu� + �xu� ) − (yv + �yv� + �yv� ) − (zw + �zw� + �zw� )]

�yy = 2

3
�[2(yv + �yv� + �yv� ) − (xu + �xu� + �xu� ) − (zw + �zw� + �zw� )]

�zz = 2

3
�[2(zw + �zw� + �zw� ) − (xu + �xu� + �xu� ) − (yv + �yv� + �yv� )]

�xy = �(xu + �yu� + �yu� + xv + �xv� + �xv� )

�xz = �(zu + �zu� + �zu� + xw + �xw� + �xw� )

�yz = �(zv + �yv� + �yv� + yw + �yw� + �yw� )

qx = −k(xT + �xT� + �xT� ), qx = −k(xT + �xT� + �xT� ),

qx = −k(xT + �xT� + �xT� )

Equations (6.3.1) and (6.3.2) are mixed sets of hyperbolic and parabolic equations

in time. If the unsteady terms are dropped, then a mixed set of hyperbolic-elliptic sys-

tem results. As a consequence, the compressible Navier-Stokes system of equations

are normally solved in their unsteady form using the time dependent approach, in

which the equations are integrated forward in time until either the desired time is

reached or a steady-state solution is obtained asymptotically after a sufficient num-

ber of time steps. If only the steady-state solution is desired, an implicit finite differ-

ence scheme can be used, where fewer iterations are necessary. If time accuracy is

required, then a second order accurate explicit scheme may be used with small time

increments.

Explicit schemes include the leapfrog/DuFort-Frankel method, Lax-Wendroff

method, Runge-Kutta method, MacCormack method, among others. Highlights of the

explicit MacCormack scheme [MacCormack, 1969] with predictor and corrector steps

are presented below.

Predictor

Un+1
i, j,k = Un

i, j,k − �t
�x

(
An

i+1, j,k − An
i, j,k

) − �t
�y

(
Bn

i, j+1,k − Bn
i, j,k

) − �t
�z

(
Cn

i, j,k+1 − Cn
i, j,k

)
(6.3.3)

Corrector

Un+1
i, j,k = 1

2

[
Un

i, j,k + Un+1
i, j,k − �t

�x

(
An+1

i+1, j,k − An+1
i, j,k

) − �t
�y

(
Bn+1

i, j+1,k − Bn+1
i, j,k

)
− �t

�z

(
Cn+1

i, j,k+1 − Cn+1
i, j,k

)]
(6.3.4)
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with x = i�x, y = j�y, z = k�z. This explicit scheme is second order accurate in both

space and time, and useful for time accurate calculations or problems with low to moder-

ate Reynolds numbers. Although forward differences are used for all spatial derivatives

in the predictor step while backward differences are used in the correction step, the for-

ward and backward differencing can be alternated between predictor and corrector

steps as well as between the three spatial derivatives in order to eliminate any bias.

Unfortunately, no analytical stability analysis is available to determine limiting time

step requirements because of the nonlinear nature of the governing equations, but the

following empirical formula [Tannehill, Hoist, and Rakich, 1975] is proposed.

�t ≤ �(�t)CFL

1 + 2/Re�

(6.3.5)

with � ∼= 0.7 − 0.9

(�t)CFL ≤
[

|u|
�x

+ |v|
�y

+ |w|
�z

+ a

√
1

�x2
+ 1

�y2
+ 1

�z2

]−1

Re� = min(Re�x, Re�y, Re�z) ≥ 0

Re�x = � |u|�x
�

, Re�y = � |v|�y
�

, Re�z = � |w|�z
�

It is often necessary to add artificial viscosity using the fourth order derivatives of

the form,

−ε(�xi�xj�xk�xm)
∂4U

∂xi∂xj∂xk∂xm
(6.3.6)

where ε is an experimentally determined parameter.

For high Reynolds number flows (thin viscous layers), the mesh must be refined

(small time steps), leading to long computer times. To circumvent this difficulty, implicit

methods may be used. We discuss this subject in the following section.

6.3.2 IMPLICIT SCHEMES

Earlier developments of implicit schemes for the Navier-Stokes system of equations

include Briley and McDonald [1975], Beam and Warming [1978], and MacCormack

[1981], among others. First, let us consider the Navier-Stokes system of equations in the

general form

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= 0 (6.3.7)

Here, it is assumed that the convection and diffusion fluxes are functions of the conser-

vation flow variables U. In addition, the diffusion flux is assumed to be a function of the

gradient of conservation flow variables. These functional relations are characterized by

the convection Jacobian ai , diffusion Jacobian bi , and diffusion gradient Jacobian ci j .

ai = ∂Fi

∂U
, bi = ∂Gi

∂U
, ci j = ∂Gi

∂U, j
(6.3.8)
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To evaluate the Jacobians, we set new variables � = �u, m = �v, e = �E, and �R =

 + 2� for two-dimensional flows,

U =




U1

U2

U3

U4


 =




�

�u

�v

�E


 =




�

�

m

e




F1 =




F1
1

F2
1

F3
1

F4
1


 =




�u

p + �u2

�uv

�Eu + pu


 =




�

p + �2/�

�m/�

(p + e)
�

�




F2 =




F1
2

F2
2

F3
2

F4
2


 =




�v

�vu

p + �v2

�Ev + pv


 =




m

�m/�

p + m2/�

(p + e)
m
�




where

p= (� − 1)�

(
E − 1

2
v j v j

)
= (� − 1)�

[
E − 1

2
(u2 + v2)

]
= (� − 1)

[
e − 1

2�
(�2 + m2)

]

T = 1

c�

(
E − 1

2
v j v j

)
= 1

c�

[
E − 1

2
(u2 + v2)

]
= 1

�c�

[
e − 1

2�
(�2 + m2)

]

The convective Jacobian ai can be evaluated as

a1 = ∂F1

∂U
=




∂ F1
1

∂U1

∂ F1
1

∂U2

∂ F1
1

∂U3

∂ F1
1

∂U4

∂ F2
1

∂U1

∂ F2
1

∂U2

∂ F2
1

∂U3

∂ F2
1

∂U4

∂ F3
1

∂U1

∂ F3
1

∂U2

∂ F3
1

∂U3

∂ F3
1

∂U4

∂ F4
1

∂U1

∂ F4
1

∂U2

∂ F4
1

∂U3

∂ F4
1

∂U4




a1 = ∂F1

∂U

=




0 1 0 0

� − 3

2
u2 + � − 1

2
v2 (3 − �)u −(� − 1)v � − 1

−uv v u 0

−�eu
�

+ (� − 1)u(u2 + v2)
�e
�

+ 1 − �

2
(3u2 + v2) (1 − �)uv �u
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a2 = ∂F2

∂U

=




0 0 1 0

−uv v u 0

� − 3

2
v2 + � − 1

2
u2 −(� − 1)u (3 − �)v � − 1

−�ev

�
+ (� − 1)v(u2 + v2) (1 − �)uv

�e
�

+ 1 − �

2
(3v2 + u2) �v




(6.3.9a)

Similarly, the diffusion terms with their Jacobians are of the form

G1 =




G1
1

G2
1

G3
1

G4
1


 = −




0

�11

�12

�11u + �12v − q1


 G2 =




G1
2

G2
2

G3
2

G4
2


 = −




0

�21

�22

�21u + �22v − q2




b1 = ∂G1

∂U
=




0 0 0 0

b1
21 b1

22 b1
23 0

b1
31 b1

32 b1
33 0

b1
41 b1

42 b1
43 b1

44


 b2 = ∂G2

∂U
=




0 0 0 0

b2
21 b2

22 b2
23 0

b2
31 b2

32 b2
33 0

b2
41 b2

42 b2
43 b2

44


 (6.3.9b)

with m1 = �u, m2 = �v

b1
21 = − 1

� 2

(
−�Rm1,1 − 
m2,2 + 2�R

m1�,1

�
+ 2


m2�,2

�

)
b1

22 = �R

� 2
�,1 b1

23 = 


� 2
�,2

b1
31 = − �

� 2

(
−m2,1 − m1,2 + 2

m1�,2

�
+ 2

m2�,1

�

)
b1

32 = �

� 2
�,2 b1

33 = �

� 2
�,1

b1
41 = ub1

21 + vb1
31 − 1

� 2
(m1�11 + m2�12) + k

�2c�
[−(� E),1 + 2um1,1

+ 2vm2,1 + (2E − 3u2 − 3v2)�,1]

b1
42 = − �11

�
+ ub1

22 + vb1
32 + k

� 2c�
[−m1,1 + 2u�,1]

b1
43 = − �12

�
+ ub1

23 + vb1
33 − k

� 2c�
[−m2,1 + 2v�,1]b1

44 − k
� 2c�

�,1

b2
21 = b1

31, b2
22 = b1

32, b2
23 = b1

33, b2
31 = 1

� 2
(
m1,1 + �Rm2,2 + �Ru�,1 − �Rv�,2),

b2
32 = 


� 2
�,1, b2

33 = �R

� 2
�,2

b2
41 = ub2

21 + vb2
31 + 1

� 2
(m1�12 + m2�22) − k

�2c�

[−(� E),2 + 2um1,2

+ 2vm2,2 + (2E − 3u2 − 3v2)�,2

]
,
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b2
42 = − �12

�
+ ub2

22 − vb2
32 + k

� 2c�
[−m1,2 + 2u�,2],

b2
43 = − �22

�
+ ub2

23 + vb2
33 − k

� 2c�
[−m2,2 + 2v�,2], b2

44 = k
� 2c�

�,2

The diffusion gradient Jacobians are evaluated as

c11 = ∂G1

∂U,1

= −




0 0 0 0
c11

21 c11
22 0 0

c11
31 0 c11

33 0

c11
41 c11

42 c11
43 c11

44


 c12 = ∂G1

∂U,2

= −




0 0 0 0
c12

21 0 c12
23 0

c13
31 c12

32 0 0

c12
41 c12

42 c12
43 0




c21 = ∂G2

∂U,1

= −




0 0 0 0
c21

21 0 c21
23 0

c21
31 c21

32 0 0

c21
41 c21

42 c21
43 0


 c22 = ∂G2

∂U,2

= −




0 0 0 0
c22

22 c22
22 0 0

c22
31 0 c22

33 0

c22
41 c22

42 c22
43 c22

44




(6.3.9c)

with

c11
21 = −(2� + 
)

m1

� 2
, c11

22 = (2� + 
)
1

�
, c11

31 = −�
m2

�2
, c11

33 = �

�
,

c11
41 = −(2� + 
)

m2
1

� 3
− �

m2
2

� 3
+ k

c�

(
− e

� 2
+ m2

1 + m2
2

� 3

)
,

c11
42 =

(
2� + 
 − k

c�

)
m1

� 2
, c11

43 =
(

� − k
c�

)
m2

� 2
, c11

44 = k
c�

1

�
,

c12
21 = −


m2

� 2
, c12

23 = 


�
, c12

31 = −�
m1

� 2
, c12

32 = �

�
,

c12
41 = −(� + 
)

m1m2

� 3
, c12

42 = �
m2

� 2
, c12

43 = 

m1

� 2
,

c21
21 = −�

m2

�2
, c21

23 = �

�
, c21

31 = −

m1

� 2
, c21

32 = 


�

c21
41 = −(� + 
)

m1m2

� 3
, c21

42 = 

m2

� 2
, c21

43 = �
m1

� 2
,

c22
21 = −�

m1

�2
, c22

22 = �

�
, c22

31 = −(2� + 
)
m2

� 2
, c22

33 = (2� + 
)
1

�
,

c22
41 = −(2� + 
)

m2
2

� 3
− �

m2
1

� 3
+ k

c�

(
− e

� 2
+ m2

1 + m2
2

� 3

)
,

c22
42 =

(
� − k

c�

)
m1

� 2
, c22

43 =
(

2� + 
 − k
c�

)
m2

� 2
, c22

44 = k
c�

1

�

An extension to three-dimensional flux Jacobians follows the similar procedure.

The 3-D convection, diffusion, and diffusion gradient flux Jacobians are presented in

Appendix A.
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A typical implicit scheme may be constructed by linearizing the convection flux,

diffusion flux, and diffusion gradient as follows:

Fn+1
i = Fn

i + ∂Fn
i

∂U
�Un+1 = Fn

i + an
i �Un+1 (6.3.10a)

Gn+1
i = Gn

i + ∂Gn
i

∂U
�Un+1 + ∂Gn

i

∂U, j
�Un+1

, j = Gn
i + bn

i �Un+1 + cn
i j�Un+1

, j (6.3.10b)

An unsteady implicit scheme for (6.3.7) can be represented as an average of the

flowfield between the current and previous time steps,

�Un+1

�t
= −1

2

[(
∂Fi

∂xi
+ ∂Gi

∂xi

)n

+
(

∂Fi

∂xi
+ ∂Gi

∂xi

)n+1
]

(6.3.11)

Substituting (6.3.10) into (6.3.11) and using the relation,

ci j�U, j = (ci j�U), j − ci j, j�U (6.3.12)

it follows that{
I + �t

2

[
∂

∂xi
(ai + bi − ci j, j ) + ∂2ci j

∂xi∂xj

]n}
�Un+1 = −�t

2

(
∂Fi

∂xi
+ ∂Gi

∂xi

)n

(6.3.13)

Although (6.3.13) can be used for general applications, it may be modified speci-

fically for ADI procedure, leading to the so-called Beam-Warming scheme [Beam and

Warming, 1978], described below.

For simplicity of notation, let the Navier-Stokes system of equations be written as

∂U
∂t

= W, W = −∂Fi

∂xi
− ∂Gi

∂xi

The Beam-Warming implicit method begins with an introduction of implicitness

parameters  and � such that

1

�t

[
(1 + )�Un+1 − �Un] = �Wn+1 + (1 − �)Wn (6.3.14a)

with 0 ≤ (, �) ≤ 1, �Un+1 = Un+1 − Un, and �Un = Un − Un−1. Equivalently, we may

write (6.3.14a) in the form,

�Un+1 = �t
1 + 

[
∂

∂t
(��Un+1 + Un) + 

�Un

�t

]
(6.3.14b)

Using the linearization procedure of (6.3.10) in (6.3.14), we obtain

1

�t
[(1 + )�Un+1 − �Un] = −�

[
∂

∂xi
(ai�U + bi�U + ci j�U, j )

]n+1

−
[

∂

∂xi
(Fi + Gi )

]n

or {
I + ��t

1 + 

[
∂

∂xi
(ai + bi − ci j, j ) + ∂2ci j

∂xi∂xj

]n}
�Un+1

= 

1 + 
�Un − �t

1 + 

(
∂Fi

∂xi
+ ∂Gi

∂xi

)n

(6.3.15)
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At this point, we anticipate difficulties handling the cross derivatives of the viscosity

terms in the ADI procedure. Therefore, the diffusion flux terms are separated into two

parts: normal derivatives and cross derivatives so that the differentiation of the diffusion

gradient Jacobians is performed only for normal derivatives, whereas the cross deriva-

tive Jacobians on the left-hand side are excluded from the (n + 1)th step in (6.3.15).

Furthermore, the � terms on the right-hand side are to retain only the cross derivatives

(shear stresses) and allowed to lag to the n-1 step explicitly. With these arrangements,

(6.3.15) is rewritten as{
I + ��t

1 + 

[
∂

∂xi
(ai + bi − ci j, j ) + ∂2ci j

∂xi∂xj

]n}
�Un+1

= 

1 + 
�Un − �t

1 + 

(
∂Fi

∂xi
+ ∂Gi

∂xi

)n

+ �t�
1 + 

∂Gn−1
(i)

∂x( j)

(6.3.16)

with (i) �= ( j). Here, it should be noted that in Beam and Warming [1978] the cross

derivative terms alone become associated with the implicitness parameter � at the

(n − 1) step. This will allow (6.3.16) to be solved in two steps in the spirit of ADI with a

block tridiagonal form. In step 1, set i = 1 and j = 1,2 in the x-direction with only the

normal derivative Jacobians (c11 of ci j ) retained on the left-hand side. Step 2 is to set

i = 2 and j = 1,2 with only c22 being involved in the y-direction on the left-hand side

and place the solution obtained in step 1 on the right-hand side to determine the final

solution. In this process, the diffusion gradient Jacobian components, c12 and c21 are

never used, contrary to the general case of (6.3.14). Expansion of (6.3.16) as described

above leads to the following expressions.{
I + ��t

1 + 

[
∂

∂x
(a1 + b1 − c11.1) + ∂2c11

∂x2
+ ∂

∂y
(a2 + b2 − c22.2) + ∂2c22

∂y2

]n}
�Un+1

= RHS (6.3.17)

RHS = 

1 + 
�Un − �t

1 + 
Wn + ��t

1 + 

[
∂� xy

∂x
+ ∂� yx

∂y

]n

+ O
[(

� − 1

2
− 

)
�t2, �t3

]

with

b1 − c11.1 = 1

�




0 0 0 0

−u
(

4

3
�

)
x

(
4

3
�

)
x

0 0

−v�x 0 �x 0

−u2

(
4

3
�

)
x
− v2�x u

(
4

3
�

)
x

v�x 0




(6.3.18a)

b2 − c22.2 = 1

�




0 0 0 0
−u�x �y 0 0

−v

(
4

3
�

)
y

0

(
4

3
�

)
y

0

−v2

(
4

3
�

)
y
− u2�y u�y v

4

3
�y 0




(6.3.18b)
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The solution of (6.3.17) is carried out in the manner of an ADI scheme as follows:

Step 1{
I + ��t

1 + 

[
∂

∂x
(a1 + b1 − c11.1) + ∂2c11

∂x2

]n
}

�U∗ = RHS (6.3.19a)

Step 2{
I + ��t

1 + 

[
∂

∂y
(a2 + b2 − c22.2) + ∂2c22

∂y2

]n
}

�Un+1 = �U∗ (6.3.19b)

where it should be noted that the substitution of (6.3.19b) into (6.3.19a) is equivalent to

(6.3.17), but with additional higher order terms which may be neglected. This approach

is known as the approximate factorization [Beam and Warming, 1978].

For assurance of convergence, an explicit artificial viscosity of fourth order deriva-

tives (6.3.6) may be added to the right-hand side of (6.3.19a). Furthermore, implicit

second order derivative artificial viscosities may be added to the left-hand side of

both (6.3.19a) and (6.3.19b) in the x- and y-directions, respectively. The stability anal-

ysis by Beam and Warming [1978] shows that  ≥ 0.385 and � = 1/2 +  , leading to

0.639 ≤ �
1+

≤ 0.75.

The Beam-Warming scheme has been used successfully and many improvements

have been reported for the last two decades. An important question still remains.

That is, dominance of implicitness or excessive artificial dissipation enforced uniformly

everywhere in the flow domain must be adjusted according to the actual local flow

physics such as inviscid-viscous interactions, transition to turbulence, shock wave bound-

ary layer interactions, etc. This subject will be presented in the flowfield-dependent

variation (FDV) methods in Section 6.5.

6.3.3 PISO SCHEME FOR COMPRESSIBLE FLOWS

Recall that in Section 5.3.2 we discussed the PISO scheme for incompressible flows.

We demonstrate here that a similar procedure may be followed for compressible flows

except that an additional corrector stage must be incorporated because the coupling

between the momentum, energy, and pressure (continuity) equations involves the den-

sity and temperature [Issa, Gosman, and Watkins, 1986].

We begin with the continuity, momentum, and energy equations using the notations

given in Section 5.3.2.

1

�t
(�n+1 − �n) + (�vi )

n+1
,i = 0 (6.3.20a)

1

�t

[
(�v j )

n+1 − (�v j )
n] = −Sn+1

i j,i − pn+1
, j (6.3.20b)

1

�t
[(�E)n+1 − (�E)n] + (�Evi )

n+1
,i = −(pvi )

n+1
,i − (�i j vi )

n+1
, j (6.3.20c)
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The predictor and corrector steps are as follows:

(a) Momentum Predictor(
�i j

�t
+ A(D)

j i

�n

)
(�nv∗

i ) = −S∗(N)
i j,i − pn

, j + �nvn
j

�t
(6.3.21)

(b) Momentum Corrector I(
�i j

�t
+ A(D)

j i

�n

)
(�∗v∗∗

i ) = −S∗(N)
i j,i − p∗

, j + �nvn
j

�t
(6.3.22)

Subtracting (6.3.22) from (6.3.21) gives

�∗v∗∗
j − �nv∗

j = −
(

�i j

�t
+ A(D)

j i

�n

)−1

(p∗ − pn),i (6.3.23)

Writing (6.3.20a) in the form

(�∗v∗∗
i ),i = − 1

�t
(�∗ − �n) (6.3.24)

Differentiating (6.3.23) and using (6.3.24) we obtain
(

�i j

�t
+ A(D)

j i

�n

)−1

(p∗ − pn),i




, j

= (�nv∗
j ), j + 1

�t
(�∗ − �n) (6.3.25)

Introducing the equation of state in the form

�∗ = p∗�(pn, Tn) (6.3.26)

it is seen that (6.3.25) combined with (6.3.24) leads to
(

�i j

�t
+ A(D)

j i

�n

)−1

(p∗ − pn),i




, j

− �(pn, Tn)

�t
(p∗ − pn) = (�nv∗

j ), j (6.3.27)

from which p∗, �∗, and v∗∗
j can be solved.

(c) Energy Predictor(
1

�t
+ B(D)

�∗

)
(�∗E∗) = −(� Evi )

∗(N)
,i − (p∗v∗∗

i ),i + (�i j v
∗∗
i )i + �n En

�t
(6.3.28)

with B(D) being the diagonal components of the convective terms.

(d) Momentum Corrector II(
�i j

�t
+ A(D)

j i

�∗

)
(� ∗∗v∗∗∗

i ) = −S∗∗(N)
i j,i − p∗∗

, j + �nvn
j

�t
(6.3.29)

(� ∗∗v∗∗∗
i ),i = − 1

�t
(� ∗∗ − �n) (6.3.30)
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(
�i j

�t
+ A(D)

j i

�∗

)−1

(p∗∗ − p∗),i




, j

− �(p∗, T∗)

�t
(� ∗∗, v∗∗∗

i )(p∗∗ − p∗)

=



(
�i j

�t
+ A(D)

j i

�∗

)−1(
S∗∗(N)

ki,k − S∗(N)
ki,k

) − Aji

(
�∗ − �n

�n

)
v∗∗

i




, j

+ p∗

�t
[�(pn, Tn) − �(pn, Tn)] (6.3.31)

with

� ∗∗ = p∗∗�(p∗, T∗) (6.3.32)

Now (6.3.31) can be solved for p∗∗, whereas � ∗∗ and v∗∗∗
i are calculated from Eqs. (6.3.32)

and (6.3.30), respectively,

(e) Energy Corrector

The energy equation is updated in the form(
1

�t
+ B(D)

� ∗∗

)
(� ∗∗E∗∗) = −(� Evi )

∗∗(N)
,i − (p∗∗v∗∗∗

i ),i + (�i j v
∗∗∗
j ),i + �n En

�t
(6.3.33)

from which E∗∗, v∗∗∗
i , and T∗∗ are evaluated.

(f) Momentum Corrector III

This is the final step for all variables:

Momentum Equation(
�i j

�t
− A(D)

j i

� ∗∗

)
(�∗∗∗v∗∗∗∗

i ) = −S∗∗∗(N)
i j,i − p∗∗∗

, j + �nvn
j

�t
(6.3.34)

Continuity Equation

(�∗∗∗v∗∗∗∗
i ) = − 1

�t
(�∗∗∗ − �n) (6.3.35)

Pressure Equation
(

�i j

�t
+ A(D)

j i

� ∗∗

)−1

(p∗∗∗ − p∗∗),i




, j

− �(p∗∗, T∗∗)

�t
(p∗∗∗ − p∗∗)

=

(

�i j

�t
+ A(D)

j i

� ∗∗

)−1(
S∗∗∗(N)

ki,k − S∗∗(N)
ki,k

) − Aji

(
� ∗∗ − �n

�n

)
v∗∗∗

i




, j

+ p∗∗

�t
[�(p∗∗, T∗∗) − �(pn, Tn)] (6.3.36)

with

�∗∗∗ = p∗∗∗�(p∗∗, T∗∗) (6.3.37)

It is seen that p∗∗∗ can be solved from (6.3.36) with �∗∗∗ and v∗∗∗
i determined from

(6.3.37) and (6.3.34).
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6.4 PRECONDITIONING PROCESS FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOWS

6.4.1 GENERAL

For the analysis of compressible flows, it is possible that some regions of the flow domain

such as in the boundary layers have low speeds and thus are incompressible. As a result,

the density-based formulations in terms of conservation variables may suffer extremely

slow or nonconvergence of the solution. This is due to an ill-conditioned system of alge-

braic equations contributed by the stiff eigenvalues of convection terms. The reason for

this is that the acoustic speed is so much higher than the flow velocity in incompressible

flows. This phenomenon then appears to be numerical, but it is important to realize

that actually physical aspects of the fluid flows precipitate such numerical disorder. For

example, transitions and interactions between inviscid/viscous flows induce physical

disturbances or instabilities, which may then contribute to transitions and interactions

between laminar and turbulent flows and/or compressible and incompressible flows. We

address the subjects of transitions and interactions between different properties of fluid

flows in Section 6.5 on flowfield-dependent variation (FDV) methods. In this section,

our discussion will be limited strictly to the numerical aspect of the transition from the

compressible flow to incompressible flow or vice versa. Our objective is to begin with

the density-based formulation and subsequently by providing the preconditioning ma-

trix to the time-dependent terms we improve the convection eigenvalues for low Mach

number or incompressible flows.

The numerical difficulties of the density-based formulation dealing with low Mach

number flows or incompressible flows have been addressed by a number of investigators

[Peyret and Vivian, 1985; Choi and Merkle, 1993; Pletcher and Chen, 1993; Merkle

et al., l998], among others. In this vein, we construct Jacobian matrices transforming the

conservation variables into the primitive variables such that

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= 0 (6.4.1)

A
∂Q
∂t

+ Bi
∂Q
∂xi

+ Ci
∂Q
∂xi

+ Ci j
∂2Q

∂xi∂xi
= 0 (6.4.2)

where Q is the primitive variables, Q = [� , u, �, w, T]T , and A is the time Jacobian.

A = ∂U
∂Q

=




��T 0 0 0 −��p

��Tu � 0 0 −��pu

��Tv 0 � 0 −��pv

��Tw 0 0 � −��pw

ep
1 �u �v �w ep

4


 (6.4.3)

with

�T = 1

�

(
∂�

∂p

)
T

, �p = − 1

�

(
∂�

∂T

)
p

(6.4.4)

ep
1 = ��T E1 − �pT, ep

4 = −��pE1 + �cp (6.4.5)

E1 = H + K = cpT + 1

2
�i �i (6.4.6)
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Here, the convection eigenvalues can be examined from

|A−1Bi − 
i I| = 0 (6.4.7)

However, for incompressible limits, the eigenvalues become stiff as the algebraic equa-

tions resulting from (6.4.2) are ill-conditioned, with the acoustic speed being infinite.

6.4.2 PRECONDITIONING MATRIX

To improve the eigenvalues of (6.4.7), let us examine the quantities of the first column

of the time Jacobian which contain the derivative of density with respect to pressure at

the constant temperature.(
∂�

∂p

)
T

= 1

RT
= �

a2
(6.4.8)

Note that this derivative vanishes for incompressible flows (a = ∞), leading to the stiff

eigenvalues in (6.4.7). To circumvent this problem, we may adjust (6.4.8) in the form

��T =
(

∂�

∂p

)
T

= 1

RT
= 1

� RT
+ 1

cpT
= 1

a2
+ 1

cpT
= 1

V2
r

+ �p

cp
= 1

V2
r

− 1

cp�

(
∂�

∂T

)
p

(6.4.9)

where Vr is a reference velocity which may be defined differently for compressible and

incompressible flows. A logical choice would be that Vr = a for compressible flows and

Vr = (vi vi )
1/2 for incompressible flows. Thus, the time Jacobian matrix A is adjusted to

Â implying the preconditioning matrix with ��T in (6.4.3) given by (6.4.9). For highly

viscous flow such as in the boundary layers, it is necessary to choose the reference

velocity to be governed by the diffusion velocity such that

Vr = max(Vr , �/�x)

The adjusted eigenvalues of the preconditioned system are determined from

|Â−1Bi − 
i I| = 0 (6.4.10)

� = diag(u, u, u, u∗ + a∗, u∗ − a∗) (6.4.11)

with

u∗ = 1

2
u

[
1 −

(
��T − �p

cp

)
V2

r

]
(6.4.12a)

a∗ = 1

2

{[
1 −

(
��T − �p

cp

)
V2

r

]
u2 + V2

r

}1/2

(6.4.12b)

Here, it is seen that, for Vr ≥ a, the eigenvalues in (6.4.12) become u ± a, whereas if

Vr
∼= 0, all eigenvalues are of the same order as u. This shows that the eigenvalues of

the preconditioned system remain well conditioned at all speeds.

To provide efficiency and time-accurate solutions, one may utilize a dual time step-

ping by introducing a pseudo-time derivative term into (6.4.2) in linearized iteration

steps:

Â
∂�Q
∂�

+ A
∂�Q
∂t

+ Bi
∂�Q
∂xi

+ Ci
∂�Q
∂xi

+ Ci j
∂2�Q
∂xi∂xj

= −H (6.4.13)
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with H given by (6.4.1). As the pseudo time � approaches infinity, the pseudo time term

vanishes and we recover (6.4.1) at steady state.

Pletcher and Chen [1993] constructs the time Jacobian matrix in nondimensional

quantities with the first column and last row of (6.4.3) in terms of Mach number to

obtain the pseudo-time preconditioning matrix by dividing by the Mach number so that

the fatal ill-conditioning can be eliminated. Some examples have been presented by

Merkle et al. [1998] using the pseudo-time preconditioning of the type given by (6.4.3)

with (6.4.9).

6.5 FLOWFIELD-DEPENDENT VARIATION METHODS

So far, the major portions of the historical developments in FDM have been covered

and various computational schemes for the various flow properties have also been

discussed. In this section we explore a general approach which leads to most of the

currently available computational schemes as special cases. Such an approach, called

the flowfield-dependent variation (FDV) methods, is examined in this section.

6.5.1 BASIC THEORY

The original idea of FDV methods began from the need to address the physics in-

volved in shock wave turbulent boundary layer interactions [Chung, 1999; Schunk et al.,

1999]. In this situation, transitions and interactions of inviscid/viscous, compressible/

incompressible, and laminar/turbulent flows constitute not only the physical complexi-

ties but also computational difficulties. This is where the very low velocity in the vicin-

ity of the wall (M ∼= 0, Re ∼= 0) and very high velocity far away from the wall (e.g.,

M ∼= 20, Re ∼= 109) coexist within a domain of study. Transitions from one type of flow

to another and interactions between two distinctly different flows have been studied

for many years, both experimentally and numerically. Incompressible flows were ana-

lyzed using the pressure-based formulation with the primitive variables for the implicit

solution of the Navier-Stokes system of equations. The precondition process for the

time-dependent term intended for all speed flows was also discussed. Compressible

flows were analyzed using the density-based formulation with the conservation vari-

ables for the solution of the Navier-Stokes system of equations. However, in dealing

with the domain which contains all speed flows with various physical properties where

the equations of state for compressible and incompressible flows are different, and

where the transitions between laminar and turbulent flows are involved in dilatational

dissipation due to compressibility, we must provide very special and powerful numerical

treatments. The FDV scheme has been devised toward resolving these issues.

For the purpose of the discussion, we shall consider the conservation form of the

Navier-Stokes system (2.2.11) without the source terms (see Section 13.6 for the source

terms not equal to zero in FEM).

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= 0 (6.5.1)

In expanding Un+1 in a special form of Taylor series about Un, we introduce the

parameters sa and sb for the first and second order derivatives of U with respect to
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time, respectively,

Un+1 = Un + �t
∂Un+sa

∂t
+ �t2

2

∂2Un+sb

∂t2
+ O(�t3) (6.5.2)

where

∂Un+sa

∂t
= ∂Un

∂t
+ sa

∂�Un+1

∂t
0 ≤ sa ≤ 1 (6.5.3a)

∂2Un+sb

∂t2
= ∂2Un

∂t2
+ sb

∂2�Un+1

∂t2
0 ≤ sb ≤ 1 (6.5.3b)

with �Un+1 = Un+1 − Un. Substituting (6.5.3) into (6.5.2) yields

Un+1 = Un + �t
(

∂Un

∂t
+ sa

∂�Un+1

∂t

)
+ �t2

2

(
∂2Un

∂t2
+ sb

∂2�Un+1

∂t2

)
+ O(�t3)

(6.5.4)

Introducing the Jacobians of convection, diffusion, and diffusion gradients, we write the

first and second derivatives of the conservation variables in the form,

∂U
∂t

= −∂Fi

∂xi
− ∂Gi

∂xi
(6.5.5)

∂2U
∂t2

= − ∂

∂xi

(
ai

∂U
∂t

)
− ∂

∂xi

(
bi

∂U
∂t

)
− ∂2

∂xi∂xj

(
ci j

∂U
∂t

)
(6.5.6a)

in which the convection Jacobian ai , the diffusion Jacobian bi , and the diffusion gradient

Jacobian ci j are defined as in (6.3.9) for 2-D and Appendix A for 3-D. Combining (6.5.5)

and (6.5.6a) leads to

∂2U
∂t2

= ∂

∂xi
(ai + bi )

(
∂F j

∂xj
+ ∂G j

∂xj

)
+ ∂2

∂xi∂xk
cik

(
∂F j

∂xj
+ ∂G j

∂xj

)
(6.5.6b)

Substituting (6.5.5) and (6.5.6b) into (6.5.4), and assuming the product of the diffu-

sion gradient Jacobian with third order spatial derivatives to be negligible, we have

�Un+1 = �t

[
−∂Fn

i

∂xi
− ∂Gn

i

∂xi
+ sa

(
−∂�Fn+1

i

∂xi
− ∂�Gn+1

i

∂xi

)]

+ �t2

2

{
∂

∂xi
(ai + bi )

(
∂Fn

j

∂xj
+ ∂Gn

j

∂xj

)

+ sb

[
∂

∂xi
(ai + bi )

(
∂�Fn+1

j

∂xj
+ ∂�Gn+1

j

∂xj

)]}
+ O(�t3) (6.5.7)

The parameters sa and sb which appear in (6.5.7) above may be given appropriate

physical roles by calculating them from the flowfield-dependent quantities. For example,

if sa is associated with the temporal changes (fluctuations) of convection, it may be

calculated from the changes of Mach number between adjacent nodal points so that

sa = 0 would imply no changes in convection fluctuations. The functional dependency
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Figure 6.5.1 Mechanism of shock wave discontinuities as related

to s1 in terms of the changes of Mach number with respect to

the velocity and square root of pressure, density, or temperature,

sa = f (u/
√

p/�) = f (u/
√

RT) = f (M).

of sa on Mach number is illustrated from the shock tube physics as shown in Figure 6.5.1.

Here it is seen that discontinuities of pressure, density, and temperature are related as

a function of Mach number,

sa = f (u/
√

p/�) = f (u/
√

RT) = f (M)

Similarly, if sa is associated with the changes (fluctuations) of diffusion, such as in

boundary layers, then it may be calculated from the changes of Reynolds number or

Peclet number between adjacent nodal points such that sa = 0 would signify no changes

in diffusion fluctuations. Therefore, the role of sa for diffusion is different from that of

convection. For example, we may define the fluctuation quantities associated with sa as

sa

(
∂�Fn+1

i

∂xi
+ ∂�Gn+1

i

∂xi

)
⇒ s1

∂�Fn+1
i

∂xi
+ s3

∂�Gn+1
i

∂xi

=
√

M2
max − M2

min

Mmin

∂�Fn+1
i

∂xi
+

√
Re2

max − Re2
min

Remin

∂�Gn+1
i

∂xi

(6.5.8)

where it is seen that the parameter sa originally adopted as a single mathematical or
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numerical parameter has now turned into multiple physical parameters such as the

changes of Mach numbers and Reynolds numbers (or Peclet numbers) between adjacent

nodal points. The magnitudes of fluctuations of convection, diffusion, and source terms

are dictated by the current flowfield situations in space and time. Similar assessments

can be applied to the parameter sb as associated with its corresponding fluctuation

terms of convection and diffusion. Thus, in order to provide variations to the changes of

convection and diffusion differently in accordance with the current flowfield situations,

we reassign sa and sb associated with convection and diffusion as follows:

sa�Fi ⇒ s1�Fi , sa�Gi ⇒ s3�Gi

sb�Fi ⇒ s2�Fi , sb�Gi ⇒ s4�Gi

with the various parameters, called the flowfield-dependent variation (FDV) parameters

or simply variation parameters, defined as follows:

s1 = first order convection FDV parameter

s2 = second order convection FDV parameter

s3 = first order diffusion FDV parameter

s4 = second order diffusion FDV parameter

The first order FDV parameters s1 and s3 are flowfield-dependent, whereas the second

order FDV parameters s2 and s4 are exponentially proportional to the first order FDV

parameters, and mainly act as artificial viscosity. Details of these FDV parameters are

given below.

6.5.2 FLOWFIELD-DEPENDENT VARIATION PARAMETERS

As has been pointed out, the success of FDV methods depends on accurate calcula-

tions of the flowfield-dependent variation parameters. Specifically, the convection FDV

parameters s1 and s2 and diffusion FDV parameters s3 and s4 are dependent on Mach

numbers and Reynolds numbers or Peclet numbers, respectively. The first order FDV

parameters s1 and s3 dictate the flowfield solution accuracy, whereas the second order

FDV parameters s2 and s4 maintain the solution stability.

Convection FDV Parameters

s1 =




min(r, 1), r > �

0 r < �, Mmin �= 0

1 Mmin = 0

(6.5.9a)

s2 = 1

2

(
1 + s�

1

)
, 0.05 < � < 0.2 (6.5.9b)

with

r =
√

M2
max − M2

min

/
Mmin (6.5.10)

where the maximum and minimum Mach numbers are calculated between the local
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Figure 6.5.2 Relationship between the first and second order variation

parameters s2 = (1 + s�
1 )/2, s4 = (1 + s�

3 )/2, with 0.05 < � ≤ 0.2.

adjacent nodal points with � being the user-specified small number (� ∼= 0.01). The

ranges of the second order FDV parameter exponent � are given, exponentially pro-

portional to the first order FDV parameter, as shown in Figure 6.5.2. It appears that the

range in 0.05 ≤ � ≤ 0.2 is adequate in most of the examples that have been tested.

Diffusion FDV Parameters

s3 =




min(r, 1), r > �, � ∼= 0.01

0 r < �, Remin �= 0, or Pemin �= 0

1 Remin = 0, or Pemin = 0

(6.5.11a)

s4 = 1

2

(
1 + s�

3

)
, 0.05 < � < 0.2 (6.5.11b)

with

r =
√

Re2
max − Re2

min

/
Remin or r =

√
Pe2

max − Pe2
min

/
Pemin (6.5.12a,b)

where the maximum and minimum Reynolds numbers or maximum and minimum

Peclet numbers are calculated between the local adjacent nodal points, and � is a user-

specified small number (� ∼= 0.01). If temperature gradients are large, it is possible that

Peclet numbers instead of Reynolds numbers may dictate the diffusion FDV parameters.

The larger value of s3 is to be chosen, as obtained either from (6.5.12a) or (6.5.12b).

Adequate ranges of � for the second order FDV variation parameter are the same as

for the case of convection.

Relationships between the first and second order FDV parameters are graphically

shown in Figure 6.5.3a. The ranges of these convection and diffusion FDV parameters

for a typical compression corner high-speed flow are illustrated in Figure 6.5.3b. They

represent the trend of an exhaustive numerical experimentation for various physical

situations.
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parameters for the compression corner high-

speed flow.

6.5.3 FDV EQUATIONS

The final form of the FDV equations can be obtained by substituting the FDV para-

meters as defined in (6.5.8) through (6.5.12) into (6.5.7), leading to the residual of the

form,

R = �Un+1 − �t

[
−∂Fn

i

∂xi
− ∂Gn

i

∂xi
− s1

∂�Fn+1
i

∂xi
− s3

∂�Gn+1
i

∂xi

]

− �t2

2

[
∂

∂xi
(ai + bi )

(
∂Fn

j

∂xj
+ ∂Gn

j

∂xj

)]
− �t2

2

{
s2

[
∂

∂xi
(ai + bi )

(
∂�Fn+1

j

∂xj

)]

+ ∂

∂xi
(ai + bi )

(
s4

∂�Gn+1
j

∂xj

)}
+ O(�t3) (6.5.13a)

Now, rearranging and expressing the remaining terms associated with the FDV para-

meters in terms of the Jacobians, we have

�Un+1 + �t
[

s1

(
∂ai�Un+1

∂xi

)
+ s3

(
∂bi�Un+1

∂xi
+ ∂2ci j�Un+1

∂xi∂xj

)]

− �t2

2

{
s2

[
∂2(ai a j + bi a j )�Un+1

∂xi∂xj

]
+ s4

[
∂2(ai b j + bi b j )�Un+1

∂xi∂xj

]}

+ �t
(

∂Fn
i

∂xi
+ ∂Gn

i

∂xi

)
− �t2

2

[
∂

∂xi
(ai + bi )

(
∂Fn

j

∂xj
+ ∂Gn

j

∂xj

)]
+ O(�t3) = 0

(6.5.13b)
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Here, once again, the product of the diffusion gradient Jacobian with third order spatial

derivatives is neglected and all Jacobians ai , bi , and ci j are assumed to remain constant

spatially within each time step and to be updated at subsequent time steps. For simplicity,

we may rearrange (6.5.13b) in a compact form,

R = �Un+1 + ∂

∂xi

(
Ei�Un+1

) + ∂2

∂xi∂xj

(
Ei j�Un+1

) + Qn + O(�t3), (6.5.13c)

or, lagging Ei and Ei j one time step behind,

(
I + En

i
∂

∂xi
+ En

i j
∂2

∂xi∂xj

)
�Un+1 = −Qn (6.5.14)

with

En
i = �t(s1ai + s3bi )

n (6.5.15a)

En
i j =

{
�ts3ci j − �t2

2
[s2(ai a j + bi a j ) + s4(ai b j + bi b j )]

}n

(6.5.15b)

Qn = ∂

∂xi

[
�t

(
Fn

i + Gn
i

)] − ∂2

∂xi∂xj

[
�t2

2
(ai + bi )

(
Fn

j + Gn
j

)]
(6.5.15c)

Note that the Beam-Warming scheme [1978] discussed in Section 6.3.2 can be written

in the form similar to (6.5.14) with the following definitions of Ei , Ei j , and Qn:

Ei = m�t(ai + bi ), with m = �/(1 + ) (6.5.16a)

Ei j = m�tci j (6.5.16b)

Qn = �t
1 + 

(
∂Fn

i

∂xi
+ ∂Gn

i

∂xi

)
+ 

1 + 
�Un (6.5.16c)

where the cross-derivative terms appearing in Qn for the Beam-Warming scheme are

included in the second derivative terms on the left-hand side. The Beam-Warming

scheme is seen to be a special case of the FDV equations if we set s1 = s3 = m, s2 = s4 =
0, in (6.5.14), with adjustments of Qn on the right-hand side as in (6.5.16c). The stability

analysis of the Beam-Warming scheme requires  ≥ 0.385 and � = 1/2 +  . This will fix

the FDV parameter m to be 0.639 ≤ m ≤ 0.75.

We realize that all physical phenomena are dictated by the FDV parameters in the

FDV equations (6.5.14). Either FDM, FEM, or FVM approximations can be applied

to (6.5.14). However, their roles are merely to provide different options of discretiza-

tion, with physics governed by the FDV theory itself. Furthermore, the FDV equations

are capable of producing many existing FDM and FEM schemes as special cases, as

demonstrated in Chapter 16.

For FDM applications, the first derivative for Ei�Un+1 and the second derivative

for Ei j�Un+1 in (6.5.14) may be approximated by many options of finite difference

equations including high order accuracy schemes introduced in Section 3.7 or using the

flux vector splitting for the term involved in ai for Ei in (6.5.14). However, the physical

aspects accommodated in the FDV theory through the various FDV parameters are

unique and they play important roles, as elaborated next.
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6.5.4 INTERPRETATION OF FLOWFIELD-DEPENDENT VARIATION PARAMETERS

The flowfield-dependent variation (FDV) parameters as defined earlier are capable of

allowing various numerical schemes to be automatically generated. They are summa-

rized as follows:

(1) First order FDV parameters. The first order FDV parameters s1 and s3 con-

trol all high gradient phenomena such as shock waves and turbulence. These

parameters as calculated from the changes of local Mach numbers and Reynolds

(or Peclet) numbers within each element and are indicative of the actual local

element flowfields. The contours of these parameters closely resemble the flow-

fields themselves, with both s1 and s3 being large (close to unity) in regions of

high gradients, but small (close to zero) in regions where the gradients are small.

The fact that the contours of s1 and s3 resemble the flowfield (Mach number or

density contours) is demonstrated in Figure 13.7.3.2. The basic role of s1 and s3

is to provide computational accuracy.

(2) Second order FDV parameters. The second order FDV parameters s2 and s4

are also flowfield dependent, exponentially proportional to the first order FDV

parameters. However, their primary role is to provide adequate computational

stability (artificial viscosity) as they were originally introduced into the second

order time derivative term of the Taylor series expansion of the conservation

flow variables Un+1.

(3) Parabolic/elliptic (s1 = 0). The s1 terms represent convection. This implies that

if s1
∼= 0 then the effect of convection is small. The computational scheme is au-

tomatically altered to take this effect into account, with the governing equations

being predominantly parabolic-elliptic.

(4) Hyperbolic (s3 = 0). The s3 terms are associated with diffusion. Thus, with s3
∼= 0,

the effect of viscosity or diffusion is small and the computational scheme is

automatically switched to that of Euler equations where the governing equations

are predominantly hyperbolic.

(5) Mixed elliptic/parabolic/hyperbolic (s1 �= 0, s3 �= 0). If the first order FDV

parameters s1 and s3 are nonzero, this indicates a typical situation for the mixed

hyperbolic, parabolic, and elliptic nature of the Navier-Stokes system of equa-

tions, with convection and diffusion being equally important. This is the case for

incompressible flows at low speeds. The unique property of the FDV scheme is

its capability to control pressure oscillations adequately without resorting to the

separate hyperbolic elliptic pressure Poisson equation for pressure corrections.

The capability of the FDV scheme to handle incompressible flows is achieved

by a delicate balance between s1 and s3 as determined by the local Mach num-

bers and Reynolds (or Peclet) numbers. If the flow is completely incompressible

(M = 0), the criteria given by (6.5.9) leads to s1 = 1, whereas the variation pa-

rameter s3 is to be determined according to the criteria given in (6.5.11). Make

a note of the presence of convection-diffusion interaction terms given by the

product of bi a j in the s2 terms and ai b j in the s4 terms. These terms allow inter-

actions between convection and diffusion in the viscous incompressible and/or

viscous compressible flows.

(6) High temperature gradient flow. If temperature gradients rather than velocity

gradients dominate the flowfield, then s3 is governed by the Peclet number rather



188 COMPRESSIBLE FLOWS VIA FINITE DIFFERENCE METHODS

than by the Reynolds number. Such cases arise in high-speed, high-temperature

compressible flows close to the wall.

(7) Transition to turbulence. The transition to turbulence is a natural flow process

as the Reynolds number increases, causing the gradients of any or all flow vari-

ables to increase. This phenomenon is physical instability and is detected by the

increase of s3 if the flow is incompressible, but by both s3 and s1 if the flow is com-

pressible. Such physical instability is likely to trigger the numerical instability,

but will be countered by the second order FDV parameters s2 and/or s4 to en-

sure numerical stability automatically. In this process, these flowfield dependent

variation parameters are capable of capturing relaminarization, compressibil-

ity effect or dilatational turbulent energy dissipation, and turbulent unsteady

fluctuations. They are characterized by the product of s3 and the fluctuations of

stress tensor (s3��i j ) in which the stresses consist of mean and fluctuation parts.

As a consequence, some regions of the flow domain such as in boundary layers

may always be unsteady (��i j �= 0), even though the steady state may have been

reached away from the wall. However, in order for these fluctuation parts to

be correctly determined, it is necessary that Kolmogorov scales be resolved in

sufficiently refined grids such as in the direct numerical simulation (DNS). Thus,

for a coarse mesh, the advantage of FDV process cannot be expected.

6.5.5 SHOCK-CAPTURING MECHANISM

The shock-capturing mechanism is built into the FDV equations of continuity, momen-

tum, and energy. For example, let us examine (6.5.7) or (6.5.13) and write the momentum

equations, with all diffusion terms neglected.

�(�v j )
n+1 + �t[(�vi v j ),i + p, j ]

n

= − s1�t(��vi v j + �p�i, j )
n+1
,i + s2

�t2

2

(
a(m)

k + b(m)
k

)
[�(�vi v j ),i + �p, j ]

n+1
,k

+ �t2

2

(
a(m)

k + b(m)
k

)
[(�vi v j ),i + p, j ]

n
k (6.5.17)

where a(m)
k and b(m)

k denote the convection and diffusion Jacobians, respectively. To

identify the shock capturing mechanism in the FDV formulation as compared to the

TVD finite difference scheme, let us rewrite (6.5.17) for the 1-D momentum equation,

retaining only the convection flux without the pressure gradients.

�un+1 = −�ts1

∂a�un+1

∂x
+ �t2

2
s2a2 ∂2�un+1

∂x2
− �t

∂ f n

∂x
+ �t2

2
a

∂2 f n

∂x2
(6.5.18a)

or

�un+1 = −�t

√
M2

max − M2
min

Mmin

∂a�un+1

∂x
+ �t2

2




√
M2

max − M2
min

Mmin




�

a2 ∂2�un+1

∂x2

− �t
∂ f n

∂x
+ �t2

2
a

∂2 f n

∂x2
(6.5.18b)

where f is the convection flux and a is the 1-D convection Jacobian or speed of sound.
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The FDM analog of (6.5.18) at node i becomes

�un+1
i

�t
=−s1a

1

�x

(
�un+1

i − �un+1
i−1

) + s2a2�t
1

2�x2

(
�un+1

i − 2�un+1
i−1 + �un+1

i−2

)
− 1

�x

(
f n
i − f n

i−1

) + a�t
1

2�x2

(
f n
i − 2 f n

i−1 + f n
i−2

)
(6.5.19)

The second order TVD semi-discretized scheme (6.2.110) with limiter functions (6.2.111)

is written at node i as

dui

dt
= − a+

�x

[
1 + �+

i−1/2 − 1

2

�+
i−3/2

r+
i−3/2

]
(ui − ui−1)

− a−

�x

[
1 + �−

i+1/2 − 1

2

�−
i+3/2

r−
i+3/2

]
(ui+1 − ui ) (6.5.20)

where � and r denote the limiter function and velocity ratio, respectively,

r+
i−3/2 = ui − ui−1

ui−1 − ui−2

, r−
i+3/2 = ui+1 − ui

ui+2 − ui+1

(6.5.21)

Inserting (6.5.21) into (6.5.20) yields

dui

dt
=− a+

�x

[
(ui − ui−1) + 1

2
�+

i−1/2(ui − ui−1) − �+
i−3/2(ui−1 − ui−2)

]

− a−

�x

[
(ui+1 − ui ) + 1

2
�−

i+1/2(ui+1 − ui ) − �−
i+3/2(ui+2 − ui+1)

]
(6.5.22)

Let us assume that, for positive-going waves,

ui = un
i + s�un+1

i , a− = 0, a+ = a, �+
i−1/2 = 2�+

i−3/2 = −�

Substituting the above into (6.5.22), the TVD equation may be expressed as

�un+1
i

�t
=−sa

1

�x

(
�un+1

i − �un+1
i−1

) + ��x
2�x2

(
�un+1

i − 2�un+1
i−1 + �un+1

i−2

)
− 1

�x

(
f n
i − f n

i−1

) + ��x
2�x2

(
f n
i − 2 f n

i−1 + f n
i−2

)
(6.5.23)

If we set

s1 = s, s2 = s�x�

a�t
, � = a�t

�x
, s2 = s1

it is seen that the FDV equation (6.5.19) becomes identical to the TVD equation (6.5.23).

Note that in TVD either a+ or a− must be chosen from the flowfield and the FDV

parameters s1 and s2 in FDV are automatically calculated. Of course, the precise shock-

capturing mechanism of both methods is not exactly the same, because all the assump-

tions made above are not true in general. However, it is interesting to note that the first

order convection FDV parameter s1 is related to the TVD limiter function � as

s1 = s�x
a�t

�
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in which it is shown that the convection FDV parameters (s1, s2) are proportional

or equivalent to the TVD limiter functions. A similar process can be shown also for

negative-going waves (a− = a, a+ = 0).

Considering that the motivations and procedures of derivation are completely dif-

ferent, the analogy between the TVD scheme and FDV formulation as demonstrated

above is remarkable. Notice that, beyond this analogy, the FDV formulation is to couple

the convection variation parameters (s1, s2) with all other variation parameters (s3, s4)

so that shock wave interactions with all other physical properties can be resolved.

They are involved also in transitions and interactions of compressible/incompressible,

inviscid/viscous, and laminar/turbulent flows.

In the TVD methods, the resulting Euler equations are based on positive and nega-

tive eigenvalues or Jacobians, either a− = 0 or a+ = 0, which will switch the scheme to

either backward differenceing for positive waves or forward differencing for negative

waves in one dimension, respectively.

To illuminate the consequence of the FDV theory, it is infomative to write (6.5.18a)

in the form,

un+1
i = un

i − s1a(+,−) �t
�x

(
�u(+,−)n+1

i − �u(+,−)n
i

)
− s2a2 �t2

2�x2

×
[(

�2u(+,−)
i

)n+1

−
(

�2u(+,−)
i

)n
]

− �t
2�x

(
�f (+,−)

i

)n + a�t2

2�x2

(
�2 f (+,−)

i

)n

(6.5.24a)

where the flux vector splitting scheme is used with a = a+ + a− and the following

definitions:

For M > 1, a+ = a, a− = 0, �u+
i = ui − ui−1, �f +

i = fi − fi−1,

�2u+
i = ui − 2ui−1 + ui−2, �2 f +

i = fi − 2 fi−1 + fi−2,

For M < 1, a+ = 0, a− = a, �u−
i = ui+1 − ui , �f −

i = fi+1 − fi ,

�2u−
i = ui+2 − 2ui+1 + ui , �2 f −

i = fi+2 − 2 fi+1 + fi ,

Thus, the finite-differenced FDV equation takes the form

un+1
i + s1a(+,−) �t

�x
�u(+,−)n+1

i + s2a2 �t2

2�x2

(
�2u(+,−)

i

)n+1

= un
i + s1a(+,−) �t

�x
�u(+,−)n

i + s2a2 �t2

2�x2

(
�2u(+,−)

i

)n

− �t
2�x

(
�f (+,−)

i

)n
+ a�t2

2�x2

(
�2 f (+,−)

i

)n
(6.5.24b)

The main difference between the finite-differenced FDV theory and the TVD

schemes lies in the fact that in FDV methods variation parameters control the shock

capturing mechanism and play the role similar to the limiters in TVD.

In the finite-differenced FDV methods, calculated variation parameters affect the

convection and diffusion Jacobians associated with En
1 and En

i j in (6.5.15a,b) based on the

Mach number and Reynolds number changes between adjacent nodes in multidimen-

sions. Thus, for high values of the variation parameters indicative of high gradients



6.5 FLOWFIELD-DEPENDENT VARIATION METHODS 191

of variables, characterize the discontinuous physical behavior of the variables. The

contours of these variation parameters closely resemble the flowfield itself (see

Figure 13.7.3.2). An example for a triple shock wave boundary layer interaction prob-

lem using FDV-FDM is shown in Figures 6.8.21 through 6.8.24. Other examples of the

FDV methods are demonstrated in Sections 13.7, 15.3, and 27.3.

6.5.6 TRANSITIONS AND INTERACTIONS BETWEEN COMPRESSIBLE
AND INCOMPRESSIBLE FLOWS

One of the most significant aspects of the FDV scheme is that, for low Mach numbers

(incompressible flow), the scheme will automatically adjust itself to prevent pressure

oscillations by ensuring the conservation of mass. This can be evidenced by the presence

of the second derivatives of pressure arising in the equations of momentum, continuity,

and energy. We note that the FDV momentum equations given by (6.5.17) may be

rearranged in the form,

∂

∂t
(�v j )

n+1 + (�vi v j + p�i j − �i j )
n
,i = Sj (m) (6.5.25)

with

Sj (m) = −
s1(��vi v j + �p�i j ) − s3��i j�n+1
,i

+ �t
2

[(
a(m)

k + b(m)
k

)
((�vi v j ),i + p, j − �i j,i )

]n

,k

+ �t
2

[(
a(m)

k + b(m)
k

)
(s2(�(�vi v j ),i + �p, j ) − s4��i j,i )

]n+1

,k
(6.5.26)

Similarly, the FDV equation for continuity becomes

��n+1 = �t
[−(�vi )

n
,i − s1�(�v j )

n+1
, j

] + �t2

2

[(
a(c)

i (�v j ), j

)
,i

+ s2

(
a(c)

i �(�v j ), j

)
,i

]n+1

(6.5.27)

with a(c)
i being the convection Jacobian for the continuity equation. Substituting (6.5.17)

into (6.5.27) and rearranging the differential equation of continuity,

∂�n+1

∂t
+ (�vi )

n
,i = S(c) (6.5.28)

with

S(c) = �ts1[(�vi v j ),i + p, j − �i j,i ]
n
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2
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2
s1

[(
a(m)

k + b(m)
k
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(s2(�(�vi v j ),i + �p, j ) − s4��i j,i )
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,kj

+ �t
2

(
a(c)

i (�v j )
n
, j

)
,i

(6.5.29)
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where the third derivative associated with s2 is neglected. A glance at (6.5.26) and

(6.5.29) reveals that the right-hand side terms S(m) for momentum and S(c) for con-

tinuity are the additional terms of higher order derivatives arising from the process of

derivations of the FDV equations.

The FDV equation for energy is of the form,

�(� E)n+1 = �t
−(� Evi + pvi ),i + (�i j v j ),i + kT,i i�n

− �t{s1[�(� Evi ) + pvi ],i − s3
�(�i j v j ) + kT,i�i }n+1

+ �t2

2

{(
a(e)

k + be
k

)
[(� Evi + pvi ),i − (�i j v j ),i − kT,i i ]

}n
k

+ �t2

2

{(
a(e)

k + be
k

)
[s2�(� Evi + pvi ),i − s4�(�i j v j + kT,i ),i ]

}n+1

,k

(6.5.30)

which leads to the reconstructed equation of energy,

∂(� E)n+1

∂t
+ [−(� Evi + pvi ),i + (�i j v j ),i + kT,i i ]

n = S(e) (6.5.31)

with

S(e) = − {
s1[�(� Evi ) + pvi ]i − s3[�(�i j v j ) + kT,i ],i

}n+1

+ �t
2

{(
a(e)

k + be
k

)
[(� Evi + pvi ),i − (�i j v j ),i − kT,i i ]

}n
,k

+ �t
2

{(
a(e)

k + b(e)
k

)
[s2�(� Evi + pvi ),i − s4�(�i j v j + kT,i ),i ]

}n+1

,k (6.5.32)

The physical implications of the right-hand side terms for all equations are quite com-

plex. There exist not only the second derivatives of pressure for the terms having no

variation parameters at the temporal station n, but also the inviscid/viscous interactions

contributed by the s2 and s4 terms at the temporal station n + 1. Thus, the transitions

and interactions between compressible and incompressible flows are contributed by

inviscid/viscous interactions or convection/diffusion interactions.

The most crucial aspect of the transition between compressible and incompressible

flows is the relationship of the equation of state shared by both compressible and in-

compressible flows. To this end, consider that initially the fluid is a perfect gas and that

the total energy is given by

E = cpT − p
�

+ 1

2
vi vi (6.5.33)

The momentum equation for steady-state incompressible rotational flow may be inte-

grated to give∫ (
p + 1

2
�v j v j

)
,i

dxi =
∫

(�vi, j j + �εi jkv j �k)dxi (6.5.34)

p + 1

2
�v j v j = p0 + Q (6.5.35)



6.5 FLOWFIELD-DEPENDENT VARIATION METHODS 193

with

Q = 1

n

∫
(�vi, j j + �εi jkv j �k)dxi

where p0 is the constant of integration, and n is the spatial dimension.

Substituting (6.5.33) into (6.5.35) leads to the following relationship:

p0 = �(cpT + 1

2
vi vi − E) − Q (6.5.36)

If p0 as given by (6.5.36) remains a constant, equivalent to a stagnation (total) pressure,

then the compressible flow as assumed in the conservation form of the Navier-Stokes

system of equations has now been turned into an incompressible flow, which is expected

to occur when the flow velocity is sufficiently reduced (approximately 0.1 ≤ M < 0.3 for

air). Thus, (6.5.36) serves as an equivalent equation of state for an incompressible flow.

This can be identified nodal point by nodal point or element by element for the entire

domain. Figure 13.7.4e,f shows that both density and stagnation pressure begin to vary

in the cavity flow problem for M = 0.1, whereas they remain constant for M = 0.01.

We may begin with the condition given by (6.5.35) for compressible flows. If compu-

tations are involved in low-speed flows, then the governing equations and computational

schemes initially intended for high-speed compressible flows are automatically switched

to those for low-speed incompressible flows with p0 remaining constant for all low

Mach number flows (approximately 0.1 ≤ M ≤ 0.3) based on the flowfield-dependent

variation parameters. If the flow reverses to compressible, then the stagnation pressure

becomes variable, allowing the density to change.

An advantage of the FDV scheme is to avoid the so-called pressure correction pro-

cess, preconditioning approach, or the implementation of a separate hyperbolic-elliptic

equation as is the case with other computational schemes designed to accommodate

flows of all speed regimes. In the case of the FDV formulation, a computational scheme

similar to pressure correction (keeping pressure from oscillating) automatically arises

by means of the Mach number and Reynolds number-dependent variation parame-

ters. This approach is particularly useful for the inviscid-viscous interaction regions and

boundary layers close to the wall such as in hypersonic aircraft or shock wave turbulent

boundary layer interactions in general.

6.5.7 TRANSITIONS AND INTERACTIONS BETWEEN LAMINAR AND TURBULENT FLOWS

When inviscid flow becomes viscous, we may expect that the flow may become laminar

or turbulent through inviscid/viscous interactions across the boundary layer. Below

the laminar boundary layer, if viscous actions are significant, then the fluid particles are

unstable, causing the changes of Mach number and Reynolds number between adjacent

nodal points (assuming they are closely spaced) to be irregular, the phenomenon known

as transition instability prior to the state of full turbulence. How can these processes be

modeled in FDV formulation?

Fluctuations due to turbulence are characterized by the presence of the terms in the

equation of momentum, continuity, and energy such as

s3��i j =
√

Re2
max − Re2

min

Remin

��i j (6.5.37)
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Physically, the above quantity represents the fluctuations of total stresses (physical

viscous stresses plus Reynolds stresses) controlled by the Reynolds number changes

between the local adjacent nodal points. Thus, the FDV solution contains the sum of

the mean flow variables and the fluctuation parts of the variables.

Once the solution of the Navier-Stokes system of equations is carried out and

all flow variables are determined, then we compute the fluctuation part, f ′ of any

variable f ,

f ′ = f − f (6.5.38)

where f and f denote the Navier-Stokes solution and its time or mass average, respec-

tively. This process may be replaced by the fast Fourier transform of the Navier-Stokes

solution. Unsteady turbulence statistics (turbulent kinetic energy, Reynolds stresses,

and various energy spectra) can be calculated once the fluctuation quantities of all

variables are determined.

Although the solutions of the Navier-Stokes system of equations using FDV are

assumed to contain the fluctuation parts as well as the mean quantities, it will be unlikely

that such information is reliable when the Reynolds number is very high and if mesh

refinements are not adequate to resolve the Kolmogorov microscales. In this case, it is

necessary to invoke the level of mesh refinements as required for the direct numerical

simulation (DNS). It is expected that FDV methods lead to accurate solutions at high

Mach number and high Reynolds number flows if the mesh refinements required for

DNS are used.

It is important to recognize that unsteadiness in turbulent fluctuations may prevail

in the vicinity of the wall, although a steady state may have been reached far away from

the wall. This situation can easily be verified by noting that �Un+1 will vanish only in

the region far away from the wall, but remain fluctuating in the vicinity of the wall,

as dictated by the changes of Reynolds number in the variation parameter s3 between

the nodal points and fluctuations of the stresses due to both physical and turbulent

viscosities in ��i j characterized by (6.5.37).

■ CONCLUDING REMARKS

Transitions and interactions between inviscid/viscous, compressible/incompressible, and

laminar/turbulent flows can be resolved by the FDV theory. It is shown that variation

parameters initially introduced in the Taylor series expansion of the conservation vari-

ables of the Navier-Stokes system of equations are translated into flowfield-dependent

physical parameters responsible for the characterization of fluid flows. In particular,

the convection FDV parameters (s1, s2) are identified as equivalent to the TVD limiter

functions in a specialized case. The FDV equations are shown to contain the terms of

fluctuation variables automatically generated in the course of developments, varying in

time and space, but following the current physical phenomena. In addition, adequate

numerical controls (artificial viscosity) to address both nonfluctuating and fluctuating

parts of variables are automatically activated according to the current flowfield. It has

been shown that some existing numerical schemes in FDM are the special cases of the

FDV theory.
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An example of three-dimensional triple shock wave boundary layer interactions is

demonstrated in Section 6.8.2. Some simple problems of FDV methods for supersonic

compression corner and driven cavity using FEM are shown in Section 13.7. Appli-

cations of FDV theory using FVM-FEM are demonstrated in Section 15.3. Finally,

applications of FDV-FEM methods to relativistic astrophysical flows are presented in

Section 27.3.

6.6 OTHER METHODS

6.6.1 ARTIFICIAL VISCOSITY FLUX LIMITERS

The convection flux vector may be written in the form [Jameson et al., 1981],

Fj+1 = F
(

Uj+1 + Uj

2

)
− dj+2 (6.6.1)

with

dj+2 = ε(2)

j+1/2(Uj+1 − Uj ) − ε(4)

j+1/2(Uj+2 − 3Uj+1 + 3Uj − Uj−1)

ε(2)

j+1/2 = k(2) Rj+1/2� j+1/2

ε(4)

j+1/2 = max
(
0, k(2) Rj+1/2 − ε(2)

j+1/2

)
where k(2) and k(4) are real numbers fixing the amount of diffusion brought up by

the second and fourth order dissipative operators. Rj+1/2 is the spectral radius of the

Jacobian ∂F/∂U at the cell face j + 1. � j+1/2 is a limiter based on

� j = |pj+1 − 2pj + pj−1|
|pj+1 + 2pj + pj−1|

� j+1/2 = max
(
� j , � j+1/2

)
(6.6.2)

Thus, the flux vectors may be written in terms of limiters in the form,

Fj+1 = 1

2
(Uj� j + Uj+1� j+1) = 1

2
(Uj + Uj+1)

Fj−1 = 1

2
(Uj−1� j−1 + Uj� j ) = 1

2
(Uj−1 + Uj ) (6.6.3)

Using the flux of the mean value, we obtain

Fj+1/2 = 1

4
(Uj + Uj+1)(� j + � j−1)

Fj−1/2 = 1

4
(Uj−1 + Uj )(� j−1 + � j ) (6.6.4)

which represents a semi-discrete equation using a skew-symmetric form of second

order. It is designed to reduce the aliasing errors that are crucial in low order nondis-

sipative schemes useful in problems such as large eddy simulations of turbulence (see

Section 21.7.3).
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6.6.2 FULLY IMPLICIT HIGH ORDER ACCURATE SCHEMES

The Navier-Stokes system of equations in terms of the primitive flow variables,

Q = [� vi p]T

may be written as

∂Q
∂t

+ Ai
∂Q
∂xi

+ ∂Gi

∂xi
= 0 (6.6.5)

with

Ai
∂Q
∂xi

= A+
i Q−

,i + A−
i Q+

,i

A±
i = P �±

i P−1 (6.6.6)

where Ai is the convection flux Jacobian matrix.

The fully implicit finite difference approximations of (6.6.5) may be written as

3Qn+1 − 4Qn + Qn−1

2�t
+ (A+

i Q−
,i + A−

i Q+
,i )n+1 +

(
∂Gi

∂xi

)n+1

= 0 (6.6.7)

The Newton-Raphson solution of (6.6.7) may be written in the form(
I + �t

∂H
∂Q

)
�Qm+1 = −�Qm + �tHm (6.6.8)

with

�Qm+1 =
(

3

2
Qn+1 − 2Qn + 1

2
Qn−1

)m+1

�Qm =
(

3

2
Qn+1 − 2Qn + 1

2
Qn−1

)m

Hm =
[
−(A+

i Q−
,i + A−

i Q+
,i ) + ∂Gi

∂xi

]m

where the superscript mrepresents the m-th iteration step, with Q+ and Q− indicating the

forward and backward finite differences. Rai and Moin [1993] used fifth order accurate

finite differences for large eddy simulation calculations in compressible flows with a

seven-point stencil,

Q−
x = −6Qi+2 + 60Qi+1 + 40Qi − 120Qi−1 + 30Qi−2 − 4Qi−3

120�x

Q+
x = 4Qi+3 − 30Qi+2 + 120Qi−2 − 40Qi − 60Qi−1 + 6Qi−2

120�x
(6.6.9)

on a grid that is equidistanced in the x-direction. The remaining convective terms are

evaluated in a similar manner. The above scheme is used in Section 21.7.3.
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6.6.3 POINT IMPLICIT METHODS

In order to circumvent stiff equations due to widely disparate time scales in source

terms (such as occur in chemically reactive flows), it is advantageous to use the point

implicit scheme in which the source terms are provided implicitly. Thus, the Navier-

Stokes system of equations are written as

�Un+1

�t
+

(
∂Fi

∂xi
+ ∂Gi

∂xi

)n

−
(

Bn + ∂B
∂U

�Un+1

)
= 0 (6.6.10)

Rearranging, we obtain(
I − �t

∂B
∂U

)n+1

�Un+1 = −�t
(

∂Fi

∂xi
+ ∂Gi

∂xi
− B

)n

(6.6.11)

where the source term Jacobian is evaluated implicitly. Note that derivatives of the

convection and diffusion terms may be discretized with the fourth order accuracy finite

difference scheme as used in Section 22.6.2.

6.7 BOUNDARY CONDITIONS

Mathematical theories of boundary conditions have been reported extensively in the

literature. They include Kreiss [1970], Rudy and Strikwerda [1980], Gustafsson [1982],

Dutt [1988], Oliger and Sundström [1978], and Nordström [1989], among others. Incor-

rect specifications of boundary conditions result in solution instability, nonconvergence

of solutions, and/or convergence to inaccurate results. Boundary conditions must be

correctly specified in accordance with speed regimes at inlet and outlet, viscous inter-

actions on solid walls, one-dimensional or multidimensional geometries, reflecting and

nonreflecting boundaries, and farfield boundaries.

Recall that derivations of Neumann boundary conditions and specification of bound-

ary conditions in general for hyperbolic, parabolic, and elliptic equations were presented

in Section 2.3. Discussions on boundary conditions associated with FEM will be included

in Sections 10.1.2, 11.1, and 13.6.6. Multiphase flow boundary conditions are also pre-

sented in Section 22.2.6. In what follows, various boundary conditions involved in FDM

are described.

6.7.1 EULER EQUATIONS

6.7.1.1 One-Dimensional Boundary Conditions

As mentioned in Section 6.2.1.3, the number of boundary conditions to be specified

at inflow and outflow boundaries is determined by the eigenvalue spectrum of the

Jacobian matrices (6.2.6) in terms of the primitive variables associated with bound-

ary conditions normal to the surface. They are the characteristic variables or Riemann

invariants W1, W2, and W3 in one dimension as given by (6.2.15) and (6.2.30). The

general rule is that the number of Dirichlet boundary conditions for primitive vari-

ables is equal to the number of positive eigenvalues of the Jacobian matrix, which

are prescribed as physical boundary conditions. In contrast, the negative eigenvalues
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represent the numerical boundary conditions which must be extrapolated from the

flowfield.

Propagation of flow quantities in a one-dimensional flow are shown for expansion

and shock waves in Figure 6.2.3. Note that C− wave is negative for subsonic flow whereas

it is positive for supersonic flow in the domain of dependence. A summary of general

boundary conditions is shown in Figure 6.7.1. At an inlet point, the characteristics C0

and C+ have slopes u and u + a, which are always positive for a flow in the positive

x- direction. Thus, they will carry information from the boundaries toward the inside

domain. The third characteristic C− has a slope whose sign depends on the inlet Mach

number. For the supersonic inlet, C− has a positive sign, whereas it has a negative sign for

subsonic flow. Therefore, no boundary conditions associated with C− for the subsonic

inlet can be specified. Similar considerations can be made for the outlet. Namely, no

boundary conditions are to be specified for C+ and C0. As to C−, however, we must

provide boundary conditions for subsonic outlet, but not for supersonic outlet.

Note that each characteristic variable transports a given information and the quan-

tities transported from the inside of the domain toward the boundary will dictate the

situation along this boundary. Thus, only variables transported from the boundaries

toward the interior are identified as physical boundary conditions. The remaining vari-

ables transported outside of the domain depend on the computed flow situations or

part of the solution. This additional information, known as the numerical boundary

conditions, can be linearly or quadratically extrapolated from the downstream (inflow)

or upstream (outflow) flowfield information. These physical and numerical boundary

conditions are summarized in Table 6.7.1.

Characteristic Boundary Conditions

If the full information on the incoming and outgoing characteristics is recovered

from the imposed combinations of conservation variables U and primitive variables V,

then the problem is said to be well posed. Let us consider the subsonic outlet in which

one physical boundary condition is allowed, say pressure p. From the relations (6.2.19)

and (6.2.23) together with (6.2.28) we may write

�W =
[
�Wa

�Wb

]
=

[
L−1

aa L−1
ab

L−1
ba L−1

bb

] [
�Va

�Vb

]
=


−1/�a 0 1

−1/a2 1 0

1/�a 0 1




0


�p

��

�u


 (6.7.1)

where the subscript 0 denotes end conditions, with a and b indicating the physical

Table 6.7.1 Physical and Numerical Boundary Conditions

Subsonic Supersonic

Physical W1,W2 W1, W2, W3
Inlet

Numerical W3 None

Physical W3 None
Outlet

Numerical W1, W2 W1, W2, W3
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(imposed variable) and numerical (free variable) boundary conditions, respectively.

Wa = W3, Wb =
[

W1

W2

]
, Va = p, Vb =

[
�

u

]

L−1
aa = −1/�a, L−1

ab = [
0 1

]
, L−1

ba =
[−1/a2

1/�a

]
, L−1

bb =
[

1 0

0 1

]

Solving �Vb from (6.7.1) yields

�Vb = (
L−1

bb

)−1[
�Wb − L−1

ba �Va
]

(6.7.2)

Obviously, the nonsingularity of L−1
bb in (6.7.2) constitutes the condition for well-

posedness. Thus, we require∣∣L−1
bb

∣∣ �= 0 (6.7.3)

This can be applied for the various combinations of primitive variables at the boundaries.

At a subsonic outlet it is shown by (6.7.1) that any of three variables � , u, p can be chosen

as a physical boundary condition. This is because the first column of the transformation

matrix in (6.7.1) contains all nonzero terms and thus none of the submatrices defining

Wb is zero. For a subsonic inlet the physical boundary conditions Wa consist of � and

u, with Wb = p. This leads to

�W =
[
�Wa

�Wb

]
=


1 0 −1/a2

0 1 1/�a
0 1 −1/�a




0


��

�u
�p


 (6.7.4)

where it is seen that the bottom row of the transformation matrix has one zero term

corresponding to the density � so that

�Wb = �u − �p
(�a)0

(6.7.5)

which indicates that it is not possible to define �� at the boundary and the choice of

u and p as a physical boundary condition is not well-posed. However, for any other

combination involving � as a physical condition, one can determine the remaining free

variable using (6.7.5).

Extrapolation Methods

For simplicity, let us use the variable Q to denote either the conservation variables

(U), primitive variables (V), and characteristic variables (W) or any other combina-

tion, with the conditions for an inlet boundary designated as i = 1, 2, 3 . . . and outlet

boundary as i = p, p − 1, p − 2, . . . The common practice is to use a linear (first order)

extrapolations as follows:

Space extrapolation:
Qn+1

p = 2Qn+1
p−1 − Qn+1

p−2

�Qn
p = 2�Qn

p−1 − �Qn
p−2

(6.7.6a,b)

Space-time extrapolation:
Qn+1

p = 2Qn
p−1 − Qn

p−2

�Qn
p = 2�Qn−1

p−1 − �Qn−1
p−2

(6.7.7a,b)

Time extrapolation:
Qn+1

p = 2Qn
p − Qn−1

p

�Qn
p = �Qn−1

p

(6.7.8a,b)
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Characteristic Extrapolation Methods

This is an alternative method to the one-sided discretization of the compatibility

equations corresponding to the outgoing characteristics [Yee, Beam, and Warming,

1982]. It follows from (6.7.2) that the numerical characteristic variables �Wb are defined

by an extrapolation such as in (6.7.6b):

�Wb,p = 2�Wb,p−1 − �Wb,p−2 (6.7.9)

The values at i = p − 1 and i = p − 2 are obtained from the primitive variables by an

explicit evaluation of (6.7.2):

�Wb = L−1
ba �Va + L−1

bb �Vb for i = p − 1, p − 2 (6.7.10)

where the matrix elements are evaluated at time level n. By setting �Va = 0 in (6.7.2)

we obtain

�Vb,p = (
L−1

bb,p

)−1
�Wb,p (6.7.11)

where for time dependent problems �Va �= 0. This will be determined by the imposed

time variation. The free variables Vb,p are transformed to the conservation variables

through (6.2.7).

�Up = Mp

[
�Va

�Vb,p

]
= Mp

[
0

�Vb,p

]
(6.7.12)

For subsonic outflow boundary with pressure imposed, we observe that

�Wb,i =
[
�w1

�w2

]
i

=
[−1/a2

1/va

]
�pi +

[
1 0

0 1

]
�

[
�

u

]
i

(6.7.13)

�Wb,p = 2

[−�p/a2 + ��

�p/�a + �u

]
p−1

−
[−�p/a2 + ��

�p/�a + �u

]
p−2

=
[
�w1

�w2

]
p

(6.7.14)

with i = p − 1, i = p − 2. It follows from (6.7.11) and (6.7.14) that

�Vb,p =
[
��

�u

]
p

=
[

1 0

0 1

] [
�w1

�w2

]
p

(6.7.15)

Similarly, the corresponding conservation variables are given by (6.7.12),

�Up = M




��

�u

0




p

=




��

�(�u)

�(� E)




p

(6.7.16)

Thus the boundary condition equation for (��)p may be written as

(��)p + 2

(
�p
a2

− ��

)
p−1

−
(

�p
a2

− ��

)
p−2

= 0 (6.7.17)

This should be added to the interior point p − 1. Similar equations can be written for

�(�u) and �(�E).
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6.7.1.2 Multi-Dimensional Boundary Conditions

Evaluation of multidimensional boundary conditions may be carried out similarly as

in one dimension. The number of physical boundary conditions to be imposed at a

boundary with the normal vector n pointing toward the flow domain is determined by

the signs of the eigenvalues of the matrix K in terms of the primitive variable Jacobian

Ai or the conservation variable Jacobian ai .

K = Ai 	i (i = 1, 2, 3)

K∗ = ai 	i (i = 1, 2, 3)
(6.7.18a,b)

The eigenvalues � of both matrices K and K∗ are equal,

� =




vi 	i 0 0 0 0
0 vi 	i 0 0 0
0 0 vi 	i 0 0
0 0 0 vi 	i + a 0
0 0 0 0 vi 	i − a


 (6.7.19)

in which the normal velocities vi ni = vi 	i determine the signs of the eigenvalues.

Note that, for the inflow and outflow boundaries, if an eigenvalue 
 is positive, the

information carried by the corresponding characteristics propagates toward the interior

domain and a physical boundary condition is to be imposed. If 
 is negative, then the

numerical boundary condition must be imposed. For example, at the subsonic inlet, two

thermodynamic variables (temperature and pressure) and two velocity components are

available as physical boundary conditions and one velocity component can be used as

a numerical boundary condition.

For a solid wall, a single physical boundary condition is required as only one char-

acteristic enters the flow boundaries. This is equivalent to

vi ni = 0
(6.7.20a,b)

pni �= 0

Here, the wall pressure is numerically extrapolated from adjacent points.

Two-dimensional compatibility or characteristic relations are written as an extension

of (6.2.28) as

�W =




�w1

�w2

�w3

�w4


 =




�� − �p
a2

	y�u − 	x�v

ni �vi + �p
�a

−ni �vi + �p
�a




(6.7.21)

which may be recast into (6.2.20) and (6.2.29). Thus, if the pressure and the velocity

are uniform in the boundary surface, it is seen that we recover the one-dimensional

condition given by (6.7.20).

6.7.1.3 Nonreflecting Boundary Conditions

Physical boundary conditions may be replaced by specification of nonreflecting bound-

ary conditions. Let a constant pressure be imposed at a subsonic exit section as

�p = pn+1 − pn = 0 (6.7.22)



6.7 BOUNDARY CONDITIONS 205

This is equivalent to allowing perturbation waves to be reflected at the boundaries. Since

the amplitude of the local perturbation wave carried by the incoming characteristic is

�w3 = �u − �p/�a, imposing �p = 0 amounts to the generation of an incoming wave

of intensity �w3 = �u reflected from the exit boundary.

Engquist and Majda [1979] and Hedstrom [1979] proposed that the nonreflecting

boundary conditions be implemented by making the local perturbations propagated

along incoming characteristics vanish.

∂wk

∂t
= 0 (6.7.23)

This will require that, for subsonic flows, we have

Inlet boundary conditions

�w1 = �� − �p
a2n

= 0 (6.7.24a)

�w2 = �u + �p
�nan

= 0 (6.7.24b)

Outlet boundary condition

�w3 = �u − �p
�nan

(6.7.25)

These characteristic variables are not constant across a shock wave and will result in a

reflection wave if a shock passes through a boundary.

Rudy and Strickwerda [1980] observed that the nonreflecting condition (6.7.23) does

not ensure (6.7.22) or p = p∗ and that an ad hoc treatment may be to replace (6.7.23)

for the incoming characteristic by, at the exit boundary,

∂u
∂t

− 1

�a
∂p
∂t

− �

�a
(p − p∗) = 0 (6.7.26)

for � > 0. The parameter � is problem dependent. For example, it has been suggested

that we may choose 0.1 ≤ � ≤ 0.2 for M = 0.8 and � ∼= 1 for M = 0.4.

6.7.2 NAVIER-STOKES SYSTEM OF EQUATIONS

The Navier-Stokes system of equations may be considered as mixed hyperbolic,

parabolic, and elliptic equations, or refered to as incompletely parabolic equations

[Strikwerda, 1976; Gustafsson and Sundström, 1978]. Let us consider the Navier-Stokes

system of equations in the form

∂U
∂t

+ ai
∂U
∂xi

+ bi
∂U
∂xi

+ ci j
∂2U

∂xi∂xj
= 0 (6.7.27)

which is obtained from (6.3.7) by inserting the convection Jacobian ai , diffusion Jacobian

bi , and diffusion gradient Jacobian ci j . To determine the number of boundary condition,

we must convert the conservation variables, U = [� �vi �E]T into nonconservation

variables (primitive variables), V = [� vi p]T such that

∂V
∂t

+ Ai
∂V
∂xi

+ Bi
∂V
∂xi

+ Ci j
∂2V

∂xi∂xj
= 0 (6.7.28)
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Here, procedures similar to those employed for the case of the Euler equations in

Section 6.2.1 may be followed to obtain the eigenvalues for the diffusion Jacobian Bi and

the diffusion gradient Jacobian Ci j through the transformation matrix of the form (6.2.7)

M = ∂U
∂V

so that

Ai = M−1ai M, Bi = M−1bi M, Ci j = M−1ci j M

Introduce the oscillatory behavior in (6.7.28) with the wave number 	i and frequency

� in the form,

V = VeI(	i xi −�t) (6.7.29)

leading to

(−� + Ai 	i + Bi 	i + Ci j 	i 	j )V = 0 (6.7.30)

which has a nontrivial solution if and only if

|K − 
I| = 0 (6.7.31)

with


I = � (6.7.32)

K = Ai 	i + Bi 	i + Ci j 	i 	j (6.7.33)

The eigenvalue problem similar to (6.7.31) was obtained by Nordström [1989],

neglecting Bi 	i .

For multidimensional problems, the extra boundary conditions for the Navier-Stokes

system of equations are obtained by∫
�

�i j,i d� =
∫

�

�i j ni d� (6.7.34)

with

�i j ni = �
[
(vi, j + v j,i )ni − 2

3
vi,i n j

]
(6.7.35)

where the velocity gradients are taken in the flow directions.

Unlike Euler equations, the Navier-Stokes system of equations require the no-slip

boundary conditions at solid walls, resulting in the relative velocity between the fluid

and the solid wall being zero.

For an adiabatic wall, we have

qw = −kT,i ni = 0 (6.7.36)

The wall temperature T = Tw may also be fixed. The second thermodynamic variable

at the solid wall can be obtained either by extrapolation from the inside or by applying

the normal pressure equation

∂p
∂n

= �i j,i n j (6.7.37)

which vanishes for thin shear layers. A summary of boundary conditions for the Navier-

Stokes system of equations is shown in Figure 6.7.2.



6.8 EXAMPLE PROBLEMS 207

Since the exact form of eigenvalues of K in (6.7.33) depends on many different phys-

ical and geometrical conditions, the number of physical boundary conditions (positive

eigenvalues) and the number of numerical boundary conditions (negative eigenvalues)

cannot be determined exactly for all arbitrary physical and geometrical situations.

As mentioned earlier, the accuracy and convergence of numerical solution of the

Navier-Stokes system of equations depend on correct applications of boundary condi-

tions. Rudy and Strickwerder [1980] and Nordström [1989] examine various options of

boundary conditions and evaluate the rates of solution convergence (well-posedness)

associated with appropriate choices of boundary conditions. Other theoretical studies

of boundary conditions include Kreiss [1970], Strickwerder [1976, 1977], Gustaffson

and Sundström [1978], and Engquist and Gustaffson [1987], among others.

6.8 EXAMPLE PROBLEMS

Since benchmark problems using the central schemes, low and high order upwinding

schemes including MUSCL, TVD, FCT, and ENO have been amply demonstrated in

the literature, no attempt is made to include them here except for a simplest example

for the benefit of the beginner. FDM applications of the FDV theory for high-speed

flows have not appeared in the literature, and so they are illustrated in this section.

Some incompressible and compressible flow problems using the FDV theory via FEM

are presented in Section 13.7.

6.8.1 SOLUTION OF EULER EQUATIONS

In this example, solutions of Euler equations are given in a quasi–one-dimensional

nozzle with variable cross section, NACA 1135, using McCormack explicit scheme and

flux vector splitting method.

Given:

S(x) = 1.398 + 0.347 tanh(0.8x − 4)ft2 (NACA 1135)

� = 1.4

R = 1716
ft2

sec2 R

Case 1

Supersonic inflow – supersonic outflow.

Boundary Conditions

Inflow

M = 1.5

p = 1000 psf

� = 0.00237 slug/ft3

�u = 2.7323 slug/ft3 sec

� E = 4075 slug/ft sec2
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Outflow. Full extrapolation of U is required since all eigenvalues are positive.

Initial Conditions

� = 0.00237

�u = 2.7323 0 ≤ x ≤ 10

�E = 4075

Case 2

Supersonic inflow – subsonic outflow.

Boundary Conditions

Inflow – same as before

Outflow – u = 390.75 ft/sec.

Other quantities are extrapolated since two eigenvalues are positive.

Initial Conditions

for x ≤ 2.8




� = 0.00237

�u = 2.7323

�E = 4075

, for x > 2.8




� = 0.00237

�u = 0.92608

�E = 2680.93

Results: The computational results for both the McCormack and flux vector splitting

methods are shown in Figure 6.8.1.1a for Case 1 and Figure 6.8.1.1b for Case 2. The

solution for both methods was obtained using a total of eighty grid points.

Case 1

Both schemes demonstrate a good level of accuracy, with the flux vector splitting

scheme converging faster than the McCormack explicit scheme.

Case 2

Here again we find that the flux vector splitting scheme converges faster than the

McCormack explicit scheme, but the level of accuracy is not as good as in the first case

(supersonic outflow). In this case, the solution exhibits dispersion errors at the shock.

6.8.2 TRIPLE SHOCK WAVE BOUNDARY LAYER INTERACTIONS USING FDV THEORY

The FDV theory is utilized to analyze the flowfield produced from a triple shock/

boundary layer interaction using 3-D FDM discretization [Schunk et al., 1999]. Flow-

fields of this nature are often encountered in the inlets of high-speed vehicles such as

the scramjet engine of NASA’s Hyper-X research vehicle. For this analysis, the FDV nu-

merical results are compared to the experimental measurements and FDM calculations

via k − ε turbulent model reported by Garrison et al. [1994]. As indicated earlier, the

FDV theory is expected to simulate turbulent flow accurately if DNS mesh refinements

are provided. However, such mesh refinements are not available at the present time due

to limited computer resources. No turbulence modeling is used in the present analysis.
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Figure 6.8.1.1 Quasi–one-dimensional supersonic nozzle flow. (a) Case 1 supersonic inflow-supersonic out-

flow. (b) Case 2 supersonic inflow-subsonic outflow.
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Figure 6.8.2.1 Hypersonic aircraft inlet. (a) Wind tunnel model. (b) Inviscid fin shock reflection (top view,

x–z plane).

The wind tunnel model used to produce the triple shock/boundary layer interaction

consists of two vertical fins and a horizontal ramp as shown in Figure 6.8.2.1. The angle of

attack for the fins is 15◦ and the ramp is inclined at an angle of 10◦ with respect to the inlet

flow. The inlet flow is at Mach 3.85 with a stagnation temperature and pressure of 295K

and 1500 kPa, respectively. The fins are 82.5 mm high and are separated by a distance of

96.3 mm. The leading edge of the model is located 21 cm in front of the ramp inlet and

produces a turbulent boundary layer with a thickness of 3.5 mm at the inlet to the model.

Flow through the model is characterized by three oblique shocks originating from the

leading edges of the ramp and the fins. Above the oblique ramp shock, the two inviscid fin

shocks intersect and reflect as shown in Figure 6.7.1b. For the purposes of this analysis,

the ramp is assumed to be 120 mm in length, the distance at which the reflected inviscid

fin shocks are just incident upon the exit corners of each fin. According to inviscid flow

theory, the fin shocks should intersect approximately 92 mm from the combined ramp

and fin entrance. Measurements of the flowfield structure in the x–y plane are made via

the Planar Laser Scattering (PLS) technique at various depths upstream of, coincident

with, and behind the inviscid fin shock intersection [Garrison et al., 1996].

A detailed PLS view of the corner shock reflection physics is shown in Figure 6.8.2.2

[Garrison et al., 1996]. As shown in the figure, the inviscid fin (a) and ramp (b) shocks

reflect to form the corner (c) shock. Both the embedded ramp (d) and fin (g) shocks split

into separation (e,h) and rear (f,i) shocks above the ramp and fin boundary/separation

layers. The ramp separated region (j) and the slip lines (k) dividing the different velocity

regions as induced by the shock structure are also visible in the image.

Since the two fins are symmetric about the centerline, only half of the wind tunnel

model is included in the computational model. Two finite difference computational

grids, varying in resolution, are developed for the FDV analysis. The coarse grid model,
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Figure 6.8.2.2 Fin/ramp shock structure in the x–y plane [Garrison et

al., 1996], a) inviscid fin shock, b) corner shock, c) inviscid ramp shock,

d) embedded ramp shock, e) ramp separation shock, f) ramp rear shock,

g) embedded fin shock, h) separation fin shock, i) rear fin shock, j) sepa-

rated region, k) sliplines.

consisting of a nonuniform nodal resolution of 31 × 41 × 55 (in the x, y, and zdirections)

is shown in Figure 6.8.2.3. The viscous grid is clustered close to the fin and ramp surfaces.

Results from the coarse grid analysis are used as the starting condition for the fine grid

model. The fine grid model is obtained by interpolating the flow variables against the

coarse mesh. Doubling the number of grid points in each direction produces a fine grid

with over 538,000 nodal points (61 × 81 × 109). Recall that the most important aspect of

the FDV theory is that the shock capturing mechanism and the transition and interaction

between compressible/incompressible, viscous/inviscid, and laminar/turbulent flows are

incorporated into the FDV formulation. No special treatments are required to simulate

these physical phenomena. Thus, the finite difference discretization requires no special

schemes. Simple central differences can be used to discretize the FDV equations given

by (6.5.14).

The inlet conditions to the model are fixed with the freestream conditions described

above (M = 3.85, P0 = 1500 kPa, and T0 = 295 K) and include a superimposed bound-

ary layer 3.5 mm in height. At the fin and ramp surfaces, no-slip velocity boundary

conditions are imposed and the normal pressure and temperature gradients are set to

zero. In the symmetry plane and for the bounding surface on top (x-z plane), all of the

Figure 6.8.2.3 Three-dimensional finite difference models.
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Figure 6.8.2.6 Boundary layer separation on the ramp.

images, the z locations of the x-y planes are scaled relative to the predicted inviscid fin

shock intersection. The numerical predictions upstream of the fin shock intersection

(left) correlate well with the experimental PLS images. Evident in the upstream figure

are the inviscid ramp and fin shocks as well as the corner reflection. The flow separation

from the ramp is also visible, appearing as concentric isobaric rings. Although not well

resolved, it appears that both the embedded fin and ramp shocks split into separation

and rear shocks above the respective surface separation/boundary layers. Coincident

with the shock intersection (see right), the inviscid fin shocks merge together in the sym-

metry plane. No curvature of inviscid fin shock is observed in the numerical predictions

as in the experimental results. The reflection of the corner shock about the symmetry

plane is observed, but the ramp embedded shock is much lower relative to the height

of the fin than in the experimental results. The ramp boundary layer separation is not

strongly resolved in the static pressure contours. It is important to note that these results

from the FDV theory qualitatively reveal the boundary layer separation predicted by

Garrison et al. [1996] using a k-ε turbulence model.

An alternative view (Figure 6.8.2.6) of the flowfield in the symmetry plane

(y–z plane, x = 0) shows the boundary layer separation and the reflection of the fin in-

tersection shocks through the weaker ramp shock. No experimental imagery is available

to compare to this figure, but it is nonetheless informative. Boundary layer separation

appears to be approximately 5 mm at the exit.

More fundamental studies for validation of the FDV theory are presented in Chap-

ter 13 using FEM. Contour plots of the FDV parameters are shown to resemble the

actual flowfields of the supersonic compression corner flow. Transition between com-

pressible and incompressible flows is also demonstrated for the driven cavity problems.

Thus, these fundamental examples are not duplicated in this chapter. The reader is

invited to examine Examples (3) and (4), Section 13.7, for details.

6.9 SUMMARY

History of compressible flow computations using potential equations, Euler equations,

and the Navier-Stokes system of equations is long, and so is this chapter. Our focus was

to study how to capture shocks in both inviscid flows and viscous flows. In compressible

inviscid flows using Euler equations, we studied central schemes, first order upwind

schemes, and second order upwind schemes. Specifically, we examined the flux vector

splitting and Godunov method for the first order scheme and MUSCL, TVD, ENO,
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and FCT for the second order scheme. For compressible viscous flows, it is necessary

to solve the Navier-Stokes system of equations. We examined explicit methods, im-

plicit methods, PISO methods, preconditioning methods, flowfield-dependent variation

(FDV) methods, and other available methods. Exhaustive coverage of potential equa-

tion, Euler equations, and Navier-Stokes system of equations has been made available

in many other texts, particularly in Hirsch [1990]. Thus, in this text, only a brief sum-

mary of these topics is provided. The emphasis has been placed on the FDV methods,

anticipating that this theory be investigated more thoroughly in the future.

Currently, a limited amount of validation of the FDV theory is available. It has been

verified that (1) the FDV parameters are equivalent to the TVD limiters, (2) FDV param-

eter contours resemble the flowfield (Mach number or density contours), and (3) tran-

sitions and interactions between inviscid/viscous flows, compressible/incompressible

flows, and laminar/turbulent flows are characterized by the FDV process. Examples

demonstrating these fundamental properties are presented in Section 13.7. An extensive

and rigorous future research on FDV theory will be required not only for its own the-

oretical foundation, but also for closer examinations as to the relationships with other

methods.
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CHAPTER SEVEN

Finite Volume Methods via

Finite Difference Methods

7.1 GENERAL

Finite volume methods (FVM), often called control volume methods, are formulated

from the inner product of the governing partial differential equations with a unit

function, I. This process results in the spatial integration of the governing equations.

The integrated terms are approximated by either finite differences or finite elements,

discretely summed over the entire domain. Recall that we briefly discussed this subject

in Section 1.4 for one-dimensional problems.

One of the most important features of FVM is their flexibility for unstructured grids.

The traditional curvilinear coordinate transformation required for FDM is no longer

needed. Designation of the components of a vector normal to boundary surfaces in

FVM accommodates the unstructured grid configuration with each boundary surface

integral constructed between nodal points.

For illustration, consider the conservation form of the Navier-Stokes system of

equations

R = ∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
− B (7.1.1)

The finite volume equations are obtained as

(I, R) =
∫

�

R d� =
∫

�

(
∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
− B

)
d� = 0 (7.1.2)

or ∫
�

(
∂U
∂t

− B
)

d� +
∫
Γ

(Fi + Gi )ni d� = 0 (7.1.3)

where ni denotes the component of a unit vector normal to the boundary surface.

Discretizing (7.1.3) and summing over all discrete nodes or cells (elements) throughout

the control volumes (CV) and control surfaces (CS), we obtain

∑
CV

(
�U
�t

− B
)

�� +
∑
CS

(Fi + Gi )ni�� = 0 (7.1.4)
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or ∑
CV

(�U − �tB)�� +
∑
CS

�t(Fi + Gi )ni�� = 0 (7.1.5)

The basic idea of FVM is to obtain a system of algebraic equations for the dis-

cretized control volume and control surfaces written such as in (7.1.5). In this process,

the conservation of all variables is enforced across the control surfaces. Thus, when a

specific quantity of a conserved variable is transported out of one control volume, the

same quantity is transported into the adjacent control volumes. As a result there is no

artificial creation or destruction of conserved variable. Inaccuracies that arise in coarse

meshes, therefore, are not the result of a failure of any variable, but rather are due

to approximation errors. Another advantage of FVM is that the discretized governing

equations retain their physical interpretation, rather than possibly distorting the physics

due to numerical discretization of each derivative term.

The finite volume methods are cost effective, because the calculation of flows at

the surface of the adjoining control volumes need be performed only once since the

expression is the same for both control volumes, differing only in sign. This gives

rise to both cost reduction and algorithmic simplicity. In this chapter, finite volume

methods via FDM are presented. Finite volume methods via FEM will be discussed in

Chapter 15.

7.2 TWO-DIMENSIONAL PROBLEMS

There are two types of control volume formulations: the node-centered control volume

and the cell (element)-centered control volume. These topics are discussed below.

7.2.1 NODE-CENTERED CONTROL VOLUME

For illustration, let us consider the two-dimensional configuration as shown in

Figure 7.2.1a. Node 1 is connected to adjacent nodes 5, 7, 9, 11, and 2. The quadrilat-

erals A, B, C, D, and E are subdivided by connecting midpoints of lines between nodes

with quadrants associated with node 1, forming the control volume for node 1 consisting

of subcontrol volumes CV1 A, CV1 B, CV1C, CV1 D, and CV1 E. Directions normal to two

control surfaces of each element are identified by the arrows pointing outward, with

angles �(a) and �(b) in a subcontrol volume (Figure 7.2.1b).

Let us examine the FVM formulation for the Poisson equation,

u,i i − f = 0 (i = 1, 2) (7.2.1)

The finite volume equation becomes∫
�

u,i ni d� =
∫

�

f d� (7.2.2)

or

A,B,C,D,E∑
CS

(
�u
�x

n1 + �u
�y

n2

)
�� =

∑
CV

f �� (7.2.3)
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Figure 7.2.1 Control volumes and control surfaces. (a) Control volume at node 1 in unstructured grid system.

(b) Control surfaces between nodes 1 and 7. (c) Modifications required for points 7-1 on horizontal (x) line

and 9-1 on vertical (y) line.

The FDM discretization of (7.2.3) yields

(u7 − u1)S7,1 + (u9 − u1)S9,1 + (u11 − u1)S11,1+ (u2 − u1)S2,1 + (u5 − u1)S5,1 = f1�1

(7.2.4)

with �1 being the sum of the control volume areas surrounding node 1,

�1 = CV1 A+ CV1 B + CV1C + CV1 D + CV1 E

and S7,1, S9,1, etc. represent the surface parameters determined from the direction

cosines. For example, the surface parameter S7,1 associated with u7 − u1 is given by

S7,1 =
(

cos �
��

�x
+ sin �

��

�y

)(a)

7,1

+
(

cos �
��

�x
+ sin �

��

�y

)(b)

7,1

(7.2.5)

where (a) and (b) refer to the adjacent control surfaces in the counterclockwise direc-
tion. Note also that

�y(a) = (cos ���)(a), �x(a) = (sin ���)(a)

refer to, respectively, the y and x components of�� on the control surface for the control

volume A (see Figure 7.2.1b). Orientations of these surfaces are determined by the angle
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Figure E7.2.1 FVM solution of the Poisson equation.

� of the direction cosines always measured counterclockwise from the x-axis as defined in

Figure 7.2.1a. Note also that �x7,1 = x7 − x1, �y7,1 = y7 − y1, etc. It should be cautioned

that, if two points are horizontal or vertical (�y = 0 or �x = 0), as may be the case in

Figure 7.2.1c, then we set

sin �
��

�y
= 0 for �y = 0, cos �

��

�x
= 0 for �x = 0 (7.2.6a)

This is to avoid division by zero (�y7,1 = 0, �x9,1 = 0). For a node in a rectangular

geometry such as node 5 of Figure E7.2.1, the direction cosine is zero so that the division

by zero is avoided by setting

sin 180◦�� = 0, cos 270◦�� = 0 (7.2.6b)

This restriction allows the FVM formulation to yield the result identical to the FDM

methods for rectangular grids. For all nonrectangular arbitrary geometries, the defini-

tions given in (7.2.5) should be used.

Detailed computational steps for a simple geometry (Figure E7.2.1) are demon-

strated in Example 7.2.1.

Example 7.2.1

Given: ∇2u = f (x, y), with the exact solution (u = 2x2 y2), Dirichlet boundary

conditions.

Required: Solve using the finite volume method via finite differences (3 × 2 unit

square mesh, Figure E7.2.1). Dirichlet boundary data for all exterior boundaries and

the source term are calculated from the exact solution.

u1, u2, u3, u6, u9, u12 = 0

u4 = 8, u7 = 32, u10 = 72, u11 = 18

f5 = 8, f8 = 20
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Solution:∑
CS

(
�u
�x

n1 + �u
�y

n2

)
�� =

∑
CV

f ��

∑
CS

�uS =
∑
CV

f ��

where

S = n1 ��

�x
+ n2 ��

�y

We write the finite difference analogs at nodes 5 and 8 as

(u2 − u5)S2,5 + (u6 − u5)S6,5 + (u8 − u5)S8.5 + (u4 − u5)S4,5 = f5 A5

(u5 − u8)S5,8 + (u9 − u8)S9,8 + (u11 − u8)S11,8 + (u7 − u8)S7,8 = f8 A8

with

f 5 A5 = 8, f 8 A8 = 20

S2,5 =
[(

S(1)

2,5 + S(2)

2,5

)(a)

+
(

S(1)

2,5 + S(2)

2,5

)(b)
]

=
[

�y(a)

�x2,5

+ 0

]
+

[
�y(b)

�x2,5

+ 0

]
=

[−1/2

−1
+ 0

]
+

[−1/2

−1
+ 0

]
= 1

and

S6,5 =
[

0 + �x(a)

�y6,5

]
+

[
0 + �x(b)

�y6,5

]
=

[
0 + −1/2

−1

]
+

[
0 + −1/2

−1

]
= 1

S8,5 = S4,5 = 1, etc.

Solving the above two equations for nodes 5 and 8 with the boundary conditions

imposed, we obtain[−4 1

1 −4

] [
u5

u8

]
=

[
8 − 8

20 − 50

]
=

[
0

−30

]
[

u5

u8

]
=

[
2

8

]

which is the exact solution. For the structured orthogonal grids, the process is the same

as in FDM.

Example 7.2.2

Given: Same as Example 7.2.1 with Neumann data:(
∂u
∂x

)
4

= 16,

(
∂u
∂y

)
4

= 8
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Solution: The additional equation required at node 4 becomes

∂u
∂x

∣∣∣∣
4

+ ∂u
∂y

∣∣∣∣
4

+ �u
�y

∣∣∣∣
5,4

+ �u
�x

∣∣∣∣
1,4

+ �u
�x

∣∣∣∣
7,4

= f4 A4

16 + 8 + u5/2 − u4

�y/2
+ u1/2 − u4

�x/2
+ u7/2 − u4

�x/2
= 20

(
1

2

)
Combining equations written at nodes 5 and 8 from Example 7.2.1, we obtain⎡

⎣−4 1 1

1 −4 0

1 0 −6

⎤
⎦

⎡
⎣ u5

u8

u4

⎤
⎦ =

⎡
⎣ 8

−30

−46

⎤
⎦

Thus ⎡
⎣ u5

u8

u4

⎤
⎦ = − 1

86

⎡
⎣ 24 6 4

6 23 1

4 1 15

⎤
⎦

⎡
⎣ 8

−30

−46

⎤
⎦ =

⎡
⎣ 2

8

8

⎤
⎦

This is the exact solution. Note that for unstructured grids with sloped boundaries, spec-

ification of the Neumann boundary conditions must be adjusted for direction cosines.

7.2.2 CELL-CENTERED CONTROL VOLUME

In the previous section, we dealt with the case in which nodes are identified with the

surrounding subcontrol volumes (node-centered control volume). Instead of subcontrol

or tributary control volumes surrounding the node, it is possible to consider control

volumes constructed by adjacent nodes as shown in Figure 7.2.2a,b,c. Here, control

surfaces are identified between adjacent nodes for a structured grid system, leading

to the cell-centered control volume. However, this requirement lacks the generality

prevailing in the unstructured grid system.

For illustration, let us consider the cell-centered FVM scheme as shown in

Figure 7.2.2 for the solution of the Poisson equation examined in Section 7.2.1. The

corresponding FVM equation is given by (7.2.2).

∑
CS

(
�u
�x

n1 + �u
�y

n2

)
�� =

∑
CV

f �� (7.2.7)

This can be written for the cell-centered scheme in the form,

(
�u
�x

)
i, j−1/2

n1��AB +
(

�u
�y

)
i, j−1/2

n2��AB +
(

�u
�x

)
i+1/2, j

n1��BC

+
(

�u
�y

)
i+1/2, j

n2��BC +
(

�u
�x

)
i, j+1/2

n1��CD +
(

�u
�y

)
i, j+1/2

n2��CD

+
(

�u
�x

)
i−1/2, j

n1��DA +
(

�u
�y

)
i−1/2, j

n2��DA = ( f ��)i, j (7.2.8)

where �u/�x and �u/�y may be approximated by using tributary areas and
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This may be solved using the operator splitting scheme or the fractional step scheme:

(1) Operator Splitting Scheme

Step 1

U
n+1

i, j = Un
i, j − �t

��i, j

(
Fn

i, j Sj+1 + Fn
i, j−1Sj + Fn

i, j Si+1 + Fn
i−1, j Si

)
(7.2.10a)

Step 2

Un+1
i, j = 1

2

[
Un

i, j + U
n+1

i, j − �t
��i, j

(
F

n+1

i, j+1Sj+1 + F
n+1

i, j Sj + F
n+1

i+1, j Si+1 + F
n+1

i, j Si

)]
(7.2.10b)

These steps are repeated until steady-state is reached.

(2) Fractional Step Scheme

In this scheme, a half-time step is introduced in order to increase accuracy.

Step 1

U
n+ 1

2

i, j = Un
i, j − �t

��i, j

(
Fn

i, j Sj+1 + Fn
i, j−1Sj

)
(7.2.11a)

U
n+ 1

2

i, j = 1

2

[
Un

i, j + U
n+ 1

2

i, j − �t
��i, j

(
F

n+ 1
2

i, j+1Sj+1 + F
n+ 1

2

i, j Sj

)]
(7.2.11b)

Step 2

U
n+1

i, j = U
n+ 1

2

i, j − �t
��i, j

(
F

n+ 1
2

i, j Si+1 + F
n+ 1

2

i−1, j Si

)
(7.2.11c)

Un+1
i, j = 1

2

[
U

n+ 1
2

i, j + U
n+1

i, j − �t
��i, j

(
F

n+1

i+1, j Si+1 + F
n+1

i, j Si

)]
(7.2.11d)

Here, Si , Si+1, Sj , Sj+1 are the control surfaces as oriented by the direction cosine com-

ponents in the structured grid system.

7.2.3 CELL-CENTERED AVERAGE SCHEME

The cell-centered average scheme was proposed by Ni [1982]. To illustrate, we consider

the Euler equation written in the form

∂U
∂t

= −∂F
∂x

− ∂G
∂y

where

U =

⎡
⎢⎢⎣

�

�u
�v

� E

⎤
⎥⎥⎦ F =

⎡
⎢⎢⎣

�u
p + �u2

�uv

� Eu + pu

⎤
⎥⎥⎦ G =

⎡
⎢⎢⎣

�v

�vu
p + �v2

� Ev + pv

⎤
⎥⎥⎦
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with

�� = −1

2
[(x3 − x1)(y4 − y2) − (x4 − x2)(y3 − y1)] (7.2.16)

The flow variables at point 1 are updated as

Un+1
1 = Un

1 + �U1 (7.2.17)

with

�U1 = (�U1)A + (�U1)B + (�U1)C + (�U1)D (7.2.18)

where A through D refer to control volumes surrounding the grid point 1. Here the

CFL condition is given by

�t ≤ min

(
�x

|u| + a
,

�y
|v| + a

)
(7.2.19)

It should be noted that, for transonic and supersonic flows, an artificial viscosity must

be added for stability. For example,

(�U1)c = 1

4

[
�Uc − �t

�x
�Fc − �t

�y
�Gc + �(U − U1)

]
(7.2.20)

with

U = 1

4
(U1 + U2 + U3 + U4) (7.2.21)

� = �

(
�t
�x

+ �t
�y

)
(7.2.22)

where � is an artificial damping factor usually taken as 0 < � < 0.1.

It is seen that the corrections defined in (7.2.13) together with (7.2.20) guarantee

the proper domain of dependence regardless of local flow direction and wave speed,

leading to a stable second order solution.

7.3 THREE-DIMENSIONAL PROBLEMS

7.3.1 3-D GEOMETRY DATA STRUCTURE

For three-dimensional problems dealing with arbitrary unstructured meshes, an effi-

cient algorithm for data structure will be important. For illustration, consider the ge-

ometry shown in Figure 7.3.1, where all nodes are on the exterior global boundaries

except two interior nodes, 10 and 11. The control volume for node 10 and its con-

trol surfaces are represented in Figure 7.3.2. Let us examine any inclined control sur-

face arbitrarily located in three-dimensional reference coordinates (x, y, z) as shown in

Figure 7.3.3. Note that local cartesian coordinates (x′, y′, z′) are constructed such that

the x′ − y′ plane coincide with the control surface. The origin is located at node 1 with

the x′ axis lying on the line connecting nodes 1 and 2. The z′ axis is in the direction of

the unit vector n normal to the control surface. The y′ axis can be determined once the

unit normal vector is known. The origin of natural or isoparametric coordinates (�, �)
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(-1, 1)

n

Figure 7.3.3 Control surface on the natural (isoparameteric) co-

ordinates (�, �), oriented in terms of the local cartesian coor-

dinates (x′, y′, z′), the unit normal vector coinciding with the

z′ axis.

where

�1 = x14

L14

, �2 = y14

L14

, �3 = z14

L14

L14 = (
x2

14 + y2
14 + z2

14

)
1/2

with x14 = x1 − x4, etc.

The unit vector normal to the surface is given by the cross product of these two unit

vectors along the lines 1-2 and 1-4.

n = e12 × e14 = εi jk	i � j ik = nkik (7.3.3)

with

n1 = 	2�3 − 	3�2

n2 = 	3�1 − 	1�3

n3 = 	1�2 − 	2�1

To calculate the control surface areas surrounding the control volume such as in

Figure 7.3.3, it is necessary to carry out the coordinate transformation between the

local coordinates (x′, y′, z′) and the global reference coordinates (x, y, z), since the

control surface plane is located arbitrarily in the three-dimensional configurations.

x′
i = ai j x j (7.3.4)

where ai j is the transformation matrix. The components of ai j corresponding to the x′
1

are the same as those for the unit vector e12,

a11 = 	1, a12 = 	2, a13 = 	3

To determine the rest of the direction cosines, we must find the unit vector along the
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y′ axis. This can be done by the cross product of the normal vector (7.3.3) and the unit

vector along the 1-2 direction,

ey = n × e12 = εi jkni 	 j ik = 
k ik (7.3.5)

with


 1 = n2	3 − n3	2


 2 = n3	1 − n1	3


 3 = n1	2 − n2	1

Thus, we have

a21 = 
1, a22 = 
2, a23 = 
3

a31 = n1, a32 = n2, a33 = n3

The remaining task for the construction of data structure is the calculation of control

surface areas and control volumes.

Control Surface Area

A=
∫∫

dx′dy′ =
∫ 1

−1

∫ 1

−1

|J ′|d�d� (7.3.6)

with |J ′| being the determinant of the control surface Jacobian (see Section 9.3.3 for

derivation),

|J ′| =

∣∣∣∣∣∣∣∣
∂x′

∂�

∂y′

∂�

∂x′

∂�

∂y′

∂�

∣∣∣∣∣∣∣∣
(7.3.7)

x′ = a11x + a12 y + a13z (7.3.8)

y′ = a21x + a22 y + a23z

x = �N(�, �)xN (N = 1, 2, 3, 4) (7.3.9)

�1 = 1

4
(1 − �)(1 − �), �2 = 1

4
(1 + �)(1 − �), �3 = 1

4
(1 + �)(1 + �),

�4 = 1

4
(1 − �)(1 + �) (7.3.10)

with �N being the interpolation functions derived in Section 9.3.3. Substituting (7.3.10)

into (7.3.9), (7.3.8), and (7.3.7), we obtain

∂x′

∂�
= a11

∂�N

∂�
xN + a12

∂�N

∂�
yN + a13

∂�N

∂�
zN

∂y′

∂�
= a21

∂�N

∂�
xN + a22

∂�N

∂�
yN + a23

∂�N

∂�
zN

∂x′

∂�
= a11

∂�N

∂�
xN + a12

∂�N

∂�
yN + a13

∂�N

∂�
zN

∂y′

∂�
= a21

∂�N

∂�
xN + a22

∂�N

∂�
yN + a23

∂�N

∂�
zN

(7.3.11)
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Integration of (7.3.6) can be carried out most accurately by using the Gaussian quadra-

ture, which is detailed in Section 9.3.3.

Control Volume

V =
∫∫∫

dxdydz =
∫ 1

−1

∫ 1

−1

∫ 1

−1

|J |d�d�d� (7.3.12)

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂�

∂y
∂�

∂z
∂�

∂x
∂�

∂y
∂�

∂z
∂�

∂x
∂�

∂y
∂�

∂z
∂�

∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.3.13)

with |J | being the determinant of the control volume Jacobian in terms of the natural

or isoparameteric coordinates (�, �, �) with reference to the global cartesian coordi-

nates (x, y, z) as shown in Figure 7.3.4. See Section 9.4.3 for derivation and details of

integration using the Gaussian quadrature.

The control surface and control volume for a three-dimensional geometry may be

calculated alternatively as follows. Referring to Figure 7.3.5, the surface area A1234 is

equal to one-half of the absolute value of the cross product between the diagonal unit

vectors times their corresponding physical lengths.

A1234 = |A1234| = 1

2
|e13L13 × e24L24| (7.3.14)

Here, the calculation of the components of the unit vectors follow the same procedure

as in (7.3.1) and (7.3.2). These surface areas should be oriented by the unit normal

vector calculated from (7.3.3).

Similarly, the control volume is equal to one third of the dot product of the sum of

any three adjacent surface area vectors and the unit vector times its physical length,

Figure 7.3.4 Three-dimensional control volume with hexahedral

isoparameteric coordinates.
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equation using the operator splitting and fractional step scheme is described below

[Rizzi and Inouye, 1973].

(1) Operator Splitting Scheme

Step 1

U
n+1

i, j,k = Un
i, j,k − �t

��i, j,k

(
Fn

i, j,kSj+1 + Fn
i, j−1,kSj

+ Fn
i, j,kSi+1 + Fn

i−1, j,kSi + Fn
i, j,kSk+1 + Fn

i, j,k−1Sk
)

(7.3.16a)

Step 2

Un+1
i, j,k = 1

2

[
Un

i, j,k + U
n+1

i, j,k − �t
��i, j,k

(
F

n+1

i, j+1,kSj+1 + F
n+1

i, j,kSj

+ F
n+1

i+1, j,kSi+1 + F
n+1

i, j,kSi + F
n+1

i, j,k+1Sk+1 + F
n+1

i, j,kSk
)]

(7.3.16b)

(2) Fractional Step Scheme

Step 1

U
n+ 1

3

i, j,k = Un
i, j,k − �t

��i, j,k

(
Fn

i, j,kSj+1 + Fn
i, j−1,kSj

)
(7.3.17a)

U
n+ 1

3

i, j,k = 1

2

[
Un

i, j,k + U
n+ 1

3

i, j,k − �t
��i, j,k

(
F

n+ 1
3

i, j+1,kSj+1 + F
n+ 1

3

i, j,k Sj

)
(7.3.17b)

Step 2

U
n+ 2

3

i, j,k = U
n+ 1

3

i, j,k − �t
��i, j,k

(
F

n+ 1
3

i, j,k Si+1 + F
n+ 1

3

i−1, j,kSi

)
(7.3.18a)

U
n+ 2

3

i, j,k = 1

2

[
U

n+ 1
3

i, j,k + U
n+ 2

3

i, j,k − �t
��i, j,k

(
F

n+ 2
3

i+1, j,kSi+1 + F
n+ 2

3

i, j,k Si

)]
(7.3.18b)

Step 3

U
n+1

i, j,k = U
n+ 2

3

i, j,k − �t
��i, j,k

(
F

n+ 2
3

i, j,k Sk+1 + F
n+ 2

3

i, j,k−1Sk

)
(7.3.19a)

Un+1
i, j,k = 1

2

[
U

n+ 2
3

i, j,k + U
n+1

i, j,k − �t
��i, j,k

F
n+1

i, j,k+1Sk+1 + F
n+1

i, j,kSk

]
(7.3.19b)

Stability conditions may be given as

�t ≤ min (�tx, �ty, �tz) (7.3.20)

with

�tx ≤ min
i, j,k

[
��i, j,k

(|q · Si | + aSi )i, j,k

]
(7.3.21a)
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�ty ≤ min
i, j,k

[
��i, j,k

(|q · S j | + aSj )i, j,k

]
(7.3.21b)

�tz ≤ min
i, j,k

[
��i, j,k

(|q · Sk| + aSk)i, j,k

]
(7.3.21c)

where q and a are the resultant velocity vector and speed of sound, respectively.

The node-centered control volume approach as demonstrated for two dimensions

may also be used for three dimensions. We discuss this subject for the FDV equations

in the following section.

7.4 FVM-FDV FORMULATION

The FDV concept introduced in Section 6.5 can be used for the FVM formulation. To

this end, we begin with the FDV governing equations given by (6.5.14)

R =
(

I + En
i

∂

∂xi
+ En

i j
∂2

∂xi∂x j

)
�Un+1 + Qn (7.4.1)

The FVM integration equation is of the form

∫
�

Rd� =
∫

�

[(
I + En

i
∂

∂xi
+ En

i j
∂2

∂xi∂xj

)
�Un+1 + Qn

]
d� = 0 (7.4.2)

Integrating (7.4.2) with respect to the spatial coordinates, we obtain∫
�

�Un+1 d� +
∫

�

(
Ei�Un+1 + Ei j�Un+1

, j

)
ni d � = −

∫
�

Qnd� (7.4.3)

or

∑
CV

�Un+1 �� +
∑
CS

(
Ei�Un+1 + Ei j�Un+1

, j

)
ni �� = −

∫
�

Qnd� (7.4.4)

where∫
�

Qnd� =
∫

�

(
Hn

i + Hn
i j, j

)
ni d � =

∑
CS

(
Hn

i + Hn
i j, j

)
ni�� (7.4.5)

with

Hn
i = �t

(
Fn

i + Gn
i

)
, Hn

i j = �t2

2
(ai + bi )

(
Fn

j + Gn
j

)
(7.4.6a,b)

Let us now illustrate the solution procedure (7.4.4) based on the node-centered

control volume as shown in Figure 7.2.1 and Example 7.2.1. The control surface compu-

tations on the left-hand side of (7.4.4) include terms with Ei without derivative and

those with Ei j with the first order derivatives and similarly for Hn
i and Hn

i j on the

right-hand side of (7.4.4). Thus, the FVM equation at node 1 for Figure 7.2.1 becomes
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(with �Un+1 = Ψ)

Ψ1��1 + 1

2
(Ψ7 + Ψ1)R7,1 + (Ψ7 − Ψ1)S7,1 + 1

2
(Ψ9 + Ψ1)R9,1 + (Ψ9 − Ψ1)S9,1

+ 1

2
(Ψ11 + Ψ1)R11,1 + (Ψ11 − Ψ1)S11,1 + 1

2
(Ψ2 + Ψ1)R2,1 + (Ψ2 − Ψ1)S2,1

+ 1

2
(Ψ5 + Ψ1)R5,1 + (Ψ5 − Ψ1)S5,1 = −Q1 (7.4.7)

where

R7,1 = ⌊
(E1n1�� + E2n2��)(a) + (E1n1�� + E2n2��)(b)

⌋
7,1

(7.4.8)

S7,1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
(E11n1 + E21n2)

�Γ
�x

+ (E12n1 + E22n2)
�Γ
�y

] (a)

+
[

(E11n1 + E21n2)
�Γ
�x

+ (E12n1 + E22n2)
�Γ
�y

](b)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

7,1

(7.4.9)

with Ei and Ei j given by (6.3.31a) and (6.3.31b), respectively, etc., and 1
�x and 1

�y
calculated similarly as in (7.2.5).

The right-hand side terms of H are obtained in a manner similar to the left-hand

side.

Q1 = Rn
7,1 + Sn

7,1 + Rn
9,1 + Sn

9,1 + Rn
11,1 + Sn

11,1 + Rn
2,1 + Sn

2,1 + Rn
5,1 + Sn

5,1 (7.4.10)

Rn
7,1 = 1

2
{[(H1n1 + H2n2)��]7 + [(H1n1 + H2n2)��]1}(a)

+ 1

2
{[(H1n1 + H2n2)��]7 + [(H1n1 + H2n2)��]1}(b)

Sn
7,1 =

{
[(H11)7 − (H11)1]n1

��

�x
+ [(H12)7 − (H12)1]n1

��

�y

+ [(H21)7 − (H21)1]n2

��

�x
+ [(H22)7 − (H22)1]n2

��

�y

}(a)

7,1

+
{

[(H11)7 − (H11)1]n1

��

�x
+ [(H12)7 − (H12)1]n1

��

�y

+ [(H21)7 − (H21)1]n2

��

�x
+ [(H22)7 − (H22)1]n2

��

�y

}(b)

7,1

(7.4.11)

with Hi and Hi j given by (7.4.6a,b), respectively.

The FVM equation at node 2 is written similarly and the solution for Un+1 for nodes 1

and 2 can be obtained with appropriate boundary conditions applied similarly, as demon-

strated in Examples 7.2.1 and 7.2.2. If all Dirichlet data are provided, then we have[
K11 K12

K21 K22

] [
�U1

�U2

]n+1

= −
[

Q1

Q2

]n

+
[

D1

D2

]
(7.4.12)

where D1 and D2 represent the source vector as a result of the Dirichlet boundary
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conditions. Note that K11 and K22 denote the collective sum of contributions for nodes

1 and 2, respectively, whereas K12 and K21 are the interactions between node 1 and node

2, respectively,

K12 = 1

2
R2,1 − S2,1

K21 = 1

2
R1,2 − S1,2

(7.4.13a,b)

Implementation of Neumann boundary conditions is carried out similarly as in

Example 7.2.2. If the Neumann boundary condition is prescribed at node 7, then the

FDV equations (7.4.12) will be modified to include �U7 as one of the unknowns with

the Neumann data directly imposed on the right-hand side of (7.4.12).

For three-dimensional applications such as in Figure 7.3.1, FDV equations in terms

of FVM are written similarly as in 2-D, following the procedure of (7.4.7) through

(7.4.13). For example, at node 10 (Figure 7.3.1), the adjacent nodes connected to node

10 are as shown in Figure 7.3.2. Direction cosines of the normal vector are calculated

(Figure 7.3.3), with control surface areas and control volumes determined as described

in Section 7.3. Let us examine the FDV finite volume equations at node 10 (Figures 7.3.1

and 7.3.2).

Ψ10��10 + 1

2
(Ψ6 + Ψ10)R6,10 + (Ψ6 − Ψ10)S6,10 + 1

2
(Ψ14 + Ψ10)R14,10

+ (Ψ14 − Ψ10)S14,10 + 1

2
(Ψ22 + Ψ10)R22,10 + (Ψ22 − Ψ10)S22,10

+ 1

2
(Ψ14 + Ψ10)R14,10 + (Ψ14 − Ψ10)S14,10 + 1

2
(Ψ9 + Ψ10)R9,10

+ (Ψ9 − Ψ10)S9,10 + 1

2
(Ψ11 + Ψ10)R11,10 + (Ψ11 − Ψ10)S11,10 = −Q10 (7.4.14)

with

R6,10 =
[

(E1n1�� + E2n2�� + E3n3��)(a) + (E1n1�� + E2n2�� + E3n3��)(b)

+ (E1n1�� + E2n2�� + E3n3��)(c) + (E1n1�� + E2n2�� + E3n3��)(d)

]
6,10

(7.4.15)

S6,10 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(E11n1 + E21n2 + E31n3)

��

�x
+ (E12n1 + E22n2 + E32n3)

��

�y
+ (E13n1 + E23n2 + E33n3)

��

�z

](a)

+
[

(E11n1 + E21n2 + E31n3)
��

�x
+ (E12n1 + E22n2 + E32n3)

��

�y
+ (E13n1 + E23n2 + E33n3)

��

�z

](b)

+
[

(E11n1 + E21n2 + E31n3)
��

�x
+ (E12n1 + E22n2 + E32n3)

��

�y
+ (E13n1 + E23n2 + E33n3)

��

�z

](c)

+
[

(E11n1 + E21n2 + E31n3)
��

�x
+ (E12n1 + E22n2 + E32n3)

��

�y
+ (E13n1 + E23n2 + E33n3)

��

�z

](d)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

6,10

(7.4.16)(
1

�x

)
6,10

=
(

�y�z
��

)
6,10

,

(
1

�y

)
6,10

=
(

�z�x
��

)
6,10

,

(
1

�z

)
6,10

=
(

�x�y
��

)
6,10

(7.4.17)

where (�x)6,10 = |x6 − x10|, etc., �� being the subcontrol surface areas corresponding





Figure 7.5.2 FVM/FDM solutions of Navier-Stokes system of equations for flows over a circular

cone [Siclari and Jameson, 1989]. (a) Comparison of Euler and Navier-Stokes crossflow velocity

vectors for a 10◦ and 20◦ circular cones at M∞ = 2.0, � = 25◦. (b) Computed Navier-Stokes isobars

and entropy contours for a 10◦ circular cone at M∞ = 7.95, � = 12◦, Re = 3.6 × 106.
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7.5 EXAMPLE PROBLEMS

(1) Solution of Euler Equation Using FVM/FDM

The work presented here is reported by Siclari and Jameson [1989] on a node cen-

tered, finite volume, central difference scheme to solve the Euler equations. High-speed

flows over a circular cone using spherical coordinates are investigated with FVM/FDM.

To expedite the solution convergence, they used multigrid methods, which will be dis-

cussed in Section 20.2.

Figure 7.5.1a shows the (81×50) grid for a 20◦ circular cone with M∞ = 2.0 and the

cone angle of � = 25◦. The resulting isobar solution shows that a weak crossflow shock

occurs on the lee side of the cone with attached flow.

The geometry and discretization (81×50) for a 10◦ circular cone (M∞ = 2.0, � =
25◦) and the resulting isobar distributions are shown in Figure 7.5.1b. In this example, a

strong crossflow shock develops on the lee side, resulting in shock-induced separation.

(2) Solution of Navier-Stokes System of Equations Using FVM/FDM

Siclari and Jameson [1989] solved the same problem above for the case of viscous flows.

This requires additional attention, providing refined discretization, and higher order

artificial dissipation as discussed in Section 6.3.

With the grid (81×68), the computed results are displayed in Figure 7.5.2a, compared

with the case of inviscid flow. For the 20◦ cone, the Euler solution shows attached flow,

whereas the Navier-Stokes solution shows a small separation. The Euler solution for

the 10◦ cone shows a shock vorticity induced separation. The Navier-Stokes solution

shows a more complex separated flow pattern including primary, secondary, and tertiary

vortices.

Figure 7.5.2b shows the computed isobars and entropy contours. The leeside bound-

ary layer separates at this incidence as indicated by the entropy contours.

7.6 SUMMARY

In this chapter, it has been shown that any finite difference schemes can be implemented

in FVM with either structured or unstructured grids. There are two advantageous

features in FVM: (1) Physically, the conservation of mass, momentum, and energy is

assured in the formulation itself; and (2) Numerically, unstructured grids and arbitrary

geometries are accommodated without coordinate transformation.

The conclusion appears to be that FVM is preferred to FDM for arbitrary geometries.

For structured grids, however, such conclusion is premature. Personal preferences may

persist for many years to come. The final outcome may be determined by convenience in

applications associated with computing techniques from the viewpoints of data structure

managements, which will be discussed in Chapter 20.
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PART THREE

FINITE ELEMENT METHODS

F
inite element methods (FEM) and topics related to finite element applications

are presented in Part Three. We have seen in Chapter 1 that the finite ele-

ment methods based on the standard Galerkin integral lead to results identical

to those of the finite difference methods (FDM) for the examples of simple linear

problems. In dealing with nonlinear or convection-dominated flow problems in fluid

dynamics, however, the standard Galerkin methods are no longer adequate. Various

special strategies must be designed to assure stability and convergence, as we noted

also in FDM. Dissipation and dispersion errors can be minimized with a high level of

accuracy achieved in much the same way as in FDM. In this vein, the reader will see that

finite element methods are analogous to finite difference methods in dealing with all

aspects of the physics of fluids. Developments of both approaches in close alliance are

shown to be complementary to each other. It is with this expectation that our journey

begins.





CHAPTER EIGHT

Introduction to Finite Element Methods

8.1 GENERAL

The finite element theory as applied to one-dimensional problems was discussed in Part

One, Preliminaries. In general, finite element methods (FEM) are versatile in appli-

cations to multidimensional complex irregular geometries. Initial applications of FEM

began with structural analysis in the late 1950s and primarily were based on variational

principles. During the early days of the development of FEM, applications were made

for simple flow problems, beginning with Zienkiewicz and Cheung [1965], followed

by Oden and Wellford [1972], Chung [1978], and Baker [1983], among others. Signifi-

cant contributions in CFD began with the streamline upwind Petrov-Galerkin (SUPG)

methods [Heinrich, Huyakorn, Zienkiewicz, and Mitchell, 1977; Hughes and Brooks,

1982; Hughes, Mallet, and Mizukami, 1986] or streamline diffusion methods (SDM)

[Johnson, 1987], Taylor-Galerkin methods (TGM) [Donea, 1984; Löhner, Morgan, and

Zienkiewicz, 1985], and hp adaptive methods [Oden and Demkowicz, 1991], among

many other related works.

New approaches and various alternative methodologies are preponderant in the

literature. Efforts are made in this book to simplify and unify some of the terminolo-

gies. For example, the original approaches of SUPG or SDM for convection-dominated

flows have grown into GLS (Galerkin/least squares) when some changes in the for-

mulation are introduced. It is suggested that all methods related to numerical diffu-

sion test functions be called the generalized Petrov-Galerkin (GPG) methods. Hughes

and his co-workers have contributed significantly in the past two decades to the GPG

methodologies associated with the problems of convection-dominated flows and shock

discontinuities.

Another example is the algorithm arising from the Taylor series expansion such as

TGM. Zienkiewicz and his co-workers [Zienkiewicz and Codina, 1995] have applied

for the past decade the concept of characteristic Galerkin methods (CGM) which pro-

duce results similar to TGM in dealing with convection-dominated problems for both

compressible and incompressible flows.

The idea of treating discontinuities developed in the finite difference methods

(FDM) flux vector splitting, TVD, and ENO associated with the first and second order

upwinding can be utilized in the discontinuous Galerkin methods (DGM) as demon-

strated by Oden and his co-workers [Oden, Babuska, and Baumann, 1998]. Clearly, this

represents the merit of studying FDM and FEM closely together.
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Recall that in FDM we explored solutions for all-speed flows. Among them was

the concept of flowfield-dependent variation (FDV) methods [Chung, 1999] as de-

tailed in Section 6.5. This was an attempt to resolve transitions and interactions of

various physical properties such as inviscid/viscous, compressible/incompressible, and

laminar/turbulent flows. The same approach can be applied to FEM. It can be shown that

FDV methods are capable of generating most of the existing computational schemes in

both FDM and FEM.

Although the various forms of Galerkin methods constitute the finite element meth-

ods in which the test functions are the same as the trial functions, there are other methods

where the test functions are different from the trial functions, generally known as the

weighted residual methods. Some examples include spectral element methods (SEM),

least square methods (LSM), and finite point methods (FPM).

The finite element literature is enriched with mathematical error analysis. Mathe-

matical proofs of convergence, stability, and accuracy are important in the so-called hp
adaptive methods in which accuracy improves as the mesh is refined and the approxi-

mating polynomial degrees are increased in accordance with the flowfield gradients. This

subject was developed by Babuska and his co-workers and Oden and his co-workers

for the last two decades.

In this chapter, the FEM formulation presented in Chapter 1 will be repeated with

more rigorous mathematical notations and expanded into multidimensional problems.

Definitions used in error estimates and convergence properties are also introduced in

this chapter.

The finite element analysis begins with the interpolation functions of the variables

for one-dimensional, two-dimensional, and three-dimensional elements of various ge-

ometries with linear and high order approximations, presented in Chapter 9. This will be

followed by linear steady and unsteady problems in Chapter 10 and nonlinear problems

with convection-dominated flows in Chapter 11.

In Chapters 12 and 13, we present FEM formulations for incompressible flows and

compressible flows, respectively. The major issues in CFD as observed in Part Two for

FDM are as follows: (1) Difficulties of satisfying the conservation of mass in incompress-

ible flows (incompressibility condition), resulting in checkerboard type pressure oscil-

lations; (2) shock discontinuities in compressible flows; and (3) convection-dominated

flows in both incompressible and compressible flows. Mixed methods, penalty methods,

and pressure correction methods were developed to cope with the incompressibility

condition. On the other hand, the Taylor-Galerkin methods (TGM) and generalized

Petrov-Galerkin (GPG) methods have been successful in dealing with shock disconti-

nuities and convection-dominated flows. Recent developments include computational

methods capable of analyzing both compressible and incompressible flows by a single

formulation and a single computer code using the various schemes extended from TGM,

GPG, and FDV (Chapter 13), leading to “all speed flows.”

Weighted residual methods including spectral element methods (SEM) and least

square methods (LSM) are presented in Chapter 14. Finite point methods (FPM) using

only the nodal points without element meshes (meshless methods) are also discussed in

this chapter. The finite volume methods (FVM) via FEM are elaborated in Chapter 15.

Finally, in Chapter 16, we examine some of the significant analogies between FDM

and FEM. Most of the existing computational schemes in both FDM and FEM are shown

to be special cases of the flowfield-dependent variation (FDV) methods. There are many
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is expressed as the union of the domain � and its boundaries �,

� = �
⋃

� (8.2.1)

We now isolate all elements from the global domain. Each local element �e is

identified as

�e = �e

⋃
�e

The boundaries of this element and the neighboring element are the intersection

�e

⋂
� f = �e f

Thus, the connected finite element model (8.2.1) is the union of all elements

� =
E⋃

e=1

�e (8.2.2)

where E is the total number of elements. The global nodes of the connected model � and

the local nodes of isolated elements are identified by Z� (� = 1, 2, 3, being the number

of global nodes) and z(e)
N (N = 1, 2, being the number of local nodes) with e = 1, 2, being

the number of local elements, respectively. They are related as follows:

z(1)

1 = Z1, z(1)
2 = Z2, z(2)

1 = Z2, z(2)
2 = Z3,

Writing these relations in matrix form yields⎡
⎣z(1)

1

z(1)
2

⎤
⎦ =

[
1 0 0

0 1 0

] ⎡
⎢⎣

Z1

Z2

Z3

⎤
⎥⎦,

⎡
⎣z(2)

1

z(2)
2

⎤
⎦ =

[
0 1 0

0 0 1

] ⎡
⎢⎣Z1

Z2

Z3

⎤
⎥⎦ (8.2.3a,b)

We may express (8.2.3a,b) as

z(e)
N = �

(e)
N� Z� (N = 1, 2, � = 1, 2, 3) (8.2.4)

where N is the free index capable of producing N number of independent equations

corresponding to its range (2 in this case, resulting in two equations) and the repeated
(dummy) indices � are summed throughout their range (3 in this case, resulting in three

terms), known as the index notation or tensor notation. The symbol �
(e)
N� is called the

Boolean matrix having the property:

�
(e)
N� =

{
1

0

if the local node N corresponds to the global node �

otherwise

Similarly, we may write

Z� = �
(e)
N�z(e)

N (8.2.5)

where �
(e)
N� in (8.2.5) is seen to be a transpose of �

(e)
N� in (8.2.4). This transpose is achieved

by the repeated index N in (8.2.5) arising with the first index of the Boolean matrix in

contrast to the repeated index � in (8.2.4) arising with the second index of the Boolean

matrix. Note that this is typical of index notation, different from the matrix notation.
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Inserting (8.2.4) into (8.2.5) yields

Z� = �
(e)
N��

(e)
N� Z� (8.2.6)

from which we obtain the relation

�
(e)
N��

(e)
N� = ��� (8.2.7)

where ��� is the Kronecker delta,

��� =
{

1 if � = �

0 if � �= �

Likewise, substituting (8.2.5) into (8.2.4) gives

z (e)
N = �

(e)
N��

(e)
M�z(e)

M (8.2.8)

Once again, we obtain

�
(e)
N��

(e)
M� = �NM (8.2.9)

In matrix notation, the above relation shows that

[
1 0 0

0 1 0

] ⎡
⎣ 1 0

0 1

0 0

⎤
⎦ =

[
1 0

0 1

]
(8.2.10)

The use of Boolean matrix �
(e)
N� will prove to be convenient in derivations of finite

element equations, relating the properties between the local and global systems. How-

ever, in actual executions of finite element computations, these Boolean matrices will

never be constructed but instead are replaced by computer programs based on local

and global node number correspondence.

It should be noted, at this point, that we make use of tensor notation in which a free

single index implies the components of a column vector whereas free double indices

denote a matrix with its size determined by the ranges of the indices. The free index

must match at both sides of the equality sign within an equation. The advantage of using

tensor notation in FEM will become obvious as we develop finite element equations

more extensively in later chapters.

To obtain the finite element equations, the concept of classical variational or weigh-

ted residual methods is used. Toward this end, we require suitable functions for the

variable to be approximated locally within an element or subdomain. This is in contrast

to the classical variational methods or weighted residual methods where the global
approximating functions are used, in which the satisfaction of boundary conditions is

difficult, if not impossible, for complex geometries.

Suppose that the variable u may be approximated linearly within a local element e,

(0 ≤ x ≤ h), as shown in Figure 1.3.1, Figure 8.2.1, Figure 8.2.2:

u(e)(x) = �
(e)
N (x)u(e)

N (8.2.11)

where �
(e)
N (x) are called the local element trial functions [interpolation functions, shape

functions, or basis functions as shown in (1.3.3)]. For simplicity, the argument (x)

will be omitted in what follows unless confusion is likely to occur. They have the
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Figure 8.2.2 Local and global interpolation (trial) functions. (a) Local interpolation functions.

(b) Global interpolation functions �� = ⋃E
e=1 �

(e)
N �

(e)
N�. (c) Local and global values (u(e)

N , u�).

properties

0 ≤ �
(e)
N ≤ 1,

2∑
N=1

�
(e)
N = 1, �

(e)
N

(
z(e)

M

) = �NM (8.2.12)

The local nodal values can be related to the global nodal values in a manner similar

to (8.2.4):

u(e)
N = �

(e)
N�u� (8.2.13)
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Thus, for the total number of elements, E, the global function can be written as the

union of all local element contributions:

u =
E⋃

e=1

u(e) =
E⋃

e=1

�
(e)
N u(e)

N =
E⋃

e=1

�
(e)
N �

(e)
N�u� (8.2.14a)

or

u = ��u� (8.2.14b)

where �� is called the global trial (interpolation, shape, or basis) function,

�� =
E⋃

e=1

�
(e)
N �

(e)
N� (8.2.15)

with

��(Z�) = ��� (8.2.16)

It follows from (8.2.15) that the expanded form of (8.2.14) appears as shown in

Figure 8.2.2b,c. Note that the union operation in (8.2.14) and (8.2.15) is subject to

the constraint (8.2.16). Thus, (8.2.14) through (8.2.16) lead to u = u1 at node 1, u = u2 at

node 2, and u = u3 at node 3. The union operation implies a Boolean summing rather

than algebraic summing in this process.

With these preliminaries, we are now prepared to revisit the differential equation

(1.2.1) for a more formal approach to the finite element solution process. There are

two options for the formulation of finite element equations: (a) variational methods

and (b) weighted residual methods. In the variational methods, we minimize the varia-

tional principle for the governing differential equation, which is a common practice in

structural mechanics. Unfortunately, however, variational principles are not available

in exact forms for nonlinear fluid mechanics equations in general. Thus, it is logical to

seek the weighted residual methods in fluid mechanics where the variational principles

are not required. The basic idea of the weighted residual methods is to construct a

mathematical process in which the error or the residual of the governing differential

equation(s), R (for example, R = ∇2u), is minimized to zero. This can be done by form-

ing a subspace spanned by test functions or weighting functions, W�, and projecting the

residual R orthogonally onto this subspace. This process is known as the inner product
of the test function and the residual, which can be expressed as follows:

(W�, R) =
∫ 1

0

W� Rdx = 0, 0 < x < 1 (8.2.17)

where the test functions W� are known also as weighting functions. The integral given by

(8.2.17) implies that the error at each point in the domain orthogonally projected onto

a functional space spanned by the weighting function summed over the entire domain

is set equal to zero. This process will provide necessary algebraic equations from which

unknowns can be calculated. Thus, the finite element method is sometimes called the

projection method.

If the test functions W� are replaced by the trial functions ��, then the scheme is

known as the Galerkin method,

(��, R) =
∫ 1

0

�� Rdx = 0 0 < x < 1 (8.2.18)
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The above result is due to the one-dimensional idealization of two-dimensional prob-

lems presented in Chapter 10. An important application of the above development is

demonstrated for implementation of Neumann boundary conditions at the right or left

end nodes in Section 1.5. Substituting (8.2.14b) into (8.2.20) gives[∫ 1

0

d��

dx
d��

dx
dx

]
u� = −

∫ 1

0

2��dx + ∗
��

du
dx

∣∣∣∣
1

0

(8.2.22)

We recognize that the left-hand side integral of (8.2.22) represents the first order

derivative, known as a weak form, reduced (weakened) from the original second order

derivative of the governing equation. The solution obtained from this weak form is

known as the weak solution.

At this time, it is informative to point out that the result similar to (8.2.22) can

be obtained using the variational principle approach [Chung, 1978]. The variational

principle for the governing differential equation (1.2.1a) is of the form

I =
∫ 1

0

[
1

2

(
∂u
∂x

)2

+ 2u
]

dx (8.2.23)

In the variational methods, the above integral is minimized with respect to the nodal

value of the variable.

�I = ∂I
∂u�

�u� = 0

Since �u� is arbitrary, we require

∂I
∂u�

= 0

It can easily be verified that the minimization (differentiation) of (8.2.23) with respect

to the nodal values of u� as indicated above results in (8.2.22) except that the Neumann

boundary condition must be manually added. This analogy does not exist in nonlinear

fluid mechanics equations, because the integration of the nonlinear convection term by

parts can not be carried out in an exact form.

With compact notation, we rewrite (8.2.22) in the form

K��u� = F� + G� (8.2.24)

where K�� is the global stiffness, diffusion, or viscosity matrix, F� is the global load

or source vector, and G� is the global Neumann boundary vector, as deduced from

(8.2.22):

K�� =
∫ 1

0

d��

dx
d��

dx
dx =

E⋃
e=1

∫ h

0

d�
(e)
N

dx
d�

(e)
M

dx
dx�

(e)
N��

(e)
M� =

E⋃
e=1

K(e)
NM�

(e)
N��

(e)
M�

(8.2.25)

F� = −
∫ 1

0

2��dx = −
E⋃

e=1

∫ h

0

2�
(e)
N dx�

(e)
N� =

E⋃
e=1

F (e)
N �

(e)
N� (8.2.26a)

G� = ∗
��

du
dx

∣∣∣∣
1

0

=
E⋃

e=1

∗
�

(e)
N �

(e)
N�

du
dx

∣∣∣∣
h

0

=
E⋃

e=1

G(e)
N �

(e)
N� (8.2.26b)
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where
∗
�

(e)
N is the local Neumann boundary interpolation function,

∗
�

(e)
N = �(

∗
zN − zN),

∗
�

(e)
N

(
z(e)

M

) = �NM (8.2.27)

indicating that
∗
�

(e)
N is the Dirac delta function at x = 0 or x = h, being unity at

∗
zN = zN

where du/dx is prescribed at node
∗
zN and zero elsewhere. This implies that, if the

Neumann boundary condition is to be applied to a node, then we set
∗
�

(e)
N = 1 for that

node. Otherwise, we set
∗
�

(e)
N = 0. Assembled in a global system, we obtain

∗
�� = �(

∗
Z� − Z�),

∗
��(Z�) = ��� (8.2.28)

In this process, the Neumann boundary conditions are actually enforced between the ad-

jacent elements, with positive and negative gradients cancelled throughout the domain

(thus establishing the “energy balance” across the adjacent local element interfaces)

until the end point is reached. This is where the actual Neumann boundary conditions

are to be physically applied. This process is explicitly demonstrated by having con-

structed the FEM equations (8.2.24) in a global form instead of beginning with the local

form and assembling the element stiffness matrices to a global form afterward. This is

contrary to the traditional FEM formulations shown in other textbooks.

The global stiffness matrix (1.3.8), source vector (1.3.9), and Neumann boundary

vector (1.3.10) are now assembled from the local element properties as

K�� =

⎡
⎢⎣

K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎥⎦ =

⎡
⎢⎢⎣

K(1)

11 K(1)

12 0

K(1)

21 K(1)
22 + K(2)

11 K(2)

12

0 K(2)

21 K(2)
22

⎤
⎥⎥⎦

=
⎡
⎣ 1 0

0 1

0 0

⎤
⎦ 1

h

[
1 −1

−1 1

] [
1 0 0

0 1 0

]
+

⎡
⎣ 0 0

1 0

0 1

⎤
⎦ 1

h

[
1 −1

−1 1

] [
0 1 0

0 0 1

]

= 1

h

⎡
⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤
⎦ (8.2.29)

F� =
⎡
⎣ F1

F2

F3

⎤
⎦ =

⎡
⎢⎣ F (1)

1

F (1)
2 + F (2)

1

F (2)
2

⎤
⎥⎦ = −

⎡
⎣ 1 0

0 1

0 0

⎤
⎦ h

[
1

1

]
−

⎡
⎣ 0 0

1 0

0 1

⎤
⎦ h

[
1

1

]
= −h

⎡
⎣ 1

2

1

⎤
⎦

(8.2.30)

G� =
⎡
⎣ G1

G2

G3

⎤
⎦ =

⎡
⎢⎣ G(1)

1

G(1)
2 + G(2)

1

G(2)
2

⎤
⎥⎦ =

⎧⎨
⎩

⎡
⎣ 1 0

0 1

0 0

⎤
⎦ [ ∗

�
(1)

1∗
�

(1)
2

]
+

⎡
⎣ 0 0

1 0

0 1

⎤
⎦ [ ∗

�
(2)

1∗
�

(2)
2

]⎫⎬
⎭ du

dx
cos �

=
⎧⎨
⎩

⎡
⎣ 1 0

0 1

0 0

⎤
⎦ [

0

0

]
+

⎡
⎣ 0 0

1 0

0 1

⎤
⎦ [

0

0

]⎫⎬
⎭ du

dx
cos �=

⎡
⎢⎢⎣

∗
�1
∗
�2
∗
�3

⎤
⎥⎥⎦ du

dx
cos � =

⎡
⎣ 0

0

0

⎤
⎦ du

dx
cos �

(8.2.31)
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with
∗
�1 = ∗

�2 = ∗
�3 = 0 indicating that the Neumann boundary conditions are not to

be applied to any of the global nodes for the solution of (1.2.1a,b). This implies that,

if the Neumann boundary conditions are not applied, then the Neumann boundary

vector is zero even if the gradient du/dx is not zero. Recall that in Section 1.3 the as-

sembly of local properties into a global form was achieved intuitively. This has now

been verified with a mathematical rigor of Boolean matrices. In practice, however,

these Boolean matrices are never constructed, but they are replaced by computer

codes based on the nodal correspondence between global and local nodes as detailed in

(10.1.15c,d).

For multidimensional problems, the formulation of the finite element equations is

carried out similarly as in one-dimensional problems. For example, let us examine the

Poisson equation,

R = ∇2u − f = 0 (8.2.32)

The corresponding finite element equation takes the form∫
�

��(u,i i − f )d� = 0 (8.2.33)

∫
�

∗
��u,i ni d� −

∫
�

��,i u,i d� −
∫

�

�� fd� = 0 (8.2.34)

or

K��u� = F� + G� (8.2.35)

with

K�� =
∫

�

��,i��,i d� =
E⋃

e=1

∫
�

�
(e)
N,i�

(e)
M,i d��

(e)
N��

(e)
M� (8.2.36)

F� =
∫

�

�� fd� =
E⋃

e=1

∫
�

�
(e)
N fd��

(e)
N� (8.2.37)

G� =
∫

�

∗
�� u,i ni d� =

E⋃
e=1

∫
�

∗
�

(e)
N u,i ni d��

(e)
N� (8.2.38)

For two-dimensional problems, trial and test functions, �
(e)
N , are functions of x and y and

thus the Neumann boundary test functions,
∗
�

(e)
N , are functions of one dimension around

the boundary contour. This will require the numerical integration around the bound-

aries. Step-by-step details of assembly for applications to multidimensional geometries

will be presented in Chapter 10.

Before we proceed further, we must recognize the special mathematical and physical

implications of the expression given by (8.2.34). This is the variational equation or the

weak form of the original governing equation (8.2.32), which is the two-dimensional

form of (8.2.20). Physically, if the residual (8.2.32) represents the force, then the integral

given by (8.2.33) implies the energy contained in the domain �. Once integrated by parts
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as in (8.2.34), the consequence implies the energy balance between the domain � and the

boundary surface � containing the Neumann boundary conditions (normal gradients

of u). Thus, the physical consequence of the variational equation (or energy) allows us

to add any number of physical constraints in variational forms. These constraints can

be those terms playing a role of numerical diffusion (viscosity) as necessary. Many of

the recent developments of FEM take advantage of this variational concept, which we

shall discuss in greater detail in later chapters.

Unfortunately, the Galerkin methods described in (8.2.33–8.2.35) lead to unstable

and inaccurate solutions in fluid dynamics equations in which the flow is convection-

dominated. In this case, we must use the methods of weighted residual (MWR) with

test functions W� chosen differently from the trial functions �� such that

(W�, R) =
∫

�

W� Rd� = 0 (8.2.39)

Thus, the determination of the most suitable test functions W� remains the crucial task in

order to be successful in dealing with convection-dominated flows. The most commonly

used test functions are the Galerkin test functions �� plus the numerical diffusion test

functions ��. In this case, the finite element equations are of the form,

((�� + ��), R) =
∫

�

(�� + ��)Rd� = 0 (8.2.40)

Here, the numerical diffusion test functions �� play a role of numerical viscosities, equi-

valent to those used in FDM formulations. Some specific applications include streamline

upwind Petrov-Galerkin (SUPG) methods, Taylor-Galerkin methods (TGM), general-

ized Petrov-Galerkin (GPG) methods, characteristic Galerkin methods (CGM), discon-

tinuous Galerkin methods (DGM), and flowfield-dependent variation (FDV) methods,

discussed in Chapters 11 through 13.

For multidimensional time-dependent problems, Rj = ∂v j

∂t + v j,i vi − v j,i i − f j , the

general approach is to construct a double inner product of space and time in the form,

(Ŵ(�), ((�� + ��), Rj )) =
∫

�

Ŵ(�)

∫
�

(�� + ��)Rj d�d� = 0 (8.2.41)

where Ŵ(�) is the temporal test function approximating the temporal variation be-

tween the discrete time steps with � being the nondimensional time variable. Note that

the temporal approximation used here is independent of and discontinuous from the

spatial approximations. Details on transient time-dependent problems with and with-

out convection will be presented in Chapters 10 through 14 for linear and nonlinear

cases.

8.3 DEFINITIONS OF ERRORS

Definitions of errors and error estimates for finite element methods have been well

developed since the early 1970s. Finite element computational errors are defined in

various norms. The most frequently used error norms are the pointwise error, L2 norm

error, and energy norm error. These error norms are the special cases of the more
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rigorous and general norm, called the Sobolev space norm, which can then be simplified

into more meaningful and practical error definitions.

Sobolev Space (Wm
p ) Norm Error

Let us define the global node error e� as

e� = u� − û� (8.3.1)

where u� and û� denotes the finite element approximate solution and exact solution,

respectively. Then, the Sobolev space norm error is defined as

‖e‖Wm
p

=
{∫ [

ep +
(

de
dx

)p

+
(

d2e
dx2

)p

+ · · · +
(

dme
dxm

)p]
dx

} 1
p

(8.3.2)

where m denotes the highest order of the weak derivatives of the 2mth governing

equation and p represents the power to which the derivatives are raised. Here, weak

derivatives refer to the order m, m − 1, . . . 0. The Sobolev space (Wm
p ) is defined as

the functional space which includes all weak derivatives with p integrable functions,

0 ≤ p ≤ ∞.

Hilbert Space (Hm) Norm Error

The Hilbert space (Hm) is the Sobolev space (Wm
p ) with p equal to 2, Hm = Wm

2 .
Thus

‖e‖Hm = ‖e‖Wm
2

=
{∫ [

e2 +
(

de
dx

)2

+
(

d2e
dx2

)2

+ · · · +
(

dme
dxm

)2]
dx

} 1
2

(8.3.3)

It is seen that the Hilbert space is the square integrable function (p = 2) complete in

the inner product space.

Energy Norm Error

The energy norm error, ‖e‖E is a special case of the Hilbert space norm error Hm

in the 2mth order differential equation. Thus, for the fourth order equation (m = 2), we

have

‖e‖E = ‖e‖H 2 = ‖e‖W2
2

=
{∫ [

e2 +
(

de
dx

)2

+
(

d2e
dx2

)2]
dx

} 1
2

(8.3.4)

Notice that, for the second order differential equation (m = 1), we write

‖e‖E = ‖e‖H 1 = ‖e‖W1
2

=
{∫ [

e2 +
(

de
dx

)2]
dx

} 1
2

(8.3.5)

which can be written in terms of nodal errors e� with e = ��e�,

‖e‖E =
{∫ [

���� + d��

dx
d��

dx

]
dxe�e�

} 1
2

(8.3.6)
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Here, as usual, the global interpolation functions are obtained by means of assembly of

the local interpolation functions �
(e)
N .

L2 Space Norm Error

The L2 space arises from the Banach space (Lp) with p = 2, equivalent to the Hilbert

space (Hm) with m = 0. Thus

‖e‖L2
= ‖e‖H 0 = ‖e‖W2

0 =
(∫

e2dx
)1

2

(8.3.7)

in which no rates of change of errors are involved.

p-Norm (Banach Space Norm) Error

The Banach space (Lp) is defined as the complete normed linear space such that

‖e‖Lp =
(∫

epdx
)1

p

For p = 1 and p = ∞, we obtain L1 and L∞ norms, respectively,

‖e‖L1
=

∫
edx =

n∑
j=1

(|e1| + |e2| + · · · + |en|) (8.3.8)

‖e‖L∞ = max
j

|e j | (8.3.9)

It should be noted that the L2 norm is a special case of the Banach space norm

(p = 2), and is one of the most widely used error norm. Other norms of Banach space

(other than p = 1, 2, ∞) are seldom used in practice.

Pointwise Error or Root Mean Square (RMS) Error

This is the simplest form of an error definition given by

‖e‖RMS =
(∑

e2
)1

2 = (e�e�)
1
2 (8.3.10)

Here the percent error may be defined as

‖e‖% = ‖e‖RMS(∑
u2

) 1
2

=
(

e�e�

u�u�

)1
2

(8.3.11)

Note that there is no integral involved in this approach, thus it is called the pointwise

error, or often known as the root mean square (RMS) error.

Matrix Norms

Matrix norms are an important concept in determining the computational stability

of the finite element equations such as in (8.2.35) in terms of the so-called condition
number. To demonstrate this concept, we write (8.2.35) in the matrix form

Ku = F (8.3.12)
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If K is an n × n matrix and u any vector with n components, then there exists a

constant c such that

‖Ku‖ ≤ c‖F‖ (8.3.13)

where u �= 0,‖u‖ > 0, and the constant c is given by

c ≥ ‖Ku‖
‖u‖ (8.3.14)

The smallest c is known as the matrix norm of K, denoted by ‖K‖.

‖K‖ ≤ max
‖Ku‖
‖u‖ (8.3.15)

with the matrix norm being calculated from

‖K‖L1
= max

∑
�

|K��|, ‖K‖L2
= (K�� K��)1/2, ‖K‖L∞ = max

∑
�

|K��|

Combining (8.3.13) and (8.3.15), we obtain

‖Ku‖ ≤ ‖K‖‖u‖ (8.3.16)

If we define the condition number N as

N(K) = ‖K‖‖K−1‖ (8.3.17)

the following theorem can be established.

Theorem: A linear system of equations given by (8.3.12) is said to be well-conditioned
if the condition number as defined in (8.3.17) is small.

Proof: It follows from (8.3.12) and (8.3.16) that ‖F‖ ≤ ‖K‖‖u‖. Let F �= 0, u �= 0.

Then, we have

1

‖u‖ ≤ ‖K‖
‖F‖ (8.3.18)

Let the residual be given by

R = K(u − û) (8.3.19)

Combining (8.3.16) and (8.3.19) leads to

‖u − û‖ = ‖K−1R‖ ≤ ‖K−1‖‖R‖ (8.3.20)

From (8.3.18) and (8.3.20) we obtain

‖u − û‖
‖u‖ ≤ 1

‖u‖‖K−1‖‖R‖ ≤ ‖K‖
‖F‖ ‖K−1‖‖R‖ = N(K)

‖R‖
‖F‖ (8.3.21)

This proves that a small relative error results from the small condition number with the

system being well-conditioned. Otherwise, the system is ill-conditioned.
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Example 8.3.1

Given:

e =

⎡
⎢⎢⎣

1

−2

−3

2

⎤
⎥⎥⎦

Required: Find the vector norms in L1, L2, L∞.

Solution: ‖e‖L1
= 8; ‖e‖L2

= √
18; ‖e‖L∞ = 3

Example 8.3.2

Given:

K =

⎡
⎢⎢⎣

0 0 10 0

1 1 5 1

0 1 5 1

0 0 5 1

⎤
⎥⎥⎦

Required: Find the matrix norms in L1, L2, L∞.

Solution: ‖K‖L1
= max{1, 2, 25, 3}=25;‖K‖L2

=√
181;‖K‖L∞= max{10, 8, 7, 6} =10

Typical convergence properties are shown in Figure 8.3.1. It is seen in Figure 8.3.1a

that convergence is achieved at the point N and that further refinements or the increase

of polynomial degrees do not affect the exact solution. The convergence to the exact

solution depends on the so-called mesh parameter. The mesh parameter h is defined as

“diameter” of the largest element in a given domain. For one-dimensional problems, it

is simply the length h of the domain with 0 < h < 1. Let e1 and e2 be the errors for the

mesh parameters h1 and h2, respectively. Assume that reduction of mesh parameters

results in the increase of the order p of the rate of convergence. This relation may be

written in the form (Figure 8.3.1b)

‖e1‖
‖e2‖ =

(
h 1

h 2

)p

(8.3.22)

Taking the natural logarithm on both sides, we obtain

p = ln ‖e1‖ − ln ‖e2‖
ln h1 − ln h2

(8.3.23)

where the magnitude of p is indicative of the rate of convergence of the finite element

solution to the exact solution. In plotting the computed results to examine the con-

vergence, one may choose at least three different mesh parameters. They should be

chosen in the range where convergence to the exact solution has not been achieved as

illustrated in points 1, 2, and 3 of Figure 8.3.1a,b. The slope p is seen to be a straight

line with accuracy increasing with a steeper slope. If the mesh parameter is chosen too

small beyond convergence, the slope p will become horizontal (p = 0), such as points 4,

5, and 6 in Figure 8.3.1a. If computational round-off errors are accumulated due to the
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Notations used in this book are designed in such a way that the beginner can un-

derstand the procedure of formulations and computer programming more easily, using

tensorial indices. This is in contrast to most of the journal papers or other CFD books

in which direct tensors or matrices are used. They are simple in writing, but confusing

to the beginner and inconvenient for computer programming. To alleviate these diffi-

culties, tensor notations with indices are used throughout this book.

Tensors with indices, although cumbersome to write, reveal the precise number of

equations and exact number of terms in an equation. From this information, all inner

and outer do-loops in the computer programming can be constructed easily, facilitating

the multiplication of matrix and vector quantities with specified sizes precisely and

explicitly defined.

If indices are not balanced, then the reader is warned that derivations of the

equations are in error and are possibly in violation of the physical laws. In this case,

the computer programmer is immediately reminded that it is not possible to pro-

ceed with incorrect indexing of do-loops. Moreover, a tensor represents the concept

of invariance of physical properties with the frame of reference, safeguarding the

physical laws, constitutive equations, and subsequently the computational processes as

well.

Instead of constructing finite element equations in a local form which are then

assembled into a global form as shown in Section 1.3, it is convenient to perform

global formulations from the beginning so that flow physics can be accommodated

in a global form easily in the development of complex finite element equations. The

direct global formulation of finite element equations will be followed for the rest of this

book.
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CHAPTER NINE

Finite Element Interpolation Functions

9.1 GENERAL

We saw in Section 1.3 that finite element equations are obtained by the classical approx-

imation theories such as variational or weighted residual methods. However, there are

some basic differences in philosophy between the classical approximation theories and

finite element methods. In the finite element methods, the global functional representa-

tions of a variable consist of an assembly of local functional representations so that the

global boundary conditions can be implemented in local elements by modification of the

assembled algebraic equations. The local interpolation (shape, basis, or trial) functions

are chosen in such a manner that continuity between adjacent elements is maintained.

The finite element interpolations are characterized by the shape of the finite element

and the order of the approximations. In general, the choice of a finite element depends

on the geometry of the global domain, the degree of accuracy desired in the solution,

the ease of integration over the domain, etc.

In Figure 9.1.1, a two-dimensional domain is discretized by a series of triangu-

lar elements and quadrilateral elements. It is seen that the global domain consists

of many subdomains (the finite elements). The global domain may be one-, two-, or

three-dimensional. The corresponding geometries of the finite elements are shown in

Figure 9.1.2. A one-dimensional element (as we have studied in Chapters 1 and 8) is

simply a straight line, a two-dimensional element may be triangular, rectangular, or

quadrilateral, and a three-dimensional element can be a tetrahedron, a regular hexahe-

dron, an irregular hexahedron, etc. The three-dimensional domain with axisymmetric

geometry and axisymmetric physical behavior can be represented by a two-dimensional

element generated into a three-dimensional ring by integration around the circumfer-

ence. In general, the interpolation functions are the polynomials of various degrees, but

often they may be given by transcendental or special functions. If polynomial expan-

sions are used, the linear variation of a variable within an element can be expressed

by the data provided at the corner nodes. For quadratic variations, we add a side node

located midway between the corner nodes (Figure 9.1.3). Cubic variations of a vari-

able are represented by two side nodes in addition to the corner nodes. Sometimes a

complete expansion of certain degree polynomials may require installation of nodes at

various points within the element (interior nodes). Thus, there are three different types

of nodes: vertex nodes in which only corner nodes are installed at vertices, side nodes
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(a)  (b) Discretization by quardrilateral
elements

Discretization by triangular
elements

Figure 9.1.1 Finite element discretization of a two-dimensional domain.

in which one or more nodes are installed along the element sides, and internal nodes in

which one or more interior nodes are provided inside of an element.

Nodal configurations and corresponding polynomials may be selected from the so-

called Pascal triangle, Pascal tetrahedron, two-dimensional hypercube, or three-

dimensional hypercube, as shown in Figure 9.1.4. Various combinations between the

number of nodes and degrees of polynomials for two-dimensional geometries can

be selected as illustrated in Figures 9.1.5 and 9.1.6. Similar approaches may be used

for three-dimensional geometries. In choosing a suitable element, the number of nodes

(a) 

Triangular Rectangular Quadrilateral 
(b) 

Quadrilateral ring Triangular ring 

(c) 

Tetrahedral Regular hexahedral Irregular hexahedral 

(d) 

Figure 9.1.2 Various shapes of finite elements with corner nodes: (a) One-

dimensional element; (b) two-dimensional elements; (c) two-dimensional ele-

ment generated into three-dimensional ring element for axisymmetric geometry;

and (d) three-dimensional elements.
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Likewise, for quadratic approximations in which we require an additional node,

preferably at the midside (Figure 9.2.1c), we have

u = �1 + �2� + �3�2 (9.2.5)

and writing (9.2.5) at each node yields

u1 = �1 − �2 + �3, u2 = �1, u3 = �1 + �2 + �3 (9.2.6)

Evaluating the constants, we obtain

u(e) = �
(e)

1 u(e)

1 + �
(e)
2 u(e)

2 + �
(e)
3 u(e)

3 = �
(e)
N u(e)

N , (N = 1, 2, 3) (9.2.7)

where the interpolation functions are (see Figure 9.2.1d)

�
(e)

1 = 1

2
�(� − 1), �

(e)
2 = 1 − �2, �

(e)
3 = 1

2
�(� + 1) (9.2.8)

It is easily seen that the limits of integration of the interpolation functions should

be changed such that∫ h/2

−h/2

f (x)dx =
∫ 1

−1

f (�)
∂x
∂�

d� = h
2

∫ 1

−1

f (�)d� (9.2.9)

where x = (h/2)� . If the interpolation functions are derived in terms of nondimension-

alized spatial variables, then such a normalized system is called a natural coordinate.

Note that the basic properties of interpolation functions as given by (8.2.12) are satisfied

for both (9.2.4) and (9.2.8).

9.2.2 LAGRANGE POLYNOMIAL ELEMENTS

To avoid the inversion of the coefficient matrix for higher order approximations, we

may use the Lagrange interpolation function LN, which can be obtained as follows. Let

u(x) be given by (Figure 9.2.2)

u(x) = L1(x)u1 + L2(x)u2 + · · · Ln(x)un

(a)

 1 2

ξ = 1ξ = −1 ξ = 0

 1 2

ξ = 0 ξ = 1
(b) (c)

x

h

 1 2  3 N-1 N N+1 n-1  n

Figure 9.2.2 Lagrange element with natural coordinates. (a) Lagrange element of the n-1th degree ap-

proximation. (b) Linear approximation with origin at the left node. (c) Linear variation with origin at the

center.
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where LN(x) is chosen such that

LN(xM) = �NM

LN(x) may be expanded in the form

LN(x) = cN(x − x1)(x − x2) · · · (x − xN−1)(x − xN+1) · · · (x − xn)

where

LN(xM) =

⎧⎪⎨
⎪⎩

0 M �= N

1 = cN

n∏
M=1,M�=N

(xN − xM) M = N

Solving for the coefficient cN and substituting it to the expression for LN(x), we

obtain

�
(e)
N (x) = LN(x) =

n∏
M=1,M�=N

x − xM

xN − xM
(9.2.10)

= (x − x1)(x − x2) · · · (x − xN−1)(x − xN+1) · · · (x − xn)

(xN − x1)(xN − x2) · · · (xN − xN−1)(xN − xN+1) · · · (xN − xn)

with the symbol
∏

denoting a product of binomials over the range M = 1, 2, . . . , n (see

Figure 9.2.2). Here the element is divided into equal length segments by the n = m + 1

nodes, with m and n equal to the order of approximations and the number of nodes

in an element, respectively. Let us consider a first order approximation of a variable u
such that

u(e) = LNu(e)
N (N = 1, 2)

with

L1 = x − x2

x1 − x2

= x − h
−h

= 1 − x
h

L2 = x − x1

x2 − x1

= x
h

with x1 = 0 and x2 = h. If the nondimensionalized form � = x/h is used, we have

LN =
n∏

M=1,M�=N

� − �M

�N − �M
(9.2.11)

and

L1 = � − �2

�1 − �2

= 1 − �, L2 = � − �1

�2 − �1

= �

If the origin is taken as shown, at the center of the element (Figure 9.2.2c) using the

natural coordinate system, we note that

L1 = 1

2
(1 − �), L2 = 1

2
(1 + �)
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These functions are the same as in (9.2.4b).

For quadratic approximations, we have n = m + 1 = 3 and

L1 = (� − �2)(� − �3)

(�1 − �2)(�1 − �3)
= 2

(
� − 1

2

)
(� − 1)

L2 = (� − �1)(� − �3)

(�2 − �1)(�2 − �3)
= −4�(� − 1)

L3 = (� − �1)(� − �2)

(�3 − �1)(�3 − �2)
= 2�

(
� − 1

2

)

For the natural coordinate system with the origin at the center, we obtain

L1 = 1

2
�(� − 1), L2 = 1 − �2, L3 = 1

2
�(� + 1)

which are identical to (9.2.8), the results one would expect to obtain.

The interpolation functions derived using the natural coordinates are convenient to

generate multidimensional element interpolation functions by means of tensor products

as shown in Section 9.3.2.

9.2.3 HERMITE POLYNOMIAL ELEMENTS

If continuity of the derivative of a variable at common nodes is desired, one efficient

way of assuring this continuity is to use the Hermite polynomials. For a one-dimensional

element with two end nodes, the development of Hermite polynomials for a variable u
begins with

u = �1 + �2� + �3�2 + �4�3

We write the nodal equations for u(�) and du(�)/d� at two end nodes and evaluate the

constants to obtain

u(e)(�) = H0
N(�)u(e)

N + H1
N(�)

(
∂u
∂�

)(e)

N
(N = 1, 2) (9.2.12a)

or

u(e)(�) = �(e)
r Qr (r = 1, 2, 3, 4) (9.2.12b)

where the Hermite polynomials have the properties [see Hildebrand, 1956]

H0
N(�M) = �NM,

d
d�

H1
N(�M) = �NM

Here H0
N(�) and H1

N(�), which are now used as the finite element interpolation functions,
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or
3∑

N=1

xNi = 0 (N = 1, 2, 3, i = 1, 2)

with xN1 = xN and xN2 = yN. If this triangle is identified from the global rectangular

cartesian coordinates (Xi ) with their origin outside the triangle, we note that the fol-

lowing relationships hold:

x1 = X1 − 1

3
(X1 + X2 + X3)

x2 = X2 − 1

3
(X1 + X2 + X3)

...

y3 = Y3 − 1

3
(Y1 + Y2 + Y3)

Or, combining these equations, we write

xNi = XNi − 1

3

3∑
N=1

XNi (N = 1, 2, 3, i = 1, 2) (9.3.1)

Now consider the polynomial expansion of a variable u(e) in the form

u(e) = �1 + �2x + �3 y (9.3.2)

This represents a linear variation of u in both x and y directions within the triangular

element. To evaluate the three constants �1, �2, and �3, we must provide three equations

in terms of the known values of u, x, and y at each of the three nodes.

u(e)

1 = �1 + �2x1 + �3 y1

u(e)
2 = �1 + �2x2 + �3 y2

u(e)
3 = �1 + �2x3 + �3 y3

Writing in a matrix form, we obtain⎡
⎢⎢⎢⎣

u(e)

1

u(e)
2

u(e)
3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎥⎦

⎡
⎢⎣

�1

�2

�3

⎤
⎥⎦ (9.3.3)

Solving for the constants and substituting them into (9.3.2) gives

u(e) = [
1 x y

] ⎡
⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎥⎦

−1
⎡
⎢⎢⎢⎣

u(e)

1

u(e)
2

u(e)
3

⎤
⎥⎥⎥⎦

= (a1 + b1x + c1 y)u(e)

1 + (a2 + b2x + c2 y)u(e)
2 + (a3 + b3x + c3 y)u(e)

3

= �
(e)

1 u(e)

1 + �
(e)
2 u(e)

2 + �
(e)
3 u(e)

3
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or

u(e) = �
(e)
N u(e)

N (N = 1, 2, 3)

where the interpolation function �
(e)
N is given by

�
(e)
N = aN + bNx + cN y (9.3.4)

a1 = 1

|D| (x2 y3 − x3 y2) a2 = 1

|D| (x3 y1 − x1 y3) a3 = 1

|D| (x1 y2 − x2 y1) (9.3.4a)

b1 = 1

|D| (y2 − y3) b2 = 1

|D| (y3 − y1) b3 = 1

|D| (y1 − y2) (9.3.4b)

c1 = 1

|D| (x3 − x2) c2 = 1

|D| (x1 − x3) c3 = 1

|D| (x2 − x1) (9.3.4c)

with

|D| = det

⎡
⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎥⎦ = 2A

where Adenotes the area of triangle.

Note that the node numbers 1, 2, 3, are assigned counterclockwise in Figure 9.3.1.

If assigned clockwise, however, it is seen that the determinant |D| yields −2A, twice

the negative area. Observe that the fundamental requirements of the interpolation

functions for one dimension,

3∑
N=1

�
(e)
N = 1, 0 ≤ �

(e)
N ≤ 1, �

(e)
N (zM) = �NM

are also established in this case in two dimensions.

In view of (9.3.1) and (9.3.4a), we note that

a1 = 1

2A
(x2 y3 − x3 y2)

= 1

2A

{(
X2 − 1

3

3∑
N=1

XN

) (
Y3 − 1

3

3∑
N=1

YN

)
−

(
X3 − 1

3

3∑
N=1

XN

)

×
(

Y2 − 1

3

3∑
N=1

YN

)}

=
(

1

2A

)
1

3

∣∣∣∣∣∣
1 X1 Y1

1 X2 Y2

1 X3 Y3

∣∣∣∣∣∣ =
(

1

2A

)
2A
3

= 1

3

Similarly, we may prove that a1 = a2 = a3 = 1/3.

If the variable u is assumed to vary quadratically or cubically, then we require ad-

ditional nodes along the sides and possibly at the interior. The evaluation of constants

would require an inversion of a matrix of the size corresponding to the total number of
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derived from a triangle with the origin on the side between nodes 1 and 2 designated

as the x-axis with the y-axis passing through node 3 as shown in Figure 9.3.2b. In this

triangle, we obtain the integration formula as follows:∫∫
xrysdxdy =

∫ c

0

∫ a
c (c−y)

− b
c (c−y)

xrysdxdy

=
∫ c

0

1

r + 1
[xr+1]

a
c (c−y)

− b
c (c−y)

ysdy

= 1

r + 1

ar+1 − (−b)r+1

cr+1

∫ c

0

(c − y)r+1 ysdy

...

= r !s!

(s + r + 2)!

[
ar+1 − (−b)r+1

]
cs+1 (9.3.6)

The triangular element characterized by (9.3.6) is effective in the solution of fourth

order differential equations [Cowper, et al., 1969].

Example 9.3.1 Local Element Stiffness Matrix

Given: Consider the local element stiffness matrix which arises from the two-

dimensional Laplace equation ∇2u = 0 in the form

K(e)
NM =

∫∫ (
∂�

(e)
N

∂x
∂�

(e)
M

∂x
+ ∂�

(e)
N

∂y
∂�

(e)
M

∂y

)
dxdy

Required: Determine the explicit form of the above expression in a linear triangular

element using the interpolation functions given by (9.3.4).

Solution: Using the formula given by (9.3.3), we obtain

∂�
(e)
N

∂x
∂�

(e)
M

∂x
= bNbM,

∂�
(e)
N

∂y
∂�

(e)
M

∂y
= cNcM

Since the area of the triangle is given by∫∫
dxdy = A

the local element stiffness matrix becomes

K(e)
NM = A(bNbM + cNcM) = A

⎡
⎢⎢⎣

b2
1 + c2

1 b1b2 + c1c2 b1b3 + c1c3

b2b1 + c2c1 b2
2 + c2

2 b2b3 + c2c3

b3b1 + c3c1 b3b2 + c3c2 b2
3 + c2

3

⎤
⎥⎥⎦

where bN and cN are explicitly shown by (9.3.4b) and (9.3.4c), respectively. The cartesian

coordinate triangular element is simple to use as long as the interpolation function is

linear. It is cumbersome for nonlinear interpolation functions with n = r + s > 5 in

(9.3.5). Notice that the element characterized by the integration formula (9.3.6) is free

from this restriction.
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for side nodes:

�
(e)
4 = 9

2
L1L2(3L1 − 1) �

(e)
7 = 9

2
L2L3(3L3 − 1)

�
(e)

5 = 9

2
L1L2(3L2 − 1) �

(e)
8 = 9

2
L3L1(3L3 − 1)

�
(e)

6 = 9

2
L2L3(3L2 − 1) �

(e)
9 = 9

2
L3L1(3L1 − 1)

for interior node:

�
(e)

10 = 27L1L2L3 (9.3.18)

It has been shown that the determination of the interpolation functions for the

natural coordinate triangular element can be accomplished quite easily by noting the

special geometrical features that make it possible to avoid the inversion.

An additional feature, which should be noted, is the fact that the Lagrange inter-

polation formula can be used to generalize the procedure. Consider the higher or-

der elements as depicted in Figure 9.3.6. The Lagrange interpolation formula may be
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Figure 9.3.6 High order natural coordinate elements. (a) Quadratic

(m = 2); (b) cubic (m = 3); (c) quartric (m = 4); (d) quintic (m = 5).
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transformed to natural coordinates by

B(r)(LN) =

⎧⎪⎨
⎪⎩

s=d∏
s=1

1

s
(mLN − s + 1) for d ≥ 1

1 for d = 0

(9.3.19)

with d = mL(r)
N . Here m denotes the degree of approximations and L(r)

N (N = 1, 2, 3,

r = 1, 2, . . . , n, n = total number of nodes) represents the values of area coordinates at

each node. The interpolation functions are given by

�(e)
r = B(r)(L1)B(r)(L2)B(r)(L3) (9.3.20)

To determine �
(e)

1 , we write (for m = 2)

�
(e)

1 = B(1)(L1)B(1)(L2)B(1)(L3)

B(1)(L1) = (2L1 − 1 + 1)
1

2
(2L1 − 2 + 1)

B(1)(L2) = 1

B(1)(L3) = 1

Thus,

�
(e)

1 = L1(2L1 − 1)

The interpolation functions corresponding to other nodes may be obtained similarly, and

we note that the results are identical to those derived from the polynomial expansions.

The finite element application of the triangular natural coordinates involves inte-

gration of a typical form

I =
∫

A
f (L1, L2, L3)dA (9.3.21)

Referring to Figure 9.3.7, the differential area dA is given by

dA= (dh)(dH)

sin �
= (hdL2)(HdL1)

sin �
= 2AdL1dL2

The limits of integration for L1 and L2 are 0 to 1 and 0 to 1 − L1, respectively. Thus,

I = 2A
∫ 1

0

∫ 1−L1

0

f (L1, L2, L3)dL1dL2 (9.3.22)

where the function f may occur in the form

f (L1, L2, L3) = Lm
1 Ln

2 Lp
3 (9.3.23)

with m, n, p being the arbitrary powers. In view of (9.3.22) and (9.3.23), we have

I = 2A
∫ 1

0

∫ 1−L1

0

Lm
1 Ln

2 Lp
3 dL1dL2

or

I = 2A
∫ 1

0

JLm
1 dL1 (9.3.24)
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9.3.2 RECTANGULAR ELEMENTS

If the entire domain of study is rectangular, it is more efficient to use rectangular el-

ements rather than triangular elements. Consider a domain with a rectangular mesh.

The mesh can also be generated using triangular elements with sides forming diago-

nals passed through each rectangle. This, of course, results in twice as many elements.

That such a system of refined meshes with triangles does not necessarily provide more

accurate results is well known. A simple explanation is that the additional node in

the rectangular element leads to additional degrees of freedom or constants that may

be specified at all nodes of an element, which contributes to more precise or adequate

representation of a variable across the element than in the triangular element having

an area equal to the rectangular element.

Cartesian Coordinate Elements

To construct interpolation functions for a rectangular element, one might be tempted

to use a polynomial expansion in terms of the standard cartesian coordinates.

u(e) = �1 + �2x + �3 y + �4xy + . . . (9.3.28)

The necessary terms of polynomials corresponding to the side and interior nodes, as

well as the corner nodes as related to the degrees of approximations of a variable, must

be chosen wisely. Polynomials are often incomplete for the desired inclusion of side and

interior nodes. Furthermore, the inverses of coefficient matrices may not exist in some

cases. The natural coordinates, on the other hand, usually provide an efficient means

of obtaining acceptable forms of the interpolation functions. Lagrange and Hermite

polynomials, as discussed in the one-dimensional case, are also frequently used for the

rectangular elements. A special element popularly known as an isoparametric element

is perhaps the most widely adopted. Among the many desirable features of the isopara-

metric element is the fact that it may be used not only for the rectangular geometry but

also for irregular quadrilateral geometries.

Lagrange and Hermite Elements

The advantage of using Lagrange or Hermite elements for a rectangular element is

that desired interpolation functions are constructed simply by a tensor product of the

one-dimensional counterparts for the x and y directions, respectively.

Consider the Lagrange interpolations in two dimensions, as shown in Figure 9.3.8.

For a linear variation of u (Figure 9.3.8a), we write

u(e) = �
(e)
N u(e)

N (N = 1, 2, 3, 4) (9.3.29)

with

�
(e)

1 = L(x)

1 L(y)

1 , �
(e)
2 = L(x)

2 L(y)

1 , �
(e)
3 = L(x)

2 L(y)
2 and �

(e)
4 = L(x)

1 L(y)
2

where

L(x)

1 = 1

2
(1 − �), L(x)

2 = 1

2
(1 + �), L(y)

1 = 1

2
(1 − �),

L(y)
2 = 1

2
(1 + �), � = 2x

a
, � = 2y

b
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and

Q1 = u(e)

1 Q5 = u(e)
2 Q9 = u(e)

3 Q13 = u(e)
4

Q2 =
(

∂u
∂�

)(e)

1

Q6 =
(

∂u
∂�

)(e)

2

Q10 =
(

∂u
∂�

)(e)

3

Q14 =
(

∂u
∂�

)(e)

4

Q3 =
(

∂u
∂�

)(e)

1

Q7 =
(

∂u
∂�

)(e)

2

Q11 =
(

∂u
∂�

)(e)

3

Q15 =
(

∂u
∂�

)(e)

4

Q4 =
(

∂2u
∂�∂�

)(e)

1

Q8 =
(

∂2u
∂�∂�

)(e)

2

Q12 =
(

∂2u
∂�∂�

)(e)

3

Q16 =
(

∂2u
∂�∂�

)(e)

4

(9.3.30c)

H0
1(x) = 1 − 3�2 + 2�3 H0

1(y) = 1 − 3�2 + 2�3

H0
2(x) = 3�2 − 2�3 H0

2(y) = 3�2 − 2�3

H1
1(x) = � − 2�2 + �3 H1

1(y) = � − 2�2 + �3

H1
2(x) = �3 − �2 H1

2(y) = �3 − �2

(9.3.30d)

Note that, because of the combinations of the Hermite polynomials for both x and y
directions, the mixed second derivatives must be included as nodal generalized

coordinates. Higher order Hermite polynomials may be constructed similarly using

(9.2.14).

A similar approach can be used to generate three-dimensional elements �
(e)

1 =
L(x)

1 L(y)
2 L(z)

3 , etc. for Lagrange elements and similarly for Hermite elements. However,

it should be noted that for nonorthogonal elements (arbitrary quadrilateral and hexa-

hedral), appropriate coordinate transformation (geometrical Jacobian) will be required

as discussed in the following section.

9.3.3 QUADRILATERAL ISOPARAMETRIC ELEMENTS

The isoparametric element was first studied by Zienkiewicz and his associates [see

Zienkiewicz, 1971]. The name “isoparametric” derives from the fact that the “same”

parametric function which describes the geometry may be used for interpolating

spatial variations of a variable within an element. The isoparametric element utilizes

a nondimensionalized coordinate and therefore is one of the natural coordinate

elements.

Consider an arbitrarily shaped quadrilateral element as shown in Figure 9.3.10. The

isoparametric coordinates (�, �) whose values range from 0 to ± 1 are established at the

centroid of the element. The reference cartesian coordinates (x, y) are related to

x, y = �1 + �2� + �3� + �4�� (9.3.31)

for the two-dimensional linear element in Figure 9.3.10. A linear variation of a variable

u may also be written as

u(e) = �1 + �2� + �3� + �4�� (9.3.32)
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with � = �1, � = �2, x = x1, and y = x2. From the chain rule of calculus, we write

∂ f
∂�

= ∂ f
∂x

∂x
∂�

+ ∂ f
∂y

∂y
∂�

∂ f
∂�

= ∂ f
∂x

∂x
∂�

+ ∂ f
∂y

∂y
∂�

(9.3.44)

or in a matrix form⎡
⎢⎢⎣

∂ f
∂�

∂ f
∂�

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂x
∂�

∂y
∂�

∂x
∂�

∂y
∂�

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂ f
∂x
∂ f
∂y

⎤
⎥⎥⎦

Thus,⎡
⎢⎢⎣

∂ f
∂x
∂ f
∂y

⎤
⎥⎥⎦ = [J ]−1

⎡
⎢⎢⎣

∂ f
∂�

∂ f
∂�

⎤
⎥⎥⎦ (9.3.45)

where J is called the Jacobian given by

[J ] =

⎡
⎢⎢⎣

∂x
∂�

∂y
∂�

∂x
∂�

∂y
∂�

⎤
⎥⎥⎦ (9.3.46)

Here the derivatives ∂ f/∂x or ∂ f/∂y are determined from the inverse of the Jacobian

and the derivatives ∂ f/∂� and ∂ f/∂�. The integration over the domain referenced to the

cartesian coordinates must be changed to the domain now referenced to the isopara-

metric coordinates∫∫
dxdy =

∫ 1

−1

∫ 1

−1

|J |d�d� (9.3.47)

To prove (9.3.47), we consider the two coordinate systems shown in Figure 9.3.13.

The directions of the cartesian coordinates and the arbitrary nonorthogonal (possibly

curvilinear) isoparametric coordinates are given by the unit vectors i1, i2, and the tangent

vectors g1, g2, respectively, related by

g1 = ∂x
∂�

i1 + ∂y
∂�

i2

g2 = ∂x
∂�

i1 + ∂y
∂�

i2

The differential area (shaded) is

dx i1 × dy i2 = dxdy i3 = g1d� × g2d� =

∣∣∣∣∣∣∣∣∣∣∣

i1 i2 i3

∂x
∂�

∂y
∂�

0

∂x
∂�

∂y
∂�

0

∣∣∣∣∣∣∣∣∣∣∣
d�d�
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Table 9.3.1 Abscissae and Weight Coefficients

of the Gaussian Quadrature Formula

Weight Coefficient Abscissae

N Wk ± �k., ± �k

2 1.00000 00000 0.57735 02691

3 0.55555 55555 0.77459 66692

0.88888 88888 0.00000 00000

4 0.34785 48451 0.86113 63115

0.65214 51548 0.33998 10435

5 0.23692 68850 0.90617 98459

0.47862 86704 0.53846 93101

0.56888 88888 0.00000 00000

6 0.17132 44923 0.93246 95142

0.36076 15730 0.66120 93864

0.46791 39345 0.23861 91860

7 0.12948 49661 0.94910 79123

0.27970 53914 0.74153 11855

0.38183 00505 0.40584 51513

0.41795 91836 0.00000 00000

8 0.10122 85362 0.96028 98564

0.22238 10344 0.79666 64774

0.31370 66458 0.52553 24099

0.36268 37833 0.18343 46424

9 0.08127 43883 0.96816 02395

0.18064 81606 0.83603 11073

0.26061 06964 0.61336 14327

0.31234 70770 0.32425 34234

0.33023 93550 0.00000 00000

10 0.06667 13443 0.97390 65285

0.14945 13491 0.86506 33666

0.21908 63625 0.67940 95682

0.26926 67193 0.43339 53941

0.29552 42247 0.14887 43389

are shown in Table 9.3.1. In general, accuracy of integration increases with an increase

of Gaussian points, but it can be shown that only a very few Gaussian points may

lead to an acceptable accuracy. The basic idea of Gaussian quadrature is shown in

Appendix B.

The Gaussian quadrature numerical integration may be easily extended to the three-

dimensional element. Extension of the Gaussian quadrature integration to the triangu-

lar or tetrahedral elements are also possible with some modification of the procedure.

Example 9.3.2 Stiffness Matrix of an Isoparametric Element

Given:

K(e)
NM =

∫∫ (
∂�

(e)
N

∂x
∂�

(e)
M

∂x
+ ∂�

(e)
N

∂y
∂�

(e)
M

∂y

)
dxdy
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with

�
(e)
N = 1

4
(1 + �N1�1)(1 + �N2�2)

xi = �
(e)
N xNi = 1

4
(ai + bi �1 + ci �2 + di �1�2)

ai = x1i + x2i + x3i + x4i , bi = −x1i + x2i + x3i − x4i

ci = −x1i − x2i + x3i + x4i , di = x1i − x2i + x3i − x4i

∂�
(e)
N

∂xi
= (Jik)−1 ∂�

(e)
N

∂�k
= 1

8|J |
(

ANi + Bk
Ni �k

)
, (i, k = 1, 2)

with

A11 = x22 − x42, B1
11 = x42 − x32, B2

11 = x32 − x22

A21 = x32 − x12, B1
21 = x32 − x42, B2

21 = x12 − x42

A31 = x42 − x22, B1
31 = x12 − x22, B2

31 = x42 − x12

A41 = x12 − x32, B1
41 = x22 − x12, B2

41 = x22 − x32

A12 = x41 − x21, B1
12 = x31 − x41, B2

12 = x21 − x31

A22 = x11 − x31, B1
22 = x41 − x31, B2

22 = x41 − x11

A32 = x21 − x41, B1
32 = x21 − x11, B2

32 = x11 − x41

A42 = x31 − x11, B1
42 = x11 − x21, B2

42 = x31 − x21

|J | = ∂x1

∂�1

∂x2

∂�2

− ∂x2

∂�1

∂x1

∂�2

= 1

8
(�0 + �1�1 + �2�2)

�0 = (x41 − x21)(x12 − x32) − (x11 − x31)(x42 − x22)

�1 = (x31 − x41)(x12 − x22) − (x11 − x21)(x32 − x42)

�2 = (x41 − x11)(x22 − x32) − (x21 − x31)(x42 − x12)

where

x22 − x42 = y2 − y4, x11 − x31 = x1 − x3, etc.

∂�
(e)
N

∂x1

= 1

8|J |
(

AN1 + Bk
N1�k

) = CN1,
∂�

(e)
N

∂x2

= 1

8|J |
(

AN2 + Bk
N2�k

) = CN2

If we chose n = 3, then from Table 9.3.1 we have

w1 = 0.55555555, w2 = 0.88888888, w3 = 0.55555555

(�1, �1) = −0.77459666, (�2, �2) = 0.0, (�3, �3) = 0.77459666

We are now prepared to calculate

K(e)
NM =

n∑
i=1

n∑
j=1

wiw j kNM(�i , � j )

where

kNM(�i ,�j ) = (CN1CM1 + CN2CM2)|J |
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Thus,

K(e)
NM =

⎡
⎢⎢⎣

0.5449 −0.2773 −0.1035 −0.1640

−0.2773 0.8771 0.1380 −0.7377

−0.1035 0.1380 0.6378 −0.6723

−0.1640 −0.7377 −0.6723 1.5740

⎤
⎥⎥⎦

Similarly,

for n = 4

K(e)
NM =

⎡
⎢⎢⎣

0.5457 −0.2776 −0.1026 −0.1655

−0.2776 0.8771 0.1377 −0.7372

−0.1026 0.1377 0.6390 −0.6741

−0.1655 −0.7372 −0.6741 1.5768

⎤
⎥⎥⎦

for n = 5

K(e)
NM =

⎡
⎢⎢⎣

0.5457 −0.2776 −0.1025 −0.1656

−0.2776 0.8771 0.1376 −0.7372

−0.1025 0.1376 0.6391 −0.6742

−0.1656 −0.7372 −0.6742 1.5770

⎤
⎥⎥⎦

We notice that an asymptotic convergence is evident as the Gaussian integration point

n increases from 3 to 5.

Example 9.3.3 Transition from Linear to Quadratic Element

Figure E9.3.3 presents irregular elements with transition from a linear element to a

quadratic element. In this case, side (1-5-2) is quadratic for the element (e = 1). Element 2

is fully quadratic, whereas element 1 is partially linear and partially quadratic. Interpo-

lation functions for element 1 can be derived by constructing tensor products as follows:

�
(e)

1 = L(2)

1 (�)L(1)

1 (�) = 1

4
�(� − 1)(1 − �)

�
(e)
2 = L(2)

3 (�)L(1)

1 (�) = 1

4
�(� + 1)(1 − �)

�
(e)
3 = L(1)

2 (�)L(1)
2 (�) = 1

4
(1 + �)(1 + �)

�
(e)
4 = L(1)

1 (�)L(1)
2 (�) = 1

4
(1 − �)(1 + �)

�
(e)

5 = L(2)
2 (�)L(1)

1 (�) = 1

2
(1 − �2)(1 − �)

where the superscripts (1) and (2) for Lagrange polynomials denote linear and quadratic

functions, respectively.

Example 9.3.4 Irregular Elements with an Irregular Node

Consider the irregular elements that may occur in the process of refinements as seen

in Figure E9.3.4. All elements are to be approximated linearly. Interpolation functions
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η

ξ

1 2

3
4

5

)(
1
eΦ )(

2
eΦ )(

3
eΦ

)(
4
eΦ )(

5
eΦ

1=e

2=e Fully quadratic

Partially linear and
partially quadratic

Figure E9.3.3 Five-node quadrilateral element, transition from linear to

quadratic element.

are as follows:

�
(e)

1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

4
(1 − �)(1 − �) � > −1

−� � = −1, −1 ≤ � ≤ 0

0 � = −1, 0 ≤ � ≤ 1

�
(e)
2 =

⎧⎪⎪⎨
⎪⎪⎩

1
4
(1 + �)(1 − �) � > −1

� � = −1, 0 ≤ � ≤ 1

0 � = −1, −1 ≤ � ≤ 0

�
(e)
3 = 1

4
(1 + �)(1 + �)

�
(e)
4 = 1

4
(1 − �)(1 + �)
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η

ξ

1 2

3
4

5

)(
1
eΦ )(

2
eΦ )(

3
eΦ

)(
4
eΦ )(

5
eΦ

Figure E9.3.4 Irregular elements with irregular node which may occur in

the refinement process, all elements are linear.

�
(e)

5 =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(1 − �)(1 − �) � > 0

1

2
(1 + �)(1 − �) � ≤ 0

Here �
(e)

5 for the midside node (hanging node) may be eliminated by readjusting the

corner node functions, as is usually the case in adaptive mesh refinement methods (see

Chapter 19).

Example 9.3.5 Collapse of Quadrilateral to Triangle

A quadrilateral element may be collapsed into a triangle by combining two of the

quadrilateral nodes into one (Figure E9.3.5), as follows:

u(e) = �
(e)

1 u(e)

1 + �
(e)
2 u(e)

2 + �
(e)
3 u(e)

3 + �
(e)
4 u(e)

4

Equating u(e)
4 = u(e)

3 we have for the triangle

u(e) = �
(e)

1 u(e)

1 + �
(e)
2 u(e)

2 + (
�

(e)
3 + �

(e)
4

)
u(e)

3 = �
(e)

1 u(e)

1 + �
(e)
2 u(e)

2 + �
(e)

3 u(e)
3
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Figure 9.4.1 Tetrahedral element (cartesian coordinate): (a) linear variation,

(b) quadratic variation, (c) cubic variation.

where

�
(e)
N = aN + bNx + cN y + dNz (9.4.3)

For N = 1, the coefficients a1, b1, c1, d1 are of the form

a1 =
∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣
1

|D| , b1 = −

∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣
1

|D|

c1 =

∣∣∣∣∣∣∣
1 x2 z2

1 x3 z3

1 x4 z4

∣∣∣∣∣∣∣
1

|D| , d1 = −

∣∣∣∣∣∣∣
1 x2 y2

1 x3 y3

1 x4 y4

∣∣∣∣∣∣∣
1

|D| (9.4.4)

|D| =

∣∣∣∣∣∣∣∣∣

1 x11 x12 x13

1 x21 x22 x23

1 x31 x32 x33

1 x41 x42 x43

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣
= 6V (9.4.5)

where V is the volume of the tetrahedron. The rest of the coefficients can be determined

similarly.
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Figure 9.4.2 Tetrahedral element (natural volume, or tetrahedral coordinates):

(a) linear variation; (b) quadratic variation; (c) cubic variation.

For higher order approximations, the coefficient matrix becomes very large in size

and a resort to natural coordinates is inevitable. The most suitable choice is the volume

coordinate system extended from the area coordinates for a two-dimensional triangular

element.

If the three-dimensional natural coordinates (tetrahedral or volume coordinates)

are used, a node having the coordinate of one decreases to zero as it moves to the

opposite triangular surface formed by the rest of the nodes (Figure 9.4.2). For the linear

element (Figure 9.4.2a), the interpolation functions are

�
(e)
N = LN (N = 1, 2, 3, 4) (9.4.6)

For higher order interpolations (Figure 9.4.2b,c), we invoke a formula similar to (9.3.20),

�(e)
r = B(r)(L1)B(r)(L2)B(r)(L3)B(r)(L4) (9.4.7)

where B(r)(LN) is given by (9.3.19). This provides the following results:

For quadratic variation (Figure 9.4.2b):

at corner nodes:

�
(e)
N = (2LN − 1)LN
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and tetrahedral elements are used. It is also convenient for the structured automatic

grid generation.

9.4.2 TRIANGULAR PRISM ELEMENTS

It is possible to extend the tetrahedral element into triangular prism elements as shown

in Figure 9.4.4. Note that triangular shapes may be completely arbitrary with the curvilin-

ear coordinates �, �, � being distorted. Interpolation functions for linear and quadratic

approximations are given as follows:

Linear (6 nodes)

�
(e)

1 = L1(1 + �)

2
, �

(e)
2 = L2(1 + �)

2
, �

(e)
3 = L3(1 + �)

2
(9.4.9a,b,c)

�
(e)
4 = L1(1 − �)

2
, �

(e)

5 = L2(1 − �)

2
, �

(e)

6 = L3(1 − �)

2
(9.4.9d,e,f)

Quadratic (15 nodes)

Corner nodes

�
(e)

1 = 1

2
L1(2L1 − 1)�(� + 1)

�
(e)
2 = 1

2
L2(2L2 − 1)�(� + 1)

�
(e)
3 = 1

2
L3(2L3 − 1)�(� + 1) (9.4.10a,b,c)

�
(e)
4 = 1

2
L1(2L1 − 1)�(� − 1)

�
(e)

5 = 1

2
L2(2L2 − 1)�(� − 1)

�
(e)

6 = 1

2
L3(2L3 − 1)�(� − 1) (9.4.10d,e,f)

(b)(a)
 

1

2
4

5

6

3

L2(1,-1,-1)

L3(-1,-1,0)

L3(-1,1,0)

L1(1,-1,1)

L2(1,1,1)

L2(1,1,-1)

(0,0,0)

η

ξ

ζ

1

12 3

9

6

14

5

13

4

7

10 15

8

11

2

ξ

ζ

η

Figure 9.4.4 Triangular prism elements: (a) linear (6 nodes), (b) quadratic (15 nodes).
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Midsides of Triangle

�
(e)

10 = 2L1L2�(� + 1), �
(e)

11 = 2L2L3�(� + 1), �
(e)

12 = 2L1L3�(� + 1) (9.4.11a,b,c)

�
(e)

13 = 2L1L2�(� − 1), �
(e)

14 = 2L2L3�(� − 1), �
(e)

15 = 2L1L3�(� − 1) (9.4.11d,e,f)

Midsides of Quadrilateral

�
(e)
7 = L1(1 − �2), �

(e)
8 = L2(1 − �2), �

(e)
9 = L3(1 − �2) (9.4.12a,b,c)

9.4.3 HEXAHEDRAL ISOPARAMETRIC ELEMENTS

The four-sided two-dimensional elements may be extended to three-dimensional el-

ements (Figure 9.4.5). The rectangular and arbitrary quadrilateral elements are de-

veloped into a regular hexahedron (brick) and irregular hexahedron. For a regular

hexahedron, we may use either the Lagrange or Hermite element, but this becomes

cumbersome as higher order approximations must include interior and surface nodes

as well as corner and side nodes. Besides, neither may be applicable for irregular hex-

ahedrons. An element which is free from these disadvantages is the isoparametric

element.

In the isoparametric element for a linear variation of the geometry and variable, we

write (see Figure 9.4.5a)

x, y, z = �1 + �2� + �3� + �4� + �5��� + �6�� + �7�� + �8�� (9.4.13)

Using the same procedure as in the two-dimensional element, we obtain

�
(e)
N = 1

8
(1 + �N1�1)(1 + �N2�2)(1 + �N3�3) (9.4.14)

For a quadratic variation (Figure 9.4.4b), we have

x, y, z = �1 + �2� + �3� + �4� + �5��� + �6�� + �7�� + �8��

+ �9�2 + �10�2 + �11� 2 + �12�2� + �13��2 + �14�2� + �15�� 2

+ �16�2� + �17�� 2 + �18�2�ς + �19��2ς + �20��ς2 (9.4.15)

The interpolation functions are:

at corner nodes :

�
(e)
N = 1

8
(1 + �N1�1)(1 + �N2�2)(1 + �N3�3)(�N1�1 + �N2�2 + �N3�3 − 2) (9.4.16a)

at midside nodes :

�
(e)
N = 1

4

(
1 − �2

1

)
(1 + �N2�2)(1 + �N3�3) (9.4.16b)

for

�N1 = 0, �N2 = ± 1, �N3 = ± 1, etc.
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two-dimensional case, we obtain∫∫∫
∂ f
∂x

dxdydz =
∫ 1

−1

∫ 1

−1

∫ 1

−1

(
J 11

∂ f
∂�

+ J 12

∂ f
∂�

+ J 13

∂ f
∂�

)
|J |d�d�d�

=
∫ 1

−1

∫ 1

−1

∫ 1

−1

g(�, �, �)d�d�d� (9.4.18)

where J 11, J 12, and J 13 are the first row of the 3 × 3 inverted Jacobian matrix

[J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x
∂�

∂y
∂�

∂z
∂�

∂x
∂�

∂y
∂�

∂z
∂�

∂x
∂�

∂y
∂�

∂z
∂�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We may carry out differentiations of f with respect to y and z similarly, and write the

general form of integration as follows:∫ 1

−1

∫ 1

−1

∫ 1

−1

g(�, �, �)d�d�d� =
n∑

i=1

n∑
j=1

n∑
k=1

wiw jwkg(�i , �j , �k) (9.4.19)

The weight coefficients wi , w j , wk, and the abscissae g(�i , �j , �k) are obtained from

Table 9.3.1 as a tensor product in three directions. A procedure similar to Example 9.3.1

may be followed for three dimensions to perform Gaussian quadrature integrations.

9.5 AXISYMMETRIC RING ELEMENTS

If the three-dimensional domain of study is axisymmetric, then any two-dimensional

element may be used with the spatial integral replaced by∫∫∫
f (x, y, z)dxdydz =

∫ 2�

0

∫∫
f (r, z)rd�drdz (9.5.1)

where dx = dr, dy = rd�, and dz = dz (see Figure 9.5.1). For quadrilateral isoparamet-

ric elements, we have∫ 2�

0

∫ 1

−1

∫ 1

−1

f (�, �)rd�|J |d�d� = 2�

∫ 1

−1

∫ 1

−1

f (�, �)r(�, �)|J |d�d�

or

2�

∫ 1

−1

∫ 1

−1

g(�, �)d�d� = 2�
n∑

j=1

n∑
k=1

w jwkg(� j , �k) (9.5.2)

This represents a three-dimensional ring element generated by a two-dimensional

element.

Note that the applications arise in the flowfields of missiles and rockets at zero angle

of attack. For a nonzero angle of attack, the flowfields become asymmetric. In this case,

the axisymmetric ring element can no longer be used and three-dimensional elements

must be invoked instead. Another alternative is to keep the ring element and use Fourier
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integrands with derivatives of order m, we require Cm continuity within the domain (�)

and Cm−1 continuity across the boundary (�) in order to satisfy the convergence criteria

of (1) and (2), respectively.

Interpolation functions associated only with the variable(s) of the differential equa-

tion such as in Lagrange polynomials are known as the C◦ element, whereas those

with derivatives m are called the Cm elements. The Hermite polynomial interpolation

functions of (9.2.12a) are referred to as the C1 element.

The elements that satisfy both criteria (1) and (2) are known as conforming (com-

patible) elements. If these criteria are not satisfied, they are called nonconforming

(incompatible) elements. Nonconforming elements, however, are useful in fourth order

differential equations in which normal derivatives along the boundaries of C1 triangle

are specified.

The criterion (3) implies that complete polynomials as shown in Figures 9.1.4 through

9.1.6 be used, which cannot be met in many cases as the number of nodes to be provided

does not match the number of complete polynomials of a given degree. As long as the

symmetry of the polynomials is maintained, however, the convergence is, in general,

not affected.

9.7 SUMMARY

Although the standard textbooks on finite elements provide information presented in

this chapter, it was intended that a complete summary of finite element interpolation

functions serve as a counterpart of Chapter 3, Derivation of Finite Difference Equations,

as well as this text being self-contained and adequately balanced between FEM and

FDM.

It is clear now that, instead of writing finite difference approximations using as many

nodal points as necessary for desired order accuracy in FDM, we achieve similar ob-

jectives in FEM through interpolation functions. Instead of Taylor series expansions or

Pade approximations used in finite difference equations, we resort to polynomial ex-

pansion in finite element interpolation functions. Although not covered in this chapter,

special functions such as Chebyshev polynomials, Legendre polynomials, or Laguerre

polynomials have been used in association with spectral elements. This subject will be

discussed in Section 14.1.
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CHAPTER TEN

Linear Problems

In this chapter, we discuss procedures for obtaining finite element equations and their so-

lutions in linear two-dimensional boundary value problems. Implementations of bound-

ary conditions are detailed and example problems for steady and unsteady cases are

presented. Multivariable simultaneous partial differential equations and simple Stokes

flow problems are also included.

10.1 STEADY-STATE PROBLEMS – STANDARD GALERKIN METHODS

10.1.1 TWO-DIMENSIONAL ELLIPTIC EQUATIONS

We have illustrated procedures for constructing finite element equations for one-

dimensional problems in Chapters 1 and 8. Extension to two-dimensional cases fol-

lows the same general guidelines. The only difference is the appropriate interpolation

functions for two-dimensional geometries, specification of Neumann boundary condi-

tions, integration over the domain, and directional variables.

Consider the second order elliptic partial differential equation of the form,

R = ∇2u + f (x, y) = 0 in � (10.1.1)

As shown in Chapters 1 and 8, the Standard Galerkin Method (SGM) for (10.1.1) is the

inner product of the residual with the test function ��

(��, R) =
∫

�

��[u,i i + f (x, y)]d� = 0 (10.1.2)

Assuming that the variable u is approximated in the form

u = ��u� (10.1.3)

and integrating (10.1.2) by parts we obtain∫
�

∗
��u,i ni d� −

(∫
�

��,i��,i d�

)
u� +

∫
�

�� f (x, y)d� = 0

or

K��u� = F� + G� (10.1.4)

309
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where

Stiffness matrix K�� =
∫

�

��,i��,i d� (10.1.5a)

Source vector F� =
∫

�

�� f (x, y)d� (10.1.5b)

Neumann boundary vector G� =
∫

�

∗
��u,i ni d� (10.1.5c)

As we noted in the one-dimensional problem, the interpolation function originally de-

fined in the domain is now a function of boundary coordinate � in the boundary integral

G�, with
∗
�� indicating the dependency on �, not on �. It represents the interpolation

function describing the way the Neumann data u,i ni varies along the boundaries. Thus,

a suitable form for
∗
��(�) would be the one-dimensional linear interpolation function.

The global forms (10.1.5) can be obtained by the assembly of local forms similarly

as in the one-dimensional problems,

K�� =
E⋃

e=1

K(e)
NM�

(e)
N��

(e)
M� (10.1.6a)

F� =
E⋃

e=1

F (e)
N �

(e)
N� (10.1.6b)

G� =
E⋃

e=1

G(e)
N �

(e)
N� (10.1.6c)

where

K(e)
NM =

∫
�

�
(e)
N,i�

(e)
M,i d� (10.1.7a)

F (e)
N =

∫
�

�
(e)
N f (x, y)d� (10.1.7b)

G(e)
N =

∫
�

∗
�

(e)
N u,i ni d� (10.1.7c)

The source term f (x, y) and the Neumann data g(�) = u,i ni can be interpolated as

follows:

f (x, y) = ��(x, y) f�, f� = [ f (x, y)]� (10.1.8a)

g(�) = ∗
��(�)g�, g� = (u,i ni )� (10.1.8b)

These approximations allow the corresponding source term f (x, y) and the Neumann

data u,i ni to be entered directly to the particular node under consideration. Substituting

(10.1.8a) and (10.1.8b) into (10.1.5b) and (10.1.5c), respectively, we obtain

F� =
(∫

�

����d�

)
f� = C�� f� =

E⋃
e=1

C(e)
NM�

(e)
N��

(e)
M� f (e)

p �
(e)
p�

=
E⋃

e=1

C(e)
NM f (e)

M �
(e)
N� =

E⋃
e=1

F (e)
N �

(e)
N� (10.1.9)
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and similarly,

G� =
(∫

�

∗
� �

∗
� �d�

)
g� = ∗

C�� g� =
E⋃

e=1

G(e)
N �

(e)
N� (10.1.10)

where

F (e)
N = C(e)

NM f (e)
M (10.1.11)

G(e)
N = ∗

C
(e)
NM g(e)

M (10.1.12)

with

C(e)
NM =

∫
�

�
(e)
N �

(e)
M d� (10.1.13a)

∗
C

(e)
NM =

∫
�

∗
�

(e)
N

∗
�

(e)
M d� (10.1.13b)

For linear variations of u,i ni for a boundary element of length l,
∗
�

(e)
N = (1 − �/ l, �/ l),

the integration of (10.1.13b) gives the result,

∗
C

(e)
NM = l

6

[
2 1

1 2

]

It is clear that, regardless of the choice of the local finite elements for the domain,

whether triangular or quadrilateral, the boundary integral (10.1.13b) can remain

independent.

As shown in Section 8.2, the Neumann boundary data interpolation functions
∗
�

(e)
N

and
∗
� � are given by

∗
�

(e)
N = �

(
z∗(e)

N − z(e)
N

)
,

∗
�

(e)
N

(
z(e)

M

) = �NM

∗
�� = �(

∗
Z � − Z�),

∗
��(Z�) = ��� (10.1.14)

implying that
∗
�

(e)
N = 1 if the Neumann boundary condition is applied at the boundary

node N and zero, otherwise. This applies also to
∗
� �.

The significance and importance of (10.1.14) cannot be overemphasized. Re-

examine (10.1.5c), (10.1.6c), (10.1.7c), and (10.1.8b) in conjuction with (10.1.14). The

process through these relations indicates that the local Neumann data are passed along

across the local adjacent elements normal to the boundary surfaces to ensure the con-

tinuity of gradients or “energy balance” (incoming and outgoing normal gradients are

cancelled at element boundaries) until the domain edge boundaries are reached, where

the Neumann boundary conditions are applied and where the Neumann boundary

condition interpolation functions
∗
�

(e)
N and

∗
� � assume the value of unity if applied,

zero otherwise. Notice that this logic is established easily and clearly by having cons-

tructed the finite element equations in a global form from the beginning, called the

“global approach,” and by seeking the local element contributions in terms of the

Boolean matrix algebra afterward. This is contrary to the traditional approach to the

finite element formulations, from local to global, called the “local approach,” in which

the passage of Neumann data through element boundary surfaces cannot be defined
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Figure 10.1.1 Finite element discretization. (a) Global nodes; (b) Local nodes.

easily and automatically. The global approach presented here is in contrast to the finite

volume methods in which algebraic equations are generated by physically enforcing the

normal gradients across the local element boundary surfaces. The consequences of oper-

ations involved in both FEM and FVM, however, are analogous, with the conservation

properties maintained in both methods.

The assembly of local elements into a global form follows the same procedure as

in the one-dimensional case. To obtain the global matrices K�� and F�, let us consider

the two triangular elements in Figure 10.1.1. Although the expansion (10.1.6a) can be

performed by summing the repeated indices, we may show such operations by matrix

multiplications as follows:

First, we prepare the nodal correspondence table (Table 10.1.1) which indicates the

correspondence of the local node with the global node for all elements.

K�� =
E⋃

e=1

K(e)
NM�

(e)
N��

(e)
M�

=

⎡
⎢⎢⎣

0 0 1

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

K(1)

11 K(1)

12 K(1)

13

K(1)

21 K(1)
22 K(1)

23

K(1)

31 K(1)
32 K(1)

33

⎤
⎥⎥⎦

⎡
⎣ 0 1 0 0

0 0 1 0

1 0 0 0

⎤
⎦

+

⎡
⎢⎢⎣

0 0 0

0 1 0

1 0 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

K(2)

11 K(2)

12 K(2)

13

K(2)

21 K(2)
22 K(2)

23

K(2)

31 K(2)
32 K(2)

33

⎤
⎥⎥⎦

⎡
⎣ 0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎦

or

K�� =

⎡
⎢⎢⎣

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

K(1)
33 K(1)

31 K(1)
32 0

K(1)

13 K(1)

11 + K(2)
22 K(1)

12 + K(2)

21 K(2)
23

K(1)
23 K(1)

21 + K(2)

12 K(1)
22 + K(2)

11 K(2)

13

0 K(2)
32 K(2)

31 K(2)
33

⎤
⎥⎥⎥⎥⎦

(10.1.15a)
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Table 10.1.1 Nodal Correspondence Table

e ⇒ 1 2

N ⇓
1 2 3

2 3 2

3 1 4

∗ Entries indicate global node numbers corres-

ponding to the local nodes (see Figure 10.1.1)

Similarly,

F� =
E⋃

e=1

F (e)
N �

(e)
N�

or

F� =

⎡
⎢⎢⎣

F1

F2

F3

F4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

F (1)
3

F (1)

1 + F (2)
2

F (1)
2 + F (2)

1

F (2)
3

⎤
⎥⎥⎥⎥⎥⎦ (10.1.15b)

The procedure of assembly implied here requiring determination of Boolean ma-

trices for all elements is quite cumbersome. They are useful and convenient in deriving

finite element equations, but are useless in actual performance of assembly operations.

Thus, we should avoid Boolean matrices and implement a scheme that can handle com-

plex geometries with a simple algorithm. An intuitive and more convenient approach

is schematically shown below.

(10.1.15c)
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Similarly,

(10.1.15d)

Here, the node number with a circle indicates global node. It is seen that the as-

sembled global matrix is obtained by finding the appropriate entries from the local

matrices with the local node numbers replaced by the corresponding incident global

node numbers. For example, K(1)

11 of the first element goes to the second row and second

column in the global matrix because the local node 1 is incident with the global node 2.

Similarly, K(1)

12 enters in the second row and third column of the global matrix since

the global node number 2 is incident with the global node 3. All entries in the same

rows and columns are algebraically added together as we move to the second element.

The same procedure applies in order to obtain F�. In this way, we avoid the need to

construct the Boolean matrices, and the entire assembly procedure can be programmed

very efficiently.

The global load vector may be obtained more conveniently in the form

F� = C�� f�

in which only C�� is assembled from the local contributions with f� evaluated at global

nodes. This will be shown in Example 10.1.2. The assembly of the Neumann boundary

data G� and the method of implementation will be discussed in Section 10.1.2.

Example 10.1.1 Assembly of Two Triangular Elements

Given:

K(e)
NM =

∫∫ (
∂�

(e)
N

∂x
∂�

(e)
M

∂x
+ ∂�

(e)
N

∂y
∂�

(e)
M

∂y

)
dxdy

Required: Calculate K�� = ⋃E
e=1 K(e)

NM�
(e)
N��

(e)
M� by assembling two local linear trian-

gular elements (Figure E10.1.1) to a global form and compare the results with a single

isoparametric element of Example 9.3.2. for n = 4 and n = 5.

Solution:

K(e)
NM =

∫∫ (
∂�

(e)
N

∂x
∂�

(e)
M

∂x
+ ∂�

(e)
N

∂y
∂�

(e)
M

∂y

)
dxdy = A(bNbM + cNcM)
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Figure 10.1.2 Boundary conditions. (a) Dirichlet boundary conditions (u1 = u2 = u3 = 2,

u4 = u6 = u7 = u9 = u10 = u11 = u12 = 0). (b) Neumann boundary conditions.

That is, the global finite element equations are modified, reflecting the specified Dirichlet

data. For example, let us consider that the global finite element equations using either

triangular elements or quadrilateral elements have been obtained in the form

K��u� = F� + G� (10.1.16)

where we set G� = 0 because Neumann boundary conditions are not to be specified in

this case. Only Dirichlet data are furnished as shown in Figure 10.1.2a. We begin with

the assembled global equations,⎡
⎢⎢⎢⎢⎣

K11 K12 · · · K1 12

K21 K22 · · · K2 12

· · · · · ·· · · · · ·· · · · · ·
K12 1 K12 2 · · · K12 12

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

···
u12

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

F1

F2

···
F12

⎤
⎥⎥⎥⎥⎦ (10.1.17a)

Now, if we apply the Dirichlet boundary conditions in (10.1.17a) as given in Figure

10.1.2a, we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 K55 0 0 K58 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 K85 0 0 K88 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

F5

0

0

F8

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

2

2

0

−D5

0

0

−D8

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.1.17b)
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with D5 = K51(2) + K52(2) + K53(2) and D8 = K81(2) + K82(2) + K83(2). It is seen that

the rows and columns corresponding to the Dirichlet nodes are zero with unity at the

diagonal position. The influence of Dirichlet boundary conditions, as imposed here, is

reflected in the Dirichlet boundary vector D�, so that

K��u� = F� + D� (10.1.18)

where D� is given by the second column on the right-hand side with K�� as modified in

(10.1.17) from the given Dirichlet boundary conditions. It is obvious that, if there are

so many Dirichlet boundary nodes, then it is convenient to modify the above matrix

equations in the form[
K55 K58

K85 K88

] [
u5

u8

]
=

[
F5

F8

]
+

[−D5

−D8

]
(10.1.19)

in which all rows and columns corresponding to Dirichlet boundary nodes are elimi-

nated.

Neumann Boundary Conditions. Neumann boundary conditions are implemented using

the integral form of (10.1.5c) with the local contributions coming from adjacent elements

to the node at which Neumann data g(e)
M are prescribed in the form (10.1.8b),

g(e)
M = (u,i ni )M =

(
∂u
∂x

cos � + ∂u
∂y

sin �

)
M

(10.1.20)

as shown in Figure 10.1.2b with the normal angle � measured counterclockwise from

the axis.

Often in boundary value problems, there are instances in which the Dirichlet and

Neumann boundary conditions are combined at the same location. For example, con-

sider a heat conduction equation

k∇2T = 0

Here, for a resistance layer on the boundary, we specify

kT,i ni + �(T −T′) = −q (10.1.21)

where T, T′, �, and q denote the surface temperature, ambient temperature, heat trans-

fer coefficient, and surface heat flux, respectively. This is referred to as the Cauchy or

Robin boundary condition and can be handled by substitution:

kT,i ni = −Q − �T

with

Q = q − �T′

Thus, we write

G� = Ĝ� − ∗
C��T� (10.1.22)
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with

Ĝ� = −
∫

�

∗
�� Qd� =

E⋃
e=1

Ĝ
(e)

N �
(e)
N�, Ĝ

(e)

N = −
∫

�

∗
�

(e)
N Qd�

∗
C�� =

∫
�

�
∗
��

∗
��d� =

E⋃
e=1

∗
C

(e)
NM�

(e)
N��

(e)
M�,

∗
C

(e)
NM =

∫
�

�
∗
�

(e)
N

∗
�

(e)
M d�

This process then modifies (10.1.4) in the form

(
K�� + ∗

C��

)
T� = F� + Ĝ� (10.1.23)

It should be noted that
∗
C�� is activated only if the convection or Cauchy boundary

conditions are present. That is, if a global node does not coincide with the boundary

node at which the Neumann boundary conditions are prescribed, then
∗

C�� is empty from

the definition,
∗
��(Z�) = ���. It is cautioned that the local boundary surface matrix is

(2 × 2), which is simply added to the local triangular element stiffness matrix (3 × 3) in

correspondence with the nodal incidence along the boundaries.

(b) Lagrange Multipliers Approach

Any boundary condition prescribed at a boundary node may be imposed through

Lagrange multipliers. Consider the boundary conditions of the form

u1 = 0 (10.1.24a)

u2 = a (10.1.24b)

u3 − u4 = b (10.1.24c)

Obviously, if b = 0, then the second expression implies u3 = u4. Otherwise, it represents

Neumann boundary conditions (du/dx) cos � or (du/dy) sin �, prescribed at the global

node Z3 connected to the adjacent boundary node Z4. For example, if du/dx = c at Z3

and the boundary line of length l between Z3 and Z4 is inclined an angle of � from the

x axis, then we write

du
dx

= u3 − u4

l cos �
= c (10.1.25)

or

u3 − u4 = b with b = cl cos �

Equation (10.1.24) can be written in the form

⎡
⎣ 1 0 0 0 0 · · ·

0 1 0 0 0 · · ·
0 0 1 −1 0 · · ·

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4
...

un

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ 0

a
b

⎤
⎦ (10.1.26)



10.1 STEADY-STATE PROBLEMS – STANDARD GALERKIN METHODS 319

which may be rearranged as

qr�u� = Er (10.1.27)

with r = 1, . . . , m (total number of boundary conditions, m = 3 in this case) and

� = 1, . . . , n (total number of global nodes). Here, qr� is called the boundary condi-

tion matrix. Let us now introduce quantities �r , referred to as Lagrange multipliers, and

regarded as constraints or forces required to maintain the boundary conditions. Then,

the product of (10.1.27) with the Lagrange multiplier �r

�r (qr�u� − Er ) = 0 (10.1.28)

may be considered as an invariant or energy required to maintain such boundary con-

ditions.

At this point, we transform the global finite element equation (10.1.16) into a vari-

ational energy,

�I = (K��u� − H�)�u� = 0 (10.1.29)

or

�I = �

(
1

2
K��u�u� − H�u�

)
= 0 (10.1.30)

for which the stationary condition is given by

I = 1

2
K��u�u� − H�u� (10.1.31)

This may be considered as the actual energy contained in the domain. To this we may

add (10.1.28),

I = 1

2
K��u�u� − H�u� + �r (qr�u� − Er ) (10.1.32)

The expression (10.1.32) refers to the total variational energy in equilibrium with the

imposed boundary conditions. The variation of (10.1.32) with respect to every u� and

�r will lead to the stationary condition

�I = ∂I
∂u�

�u� + ∂I
∂�r

��r = 0 (10.1.33)

Since u� and �r are arbitrary, it is necessary that ∂I/∂u� and ∂I/∂�r vanish. These

conditions yield

K��u� + �r qr� = H�

qr�u� = Er

Writing these two equations in matrix form, we obtain[
K�� qr�

qr� 0

] [
u�

�r

]
=

[
H�

Er

]
(10.1.34)
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which may be expanded with the boundary conditions of (10.1.26) in the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 · · · · K1n 1 0 0

K21 K22 · · · · K2n 0 1 0

· · · · · · · 0 0 1

· · · · · · · 0 0 −1

· · · · · · · 0 0 0
· · · · · · · · · ·

Kn1 Kn2 · · · · Knn 0 0 0

1 0 0 0 0 · 0 0 0 0

0 1 0 0 0 · 0 0 0 0

0 0 1 −1 0 · 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

··
un

�1

�2

�3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1

H2

····
Hn

E1

E2

E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.1.35)

The solution to these equations provides the values of Lagrange multipliers �r as well as

the unknowns u�. Here �r , interpreted as the boundary forces, assisted in imposing the

boundary conditions. Note that the left-hand side matrix (10.1.35) is still symmetric, but

matrix rearrangements are required to avoid zeros on the diagonal before a standard

equation solver is applied.

Remarks: The Lagrange multiplier approach for implementing boundary conditions

is useful if the finite element formulations are performed by means of methods of least

squares, moments, or collocation in which the Neumann boundary conditions do not

arise naturally since integration by parts is not involved in these methods.

10.1.3 SOLUTION PROCEDURE

In order to illustrate the solution procedure and implementation of both Dirichlet and

Neumann boundary conditions, we present the following examples.

Example 10.1.2 Solution of Poisson Equation by Triangular Elements

Given:

u,i i = f (i = 1, 2)

with f = 4(x2 + y2), exact solution: u = 2x2 y2.
Consider the geometry (Figure E10.1.2) with Dirichlet boundary conditions:

(1) u2 = u3 = u6 = u9 = u12 = 0

(2) u11 = 1, 458

(3) u1 = 0, u4 = 450, u7 = 3, 528, u10 = 5, 832

Neumann boundary conditions along nodes 1, 4, 7, and 10:

(4)

(
∂u
∂x

)
1

= 0,

(
∂u
∂x

)
4

= 300,

(
∂u
∂x

)
7

= 1,176,

(
∂u
∂x

)
10

= 1,296,

(
∂u
∂y

)
1

= 0

(
∂u
∂y

)
4

= 180

(
∂u
∂y

)
7

= 1008

(
∂u
∂y

)
10

= 1,944
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or

F� = −C�� f�, C�� =
E⋃

e=1

C(e)
NM�

(e)
N��

(e)
M�, f� = [4(x2 + y2)]�

The C(e)
NM may be determined using (9.3.5) or (9.3.27).

From (9.3.5), we have

C(e)
NM =

∫∫
(aN + bNx + cN y)(aM + bMx + cMy)dxdy

C(e)

11 = A(e)

[
1

9
+ 1

12

(
b2

1� + 2b1c1� + c2
1�

)]

C(e)

12 = A(e)

{
1

9
+ 1

12
[b1b2� + (b1c2 + b2c1)� + c1c2� ]

}

C(e)

13 = A(e)

{
1

9
+ 1

12
[b1b3� + (b1c3 + b3c1)� + c1c3� ]

}

C(e)
22 = A(e)

[
1

9
+ 1

12

(
b2

2� + 2b2c2� + c2
2�

)]

C(e)
23 = A(e)

{
1

9
+ 1

12
[b2b3� + (b2c3 + b3c2)� + c2c3� ]

}

C(e)
33 = A(e)

[
1

9
+ 1

12

(
b2

3� + 2b3c3� + c2
3�

)]

with

� = x2
1 + x2

2 + x2
3 , � = x1 y1 + x2 y2 + x3 y3, � = y2

1 + y2
2 + y2

3

After some algebra, it can be shown that

C(e)
NM = A(e)

12

⎡
⎣ 2 1 1

1 2 1

1 1 2

⎤
⎦

This result can be obtained easily from (9.3.11 and 9.3.27) using the natural coordi-

nate triangular element.

C(e)
NM =

∫
�

�
(e)
N �

(e)
M d� =

∫∫ ⎡
⎢⎣

L1L1 L1L2 L1L3

L2L1 L2L2 L2L3

L3L1 L3L2 L3L3

⎤
⎥⎦ dxdy = A(e)

12

⎡
⎣ 2 1 1

1 2 1

1 1 2

⎤
⎦

Thus, the global load vector is calculated from the assembly of C(e)
NM matrices for each

element into a global form C�� to be multiplied by the global nonhomogeneous data f�

determined at each global node.

The Neumann boundary vector G� can be calculated as follows:

G� =
∫

�

∗
��u,i ni d� =

∫
�

∗
��

∗
� �d�g� =

E⋃
e=1

∗
C

(e)
NM�

(e)
N�g(e)

M =
E⋃

e=1

G(e)
N �

(e)
N�
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where

∗
C

(e)
NM =

∫ l

0

∗
�

(e)
N

∗
�

(e)
M d� = l

6

[
2 1

1 2

]

Thus

G(e)
N = l

6

[
2 1

1 2

] ⎡
⎣ g(e)

1

g(e)
2

⎤
⎦ = l

6

⎡
⎣ 2g(e)

1 + g(e)
2

g(e)

1 + 2g(e)
2

⎤
⎦

where
∗
�

(e)
M vanishes everywhere except at Neumann boundary nodes. Recall that∗

�
(e)
M (zM) = �NM and thus,

∗
�

(e)
M = 0 if the boundary node N does not have the Neumann

data prescribed, and
∗
�

(e)
M = 1 if the boundary node N has the Neumann boundary data

prescribed.

G(1)
N = l1

6

[
0 0

0 2

] ⎡
⎣ g(1)

1

g(1)
2

⎤
⎦ = l1

6

[
0

2g(1)
2

]

with
∗
�

(1)
N = 0, because the Neumann data are not prescribed at the local node 1 for the

boundary element 1.

G(2)
N = l2

6

[
2 1

1 2

] ⎡
⎣ g(2)

1

g(2)
2

⎤
⎦ = l2

6

⎡
⎣ 2g(2)

1 + g(2)
2

g(2)

1 + 2g(2)
2

⎤
⎦

G(3)
N = l3

6

[
2 1

1 2

] ⎡
⎣ g(3)

1

g(3)
2

⎤
⎦ = l3

6

⎡
⎣ 2g(3)

1 + g(3)
2

g(3)

1 + 2g(3)
2

⎤
⎦

G(4)
N = l4

6

[
2 1

1 2

] ⎡
⎣ g(4)

1

g(4)
2

⎤
⎦ = l4

6

⎡
⎣ 2g(4)

1 + g(4)
2

g(4)

1 + 2g(4)
2

⎤
⎦

G(5)
N = l5

6

[
2 0

0 0

] ⎡
⎣ g(5)

1

g(5)
2

⎤
⎦ = l5

6

[
2g(5)

1

0

]

with
∗
�

(5)
2 = 0 and

g(1)
2 =

(
∂u
∂x

cos � + ∂u
∂y

sin �

)(1)

2

=
(

∂u
∂x

)(1)

2

(−1) = 0

g(2)

1 =
(

∂u
∂x

)(2)

1

(−0.316) +
(

∂u
∂y

)(2)

1

(0.948) = 0

g(2)
2 =

(
∂u
∂x

)(2)

2

(−0.316) +
(

∂u
∂y

)(2)

2

(0.948)

= (300)(−0.316) + (180)(0.948) = 75.84
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Similarly,

g(3)

1 = −16.74, g(3)
2 = 185.97, g(4)

1 = 1,328.2, g(4)
2 = 2,254.4,

g(5)

1 =
(

∂u
∂x

)(5)

1

(1) = 1,296

G� =

⎡
⎢⎢⎢⎣

G1

G4

G7

G10

⎤
⎥⎥⎥⎦ = 1

6

⎡
⎢⎢⎢⎢⎢⎢⎣

�12g(1)
2 + �2

(
2g(2)

1 + g(2)
2

)
�2

(
g(2)

1 + 2g(2)
2

) + �3

(
2g(3)

1 + g(3)
2

)
�3

(
g(3)

1 + 2g(3)
2

) + �4

(
2g(4)

1 + g(4)
2

)
�4

(
g(4)

1 + 2g(4)
2

) + �5

(
2g(5)

1

)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

40.00

172.03

2,802.05

4,372.02

⎤
⎥⎥⎦

with G� = 0 elsewhere. The sum of F� + G� is given by

F� + G� = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

113.50

134.00

27.00

629.00

609.50

216.00

1673.50

2008.00

648.00

613.50

1652.00

810.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

40.00

0.00

0.00

172.03

0.00

0.00

2802.05

0.00

0.00

4372.02

0.00

0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that G� is obtained by an assembly of local data g(e)
M . However for F�, it is preferable

to construct the C�� matrix independent of local data f (e)
M and use the global data f�

instead.

The solution is carried out, and the results are shown in Table E10.1.1. It is seen

that the solution for the Neumann data is less accurate than for the Dirichlet data. It

can be shown that accuracy improves with mesh refinements. This is demonstrated in

Section 10.4.1 for isoparametric elements.

10.1.4 STOKES FLOW PROBLEMS

Stokes flows or creeping flows occur in highly viscous, slowly moving fluids and are char-

acterized by the conservation of mass and momentum. For a steady state, the governing

equations take the form

∇ · v = 0 (10.1.36a)

−�∇2v + ∇p − 	F = 0 (10.1.36b)

Although these equations are still linear (note that convective terms are absent), their

solutions may not be easy to obtain because the enforcement of incompressibility
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Table E10.1.1 Computed Results for Example 10.1.2

(a) Dirichlet Problem with the Boundary Conditions (1), (2), and (3)

Node Exact Solution FEM Solution % Error

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 450.00 450.00 0.00

5 162.00 110.72 −31.66

6 0.00 0.00 0.00

7 3528.00 3528.00 0.00

8 648.00 508.92 −21.46

9 0.00 0.00 0.00

10 5832.00 5832.00 0.00

11 1458.00 1458.00 0.00

12 0.00 0.00 0.00

(b) Neumann Problem with the Boundary Conditions (1), (2), and (4)

Node Exact Solution FEM Solution % Error

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 450.00 392.33 −12.82

5 162.00 79.57 −50.88

6 0.00 0.00 0.00

7 3528.00 3264.54 −7.47

8 648.00 458.15 −29.30

9 0.00 0.00 0.00

10 5832.00 5031.26 −13.73

11 1458.00 1458.00 0.00

12 0.00 0.00 0.00

conditions (conservation of mass) is difficult. As a result, the computed pressure, p,

may be spurious and oscillatory, known as checkerboard type oscillations.

To cope with these difficulties, many methods have been reported in the literature

[Carey and Oden, 1986; Zienkiewicz and Taylor, 1991]. Among them are the mixed

methods and penalty methods, which are presented below.

Mixed Methods

The momentum equation has the second derivative of velocity (v ε H2) and first

derivative of pressure (p ε H1). In order to enforce the mass conservation (incompress-

ibility condition) we must use an appropriate function for the pressure consistent with

the functional space for the velocity. This is known as the “consistency condition” or

“LBB condition” after Ladyzhenskaya [1969], Babuska [1973], and Brezzi [1974]. This

condition requires that the trial function for pressure in the momentum equation and
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Quadratic velocity    Linear pressure
(b)

×

×

Linear velocity     Constant pressure
(a)

Figure 10.1.3 Mixed methods with triangles and quadrilaterals. (a) Mixed interpolation with

constant pressure. (b) Mixed interpolation with linear pressure.

the test function for the continuity equation be chosen one order lower than the test

function for the momentum equation and trial function for the velocity in the continuity

equation, respectively.

Based on these requirements, the SGM equations of (10.1.36a,b) are of the form[
A��ik B��i

B��k 0

] [
v�k

p�

]
=

[
F�i

0

]
+

[
G�i

0

]
(10.1.37)

If pressure is interpolated as constant (pressure node at the center of an element)

and velocity as a linear function (velocity defined at corner nodes), then such ele-

ment becomes over-constrained (known as “locking element”) (Figure 10.1.3a). To

avoid this situation, we may use linear pressure and quadratic velocity interpolations

(Figure 10.1.3b). However, experience has shown that further improvements are needed

in order to expedite convergence toward acceptable solutions. This subject will be elab-

orated in Chapter 12.

Penalty Methods

Penalty methods are designed such that the continuity equation which actually repre-

sents a constraint condition can be eliminated from the solution process. This is achieved

by setting

p = −�∇ · v (10.1.38)

where � is the penalty parameter, equivalent to the Lagrange multiplier. The idea is to

set � equal to a large number (� → ∞) in the hope that ∇ · v ≈ 0 as seen from

∇ · v + p
�

∼= 0 (10.1.39)

Substituting (10.1.38) into (10.1.36b), we obtain

−�∇2v − �∇(∇ · v) − 	F = 0 (10.1.40)
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Here � is seen to act as dilatational viscosity. It is now clear that pressure is elimi-

nated from the solution of (10.1.40) in which the mass conservation is enforced through

(10.1.39). Once the velocity components are calculated from (10.1.40), then pressure is

calculated by means of (10.3.38).

Unfortunately, however, the solution of (10.1.40) is difficult because the penalty

term dominates as � becomes large, which is analogous to the over-constraint in the

mixed methods. In other words, the consistency condition is violated. To cope with

this difficulty, the finite element equation integral term involving the penalty function

(pressure term) is given a special treatment by means of “reduced” Gaussian quadrature

numerical integration. Specifically, we under-integrate the penalty term one point less

than the shear viscosity term. For example, one point Gaussian quadrature rule for the

penalty term is performed against the two-point rule for the shear viscosity term of a

linear element. Similarly, a two-point rule for the penalty term against a three-point

rule for the shear viscosity term of a quadratic element is recommended, and so on.

Once again, the mixed methods and penalty methods represent relatively earlier

developments. They are being replaced by more efficient and advanced techniques to

be discussed in Chapter 12 for incompressible viscous flows.

10.2 TRANSIENT PROBLEMS – GENERALIZED GALERKIN METHODS

10.2.1 PARABOLIC EQUATIONS

To describe the time-dependent behavior, we may use either the continuous space-time

(CST) method or the discontinuous space-time (DST) method. In the CST method,

continuous interpolation functions in both space and time are used so that

u(x, t) = ��(x, t)u� (10.2.1)

Alternatively, the DST method allows separation of variables between the spatial and

temporal domains,

u(x, t) = ��(x)u�(t) (10.2.2)

This requires interpolations of ��(x) in the spatial domain and the nodal values u�(t)
for the temporal domain.

The disadvantage of the CST method is the increase in computational dimension

requiring the finite element in time. For this reason, our discussions in the sequel will

be limited to the DST method, in which a time marching procedure is followed.

Consider a parabolic equation or the time-dependent differential equation in the

form

R = ∂u(x, t)
∂t

− ∇2u(x, t) − f (x, t) = 0 (10.2.3)

Let the nondimensional temporal variable be given by


 = t/�t (10.2.4)

where t and �t denote time and a small time step, respectively.
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In the past, the so-called semidiscrete method was used, in which the SGM equation

for (10.2.3) is written as

(��, R) =
∫

�

��

(
∂u
∂t

− u,i i − f
)

d� = 0

where the time derivative of u is approximated by finite differences. Instead, our ap-

proach in DST is to seek a temporal test function independently and discontinuously

from the spatial test function.

The DST method consists of first constructing the inner product of the residual

(10.2.3) with the spatial test function ��(x) over the spatial domain and, subsequently,

constructing another inner product of the resulting residual with the temporal weighting

function or test function Ŵ(
) over the temporal domain. These steps lead to

(Ŵ(
), (��, R)) =
∫ 1

0

Ŵ(
)

[∫
�

��

(
∂u
∂t

− u,i i − f
)

d�

]
d
 = 0 (10.2.5)

which represents the SGM with DST approximations. The double projections of the

residual onto the subspaces spanned by spatial and temporal test functions are referred

to as the generalized Galerkin Method (GGM) as opposed to SGM. As noted in (8.2.41),

the temporal weighting function Ŵ(
) is independent of and discontinuous from the

spatial approximations.

Substituting (10.2.2) into (10.2.5) yields∫ 1

0

Ŵ(
)

[
A��

∂u�(t)
∂t

+ K��u�(t) − H�

]
d
 = 0 (10.2.6)

where we may define

Mass Matrix

A�� =
∫

�

����d� (10.2.7)

Stiffness Matrix

K�� =
∫

�

��,i��,i d� (10.2.8)

H� = F� + G� (10.2.9)

with

Source Vector F� =
∫

�

�� f d�

Neumann Boundary Vector G� =
∫

�

∗
��u,i ni d�.

If linear variations of u�(t) are assumed within a small time step, we may write

u�(t) = �̂m(
)um
� (m = 1, 2) (10.2.10)

where the temporal trial functions may be derived from the standard one-dimensional

configuration,

�̂1 = 1 − 
, �̂2 = 
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Thus,

u�(t) = (1 − 
)un
� + 
un+1

� (10.2.11)

in which m = 1 and m = 2 are replaced by the time steps n and n + 1, respectively.

Differentiating (10.2.11) with respect to time, we obtain

∂u�(t)
∂t

= ∂u�(
)

∂


∂


∂t
= 1

�t

(
un+1

� − un
�

)
(10.2.12)

which is identical to the forward finite difference of ∂u(t)/∂t . Substituting (10.2.12) into

(10.2.6) yields

[A�� + ��t K��] un+1
� = [A�� − (1 − �)�t K��] un

� + �t H� (10.2.13)

where H� may be regarded as the forcing function. If H� is time dependent, then it may

be expanded in a manner similar to u� given in (10.2.11).

H� = (1 − 
)Hn
� + 
 Hn+1

�

Temporal Parameter

We define � as the temporal parameter,

� =

∫ 1

0

Ŵ(
)
d
∫ 1

0

Ŵ(
)d


(10.2.14)

Evaluation of the temporal parameter requires an explicit form for the temporal test

function Ŵ(
) as introduced in Zienkiewicz and Taylor [1991]. Some of the examples for

Ŵ(
) and the corresponding temporal parameters are shown in Table 10.2.1. A glance

at the temporal parameters suggested above reveals that they remain in the range

0 ≤ � ≤ 1

Equation (10.2.13) may be written in the form

D��un+1
� = Qn

� (10.2.15)

Table 10.2.1 Temporal Parameters for

Parabolic Equations

Ŵ (�) �

1 − 
 1/3


 2/3

1 1/2

�(
 − 0) 0

�(
 − 1/2) 1/2

�(
 − 1) 1
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with

D�� = A�� + ��t K��

Qn
� = [A�� − (1 − �)�t K��]un

� + �t H�

Notice that, to solve (10.2.15), we must first apply the boundary conditions in a manner

similar to that used in the steady-state problems. Initial conditions can be specified in Qn
�.

Initially, n = 0, and u(1)
� for the first step is calculated from Q(0)

� . Then u(2)
� for the second

time step will be calculated from u(1)
� substituted into Q(1)

� , thus continuously marching

in time until the desired time has been reached. An adequate choice of the temporal

parameter � and the time step �t is regarded as crucial to the success of the analysis.

To this end, we examine the two cases in which � = 0 and � �= 0, corresponding to the

explicit scheme and the implicit scheme, respectively. Notice that � = 1/2 corresponds

to the so-called Crank-Nicolson scheme (Section 4.3.2).

Explicit Scheme

The explicit scheme refers to the case � = 0. Rewrite (10.2.13) in the form

un+1
� = A−1

��

[
(A�� − �t K��)un

� + �t H�

]
(10.2.16)

and assume that errors are generated each time step, giving εn
� and εn+1

� corresponding

to un
� and un+1

� , respectively, such that

un+1
� + εn+1

� = A−1
��

[
(A�� − �t K��)

(
un

� + εn
�

) + �t H�

]
(10.2.17)

Subtracting (10.2.16) from (10.2.17) yields

εn+1
� = g�� εn

� (10.2.18)

where g�� is the amplification matrix

g�� = ��� − A−1
�� K���t (10.2.19)

For stable solutions, we must assure that errors at the nth step do not grow toward the

(n + 1)th step; that is,∣∣εn+1
�

∣∣ ≤ ∣∣εn
�

∣∣
This requirement can be met when

|g�� | = |��� − A−1
�� K���t | ≤ |��� | = 1 (10.2.20)

Thus, in view of (10.2.19) and (10.2.20), and setting

εn+1
� = �εn

� (10.2.21)

we write

(g�� − ���� )εn
� = 0 (10.2.22)

The stability of the solution of (10.2.16) can be assured if each and every eigenvalue ��

of the amplification matrix g�� is made smaller than unity,

|��| ≤ 1
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The largest eigenvalue, called the spectral radius, governs the stability. Since there exists

a bound for �t outside of which stability can no longer be maintained, the explicit

scheme is said to be conditionally stable.

Implicit Scheme

The implicit scheme arises for � �= 0 in (10.2.13). Solving for un+1
� , we obtain

un+1
� = (A�� + ��t K�� )−1

{
[A�� − (1 − �)�t K��]un

� + �t H�

}
(10.2.23)

The amplification matrix becomes

g�� = E−1
�� D��

with

E�� = A�� + ��t K��

D�� = A�� − (1 − �)�t K��

For all values of �t , it is seen that we have g�� ≤ ���, and the implicit scheme is

unconditionally stable.

To study the stability behavior of (10.2.23) let us examine one-dimensional linear

finite element approximation of (10.2.23) with three nodes,

1

6

(
�un+1

j−1 + 4�un+1
j + �un+1

j+1

) + �D
(−un+1

j−1 + 2un+1
j − un+1

j+1

)
= −D

(−un
j−1 + 2un

j − un
j+1

)
(10.2.24)

with �un+1
j = un+1

j − un
j , h = �x, and D being the nondimensional convergence para-

meter.

D = �
�t
�x2

The combined spatial and temporal response of the amplitude un may be written as

un
j = eikxet = eikj�xeckn�t = eikj�xgn (10.2.25)

where g = eck�t is the amplification factor, with k and c being the wave number and

wave velocity, respectively. Thus,

�un+1
j = eikj�x(g − 1)gn (10.2.26)

Substituting (10.2.25) and (10.2.26) into (10.2.24) leads to

eikj�xgn
{

(g −1)

[
1

6
(e−i� + 4 + ei�) + �D(−e−i�+ 2 − ei�)

]
+D(−e−i� + 2−ei�)

}
= 0

with

� = k�x

or

g = 1 +
2Dsin2

(
�

2

)
− 1

3
− 1

6
cos � + �D(cos � − 1)



332 LINEAR PROBLEMS

For � → 0, the amplification factor takes the form

g = 1 − D�2

It is seen that stability is maintained for g < 1 or

D�2 > 0

which shows that the stability is proportional to the square of the phase angle.

10.2.2 HYPERBOLIC EQUATIONS

Consider the hyperbolic equation in the form

R = ∂2u
∂t2

− u,i i − f (x, y) = 0 (10.2.27)

in which the time dependent term is of the second order. Proceeding in a manner similar

to the parabolic equation, we write the DST/GGM equations as

(Ŵ(
), (��, R)) =
∫

Ŵ(
)(A��ü� + K��u� − H�)d
 = 0 (10.2.28)

In order to handle the second order derivative of u with respect to time, we must provide

at least quadratic trial functions for u�,

u� = �̂mum
� (m = 1, 2, 3)

Here, �̂m may be defined in 0 < 
 < 1 or −1 < 
 < 1 as follows:

For 0 < 
 < 1 For − 1 < 
 < 1

�̂1 = 2

(

 − 1

2

)
(
 − 1) �̂1 = 1

2

(
 − 1)

�̂2 = −4
(
 − 1) �̂2 = 1 − 
2

�̂3 = 2


(

 − 1

2

)
�̂3 = 1

2

(
 + 1)

Using the interval −1 < 
 < 1, since this interval is more convenient for integration, we

obtain

ü� = ∂

∂t
u̇� = ∂u̇�

∂


∂


∂t
= ∂

∂


∂u�

∂


(
∂


∂t

)2

= 1

�t2

(
un−1

� − 2un
� + un+1

�

)
(10.2.29)

which is identical to the finite difference form for the second derivative of u�.

Defining the temporal parameters � and � in the form

� =
1

2

∫ 1

−1

Ŵ
(1 + 
)d


∫ 1

−1

Ŵd


, � =

∫ 1

−1

Ŵ
(


 + 1

2

)
d


∫ 1

−1

Ŵd


(10.2.30)

the recursive finite element equation takes the form(
A�� + ��t2 K��

)
un+1

� =
[

2A�� −
(

1

2
− 2� + �

)
�t2 K��

]
un

�

−
[

A�� +
(

1

2
+ � − �

)
�t2 K��

]
un−1

� + �t2 H� (10.2.31)
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Table 10.2.2 Temporal Parameters for

Hyperbolic Equations

Ŵ (�) � �

�(
 + 1) 0 1/2

�(
 − 0) 0 1/2

�(
 − 1) 1 3/2

1, 0 ≤ 
 ≤ 1 1/6 1/2

1 + 
, −1 ≤ 
 ≤ 0 4/5 3/2

1 − 
, −1 ≤ 
 ≤ 0 1/12 1/2

−
, 0 ≤ 
 ≤ 1 1/4 1/2


 1/4 1/2

1 − 
2 1/10 1/2

(1/2)
(1 + 
) 4/5 3/2

Once again, � = 0 and � = 1 lead to the explicit and implicit schemes, respectively.

Various values for Ŵ, and the corresponding temporal parameters �and � , are presented

in Table 10.2.2.

For highly oscillatory motions, quadratic approximations may be inadequate and

cubic approximations are required for acceptable accuracy. Cubic variations can be

formulated using the Lagrange polynomials for −1 ≤ 
 ≤ 1 so that u� and ü� take the

forms

u� = − 9

16

(

 + 1

3

)(

 − 1

3

)
(
 − 1)un−2

� + 27

16
(
 + 1)

(

 − 1

3

)
(
 − 1)un−1

�

− 27

16
(
 + 1)

(

 + 1

3

)
(
 − 1)un

� + 9

16
(
 + 1)

(

 + 1

3

)(

 − 1

3

)
un+1

�

and

ü� = 1

�t2

[
− 9

16
(6
 − 2)un−2

� + 27

16

(
6
 − 2

3

)
un−1

� − 27

16

(
6
 + 2

3

)
un

� + 9

16
(6
 + 2)un+1

�

]

Substituting the above into (10.2.28), we arrive at

[
A��

9

16
(6� + 2) + �t2 9

16

(
� + � − 1

9
� − 1

9

)
K��

]
un+1

�

+
[

A��
27

16

(
−6� − 2

3

)
+ �t2 27

16

(
−� − 1

3
� + � + 1

3

)
K��

]
un

�

+
[

A��
27

16

(
6� − 2

3

)
+ �t2 27

16

(
� − 1

3
� − � + 1

3

)
K��

]
un−1

�

+
[

A��
9

16
(−6� + 2) + �t2 9

16

(
−� + � + 1

9
� − 1

9

)
K��

]
un−2

�

− �t2(F� + G�) = 0 (10.2.32)
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with

� =

∫ 1

−1

Ŵ(
)
3d


∫ 1

−1

Ŵd


, � =

∫ 1

−1

Ŵ(
)
2d


∫ 1

−1

Ŵd


, � =

∫ 1

−1

Ŵ(
)
d


∫ 1

−1

Ŵd


Appropriate choices of Ŵ(
) will lead to a variety of integration formulas.

Using the Newton backward difference (Chung, 1975), it can be shown that the cubic

approximations may also be given as

[11A�� + 6�t(1 − �)K��]vn+1
� + [−18A�� + 6�t�K��]vn

�

+ A��

(
9vn−1

� − 2vn−2
�

) − 6�t H� = 0 (10.2.33)

where 0 ≤ � ≤ 1.

10.2.3 MULTIVARIABLE PROBLEMS

The finite element formulation of multivariable problems which occur in two- or three-

dimensional problems may be best handled using tensors. Let us consider a differential

equation of the form

∂v

∂t
− ∇2v − ∇(∇ · v) − f = 0 (10.2.34a)

or

Ri = ∂vi

∂t
− vi, j j − v j, j i − fi = 0 (10.2.34b)

where the variables vi may be approximated spatially as

vi = ��v�i (i = 1, 2) for 2-D (10.2.35)

Note that v�i implies vi at the global node �. The GGM equations for (10.2.34b) become

(Ŵ(
), (��, Ri )) =
∫




Ŵ(
)

[∫
�

��

(
∂vi

∂t
− vi, j j − v j, j i − fi

)
d�

]
d
 = 0 (10.2.36)

which yields∫



Ŵ(
)
[
A���ikv̇�k + (

K(1)
�i�k + K(2)

�j� j �ik
)
v�k − F�i − G�i

]
d
 = 0

where

A�� =
∫

�

����d� =
E⋃

e=1

∫
�

�
(e)
N �

(e)
M d��

(e)
N��

(e)
M� =

E⋃
e=1

A(e)
NM�

(e)
N��

(e)
M�

K(1)
�i�k =

∫
�

��,i��,kd� =
E⋃

e=1

∫
�

�
(e)
N,i�

(e)
M,kd��

(e)
N��

(e)
M� =

E⋃
e=1

K(1)(e)
Ni Mk�

(e)
N��

(e)
M�

K(2)
�j� j =

∫
�

��, j��, j d� =
E⋃

e=1

∫
�

�
(e)
N, j�

(e)
M, j d��

(e)
N��

(e)
M� =

E⋃
e=1

K(2)(e)
Nj Mj�

(e)
N��

(e)
M�
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F�i =
∫

�

����d��ik f�k = C���ik f�k =
E⋃

e=1

C(e)
NM�

(e)
N��

(e)
M��ik f�k

C(e)
NM =

∫
�

�
(e)
N �

(e)
M d�

G�i =
∫

�

∗
�(vi, j n j + v j, j ni )d� =

E⋃
e=1

G(e)
Ni �

(e)
N�

For the case of Figure E10.1.2, we have

G(e)
�i =

E⋃
e=1

∫
�

∗
�

(e)
N

∗
�

(e)
M d��ik g(e)

Mk�
(e)
N� =

E⋃
e=1

∗
C

(e)
NM �ik g(e)

Mk�
(e)
N�

= l
6

⎡
⎢⎢⎣

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

g(e)

11

g(e)

12

g(e)

21

g(e)
22

⎤
⎥⎥⎥⎥⎦ = l

6

⎡
⎢⎢⎢⎢⎣

2g(e)

11 + g(e)

21

2g(e)

12 + g(e)
22

g(e)

11 + 2g(e)

21

g(e)

12 + 2g(e)
22

⎤
⎥⎥⎥⎥⎦

where

g(e)

M1 = (2v1,1 + v2,2)n1 + v1,2n2

g(e)
M2 = v2,1n1 + (v1,1 + 2v2,2)n2

With linear temporal approximations, the global finite element equations take the form[
A���ik + ��t

(
K(1)

�i�k + K(2)
�j� j �ik

)]
vn+1

�k = [
A���ik − (1 − �)�t

(
K(1)

�i�k + K(2)
�j� j �ik

)]
vn

�k

+ �t(F�i + G�i ) (10.2.37)

The solution of (10.2.37) will proceed similarly as a single variable problem except that

the multivariables v�k are to be solved simultaneously.

10.2.4 AXISYMMETRIC TRANSIENT HEAT CONDUCTION

Consider the transient heat conduction, without convection, in an axisymmetric geo-

metry,

	cp
∂T
∂t

− k
(

∂2T
∂r2

+ ∂2T
∂z2

+ 1

r
∂T
∂r

)
= 0 (10.2.38)

where 	, cp, T, k, and r are the density, specific heat at constant pressure, temperature,

coefficient of thermal conductivity, and radius of a cylindrical geometry, respectively.

The generalized Galerkin finite element formulation of (10.2.38) leads to

∫ 1

0

Ŵ(
)

{∫ 2�

0

∫∫
��

[
	cp

∂T
∂t

− k
(

∂2T
∂r2

+ ∂2T
∂z2

+ 1

r
∂T
∂r

)]
rd�drdz

}
d
 = 0

(10.2.39)
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Here, the partial integration of the term containing ∂2T/∂r2 in (10.2.39) becomes

∫ 2�

0

∫∫
��

∂2T
∂r2

rd�drdz = 2�

(∫ ∗
��

∂T
∂r

rdz −
∫∫

∂��

∂r
∂T
∂r

rdrdz

−
∫∫

��
∂T
∂r

drdz

)

Thus, after canceling out the ∂T/∂r terms, we have∫ 1

0

Ŵ(
)(A��Ṫ� + K��T� − G�)d
 = 0 (10.2.40)

where, for isoparametric quadrilateral elements, with r = ��r� , we obtain

A�� = 2�

∫ 1

−1

∫ 1

−1

	cp������r� |J | d
d�

Here, d
 refers to the isoparametric coordinates rather than the nondimensional time,

K�� = 2�

{∫ 1

−1

∫ 1

−1

k
(

∂��

∂r
∂��

∂r
+ ∂��

∂z
∂��

∂z

)
��r� |J |d
d�

}

G� = 2�

∫
�

∗
��kT,i nird� = 2�

∫
�

− ∗
���(T − T′)rd�

= 2�

[∫
�

−�
∗
��

∗
�� rd�T� +

∫
�

�
∗
��T′rd�

]
= ∗

K��T� + ∗
G�

where we set

−kT,i ni = �(T − T′)

with � and T′ being defined as the heat transfer coefficient and ambient temperature,

respectively. Here,
∗
K �� is the convection boundary stiffness matrix representing the

contribution of ambient temperature toward the boundary surface:

∗
K�� = 2�

∫
�

∗
� �

∗
��

∗
�� r� d�

∗
G� = 2�

∫
�

T′�
∗
��

∗
�� r� d�

where
∗
K �� should be combined with K�� but its contribution is restricted only to the

convection boundary nodes along the surface of convection boundaries as shown in

(10.1.23). Thus,∫ 1

0

Ŵ(
)(A��Ṫ� + (K�� + ∗
K��)T� − ∗

G�)d
 = 0 (10.2.41)

This ordinary differential equation will then be integrated over the temporal domain

as in Section 10.2.1.
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10.3 SOLUTIONS OF FINITE ELEMENT EQUATIONS

Solutions of simultaneous algebraic equations are carried out by using either direct or

iterative methods. The direct methods yield answers in a finite number of operations

(Section 4.2.7). They include Gauss elimination, Thomas algorithm, etc., which are

suitable for linear equations. The iterative methods [Saad, 1996] include Gauss-Seidel

methods, relaxation methods, conjugate gradient methods (CGM), and generalized

minimal residual (GMRES) methods, among others. Here, solutions are obtained

through a number of iterative steps, accuracy being increased with an increase of

iterations. These methods are suitable for nonlinear as well as linear equations.

For a large system of equations, it is expected that the assembly of element stiffness

matrices into a global form would take a prohibitive amount of computer time. This

can be avoided by the so-called element-by-element (EBE) solution scheme [Hughes,

Levit, and Winget, 1983; Carey and Jiang, 1986; Wathen, 1989, etc.]. In this approach,

we replace the matrix assembly process by vector operations. This will be presented in

Section 10.3.2.

The coverage of solution methods for algebraic equations in general is beyond the

scope of this book. However, we select the conjugate gradient method (CGM) as one

of the most popular schemes in CFD and present its brief description, followed by the

EBE approach for finite element equations.

10.3.1 CONJUGATE GRADIENT METHODS (CGM)

Let us consider the global system of finite element equations in the form

K��U� = F� (10.3.1)

The iterative solution by the conjugate gradient methods (CGM) can be obtained, using

the following steps:

(1) Assume initial values U(r)
�

(2) Determine the residual E(r)
�

E(r)
� = F� − K��U(r)

� (10.3.2)

(3) Define the auxiliary variables P(r)
�

P(r)
� = E(r)

�

(4) Compute r th iteration residual

E
(r)

� = K�� P(r)
� (10.3.3)

(5) Compute the correction factor a(r)

a(r) = E(r)
� P(r)

�

E
(r)

� P(r)
�

(10.3.4)

(6) Compute the solution U(r+1)
�

U(r+1)
� = U(r)

� + a(r) P(r)
� (10.3.5)
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(7) Compute the residual E(r+1)
�

E(r+1)
� = E(r)

� − a(r) E
(r)

� (10.3.6)

(8) Compute the correction factor b(r+1)

b(r+1) = E(r+1)
� E(r+1)

�

E(r)
� E(r)

�

(10.3.7)

(9) Define the auxiliary variables P(r+1)
�

P(r+1)
� = E(r+1)

� + b(r+1) P(r)
� (10.3.8)

(10) Return to Step 4 and repeat the process until convergence.

If the matrix K�� is nonsymmetric, then it is possible to symmetrize K�� by multi-

plying the transpose of the stiffness matrix in (10.3.1) as follows:

[K]T[K][U] = [K]T[F]

or

K�� K��U� = K�� F�

This can be written in the form

A��U� = F� (10.3.9)

with

A�� = K�� K��, F� = K�� F�

The same procedure as given in Steps 1 through 10 above can be applied to (10.3.9).

However, this will require extremely large operations and we may avoid them by con-

structing the product of the transpose of the stiffness matrix and the auxiliary variables

as follows:

(1) Start with the initial guess U(o)
�

(2) E(o)
� = K��(F� − K��U�)

(3) P(r)
� = E(r)

�

(4) E
(r)

� = K�� K�� P(r)
�

(5) a(r) = E(r)
� P(r)

�

E
(r)

� P(r)
�

(6) U(r+1)
� = U(r)

� + a(r) P(r)
�

(7) E(r+1)
� = E(r)

� − a(r) E
(r)

�

(8) b(r+1) = E(r+1)
� E(r+1)

�

E(r)
� E(r)

�

(9) P(r+1)
� = E(r+1)

� + b(r) P(r)
�

(10) Return to step (4) and repeat the process until convergence.
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Example 10.3.1

Given: Consider a system of algebraic equations of the form,⎡
⎣ 1 −1 0

−1 2 −2

0 −2 1

⎤
⎦

⎡
⎣U1

U2

U3

⎤
⎦ =

⎡
⎣ 0

−1

−1

⎤
⎦

Required: Solve using the CGM algorithm and compare with the exact solution:

U1 = 1, U2 = 1, U3 = 1.

Solution:

(1) Assume U(o)
� =

⎡
⎣ 0

0

0

⎤
⎦

(2) E(o)
� =

⎡
⎣ 0

−1

−1

⎤
⎦ −

⎡
⎣ 1 −1 0

−1 2 −2

0 −2 1

⎤
⎦

⎡
⎣ 0

0

0

⎤
⎦ =

⎡
⎣ 0

−1

−1

⎤
⎦

(3) P(o)
� =

⎡
⎣ 0

−1

−1

⎤
⎦

(4) E
(o)

� =
⎡
⎣ 1 −1 0

−1 2 −2

0 −2 1

⎤
⎦

⎡
⎣ 0

−1

−1

⎤
⎦ =

⎡
⎣ 1

0

1

⎤
⎦

(5) a(o) = 0 + 1 + 1

0 + 0 − 1
= −2

(6) U(1)
� =

⎡
⎣ 0

0

0

⎤
⎦ + (−2)

⎡
⎣ 0

−1

−1

⎤
⎦ =

⎡
⎣ 0

2

2

⎤
⎦

(7) E(1)
� =

⎡
⎣ 0

−1

−1

⎤
⎦ − (−2)

⎡
⎣ 1

0

1

⎤
⎦ =

⎡
⎣ 2

−1

1

⎤
⎦

(8) b(1) = 4 + 1 + 1

0 + 1 + 1
= 3

(9) P(1)
� =

⎡
⎣ 2

−1

1

⎤
⎦ + (3)

⎡
⎣ 0

−1

−1

⎤
⎦ =

⎡
⎣ 2

−4

−2

⎤
⎦

(10) E
(1)

� =
⎡
⎣ 1 −1 0

−1 2 −2

0 −2 1

⎤
⎦

⎡
⎣ 2

−4

−2

⎤
⎦ =

⎡
⎣ 6

−6

6

⎤
⎦

(11) a(1) = 4 + 4 − 2

12 + 24 − 12
= 6

24
= 0.25

(12) U(2)
� =

⎡
⎣ 0

2

2

⎤
⎦ + (0.25)

⎡
⎣ 2

−4

−2

⎤
⎦ =

⎡
⎣ 0.5

1

1.5

⎤
⎦
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Repeating another cycle of iteration, we obtain

U(3)
� =

⎡
⎣ 1.0002

1

0.9998

⎤
⎦

The next step (7) shows the residual E(3)
� to be zero and the exact answers, U1 = U2 =

U3 = 1, are obtained.

If the stiffness matrix K�� is nonsymmetric or nonlinear, then the procedure for

(10.3.9) can be used. It is expected that convergence toward the exact solution will

be much slower. The GMRES methods suitable for CFD equations will be covered in

Section 11.5.2.

10.3.2 ELEMENT-BY-ELEMENT (EBE) SOLUTIONS OF FEM EQUATIONS

A large system of equations is encountered when the number of finite element nodes

increases in order to improve accuracy. The assembly of element stiffness matrices into a

global form and solutions may occupy a large portion of computing time. To avoid this

inconvenience, we shall examine the so-called element-by-element (EBE) approach

[Hughes et al., 1983; Carey and Jiang, 1986; Wathen, 1989, etc.], in which the assembly

of entire stiffness matrices is eliminated. The EBE methods using the Jacobi-iteration

and conjugate gradient methods are described below.

Let us consider the global finite element equations of the form,

K��U� = F� (10.3.10)

The global stiffness matrix K�� can be split into the diagonal components D�� and the

off-diagonal matrix N�� as follows:

K�� = D�� + N�� (10.3.11)

leading to

(D�� + N��)U� = F� (10.3.12)

or

D��U(r+1)
�

∼= F (r)
� − N��U(r)

� (10.3.13)

where the diagonal matrix and off-diagonal matrix are allowed to be associated with

the iteration steps of U� at (r + 1) and (r), respectively. Subtracting D��U(r)
� from the

left- and right-hand sides of (10.3.13), we obtain

D��

(
U(r+1)

� − U(r)
�

) = F (r)
� − (N�� + D��)U(r)

� (10.3.14)

or

U(r+1)
� = U(r)

� − D−1
��

(
F

(r)

� − F (r)
�

)
(10.3.15)
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with the diagonal matrix playing the role of the preconditioning matrix and

F
(r)

� = (N�� + D��)U(r)
� = K��U(r)

� =
E⋃

e=1

F (e)
N �

(e)
N�

F (e)
N = K(e)

NMU(e)
M (10.3.16)

It is clearly seen that the assembly of the stiffness matrix has been replaced by the

element-by-element basis as a column vector, identical to the assembly of the source

vector F (r)
� such as in (10.1.15b). Thus, the solution of (10.3.10) is obtained as

⎡
⎢⎢⎣

U1

U2

···

⎤
⎥⎥⎦

(r+1)

=

⎡
⎢⎢⎣

U1

U2

···

⎤
⎥⎥⎦

(r)

−

⎡
⎢⎢⎣

(F1 − F1)/D11

(F2 − F2)/D22

···

⎤
⎥⎥⎦

(r)

(10.3.17)

In order to increase convergence and accuracy, it is necessary to implement a standard

relaxation process in the form

U = 
U(r+1) + (1 − 
)U(r)

with 0 < 
 < 1 or preferably 
 = 0.8. The procedure described above resembles the

Jacobi iteration method and, thus, this scheme is called the EBE Jacobi method [Hughes

et al., 1983].

The EBE scheme may be incorporated into any high-accuracy iterative equation

solver. For example, let us consider the conjugate gradient method. Here, we may

adopt the following step-by-step procedure.

(1) Assume initial values U(r)
� .

(2) Compute the residual E(r)
�

E(r)
� = F� − K��Ur

� = F� − F� (10.3.18)

with

F� =
E⋃

e=1

F (e)
N �

(e)
N�

F (e)
N = K(e)

NMU(e)
M

(3) Set the residual as the auxiliary variables P(r)
�

P(r)
� = E(r)

� (10.3.19)

(4) Determine the rth iteration residual E(r)
� as

E
(r)

� = K�� P(r)
� =

E⋃
e=1

H(e)
N �

(e)
N� (10.3.20)

with

H(e)
N = K(e)

NM P(r)
M
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(5) Determine the correction factor a(r)

a(r) = E(r)
� P(r)

�

E
(r)

� P(r)
�

(10.3.21)

(6) Solve U(r+1)
�

U(r+1)
� = U(r)

� + a(r)P(r)
� (10.3.22)

(7) Determine the residual E(r+1)
�

E(r+1)
� = E(r)

� − a(r) E
(r)

� (10.3.23)

(8) Compute the correction factor b(r+1)

b(r+1) = E(r+1)
� E(r+1)

�

E(r)
� E(r)

�

(10.3.24)

(9) Determine the auxiliary variables P(r+1)
�

P(r+1)
� = E(r+1)

� + b(r+1) P(r)
� (10.3.25)

(10) Return to (4) and repeat until convergence.

For time-dependent and nonlinear problems, procedures similar to those above can

be used. In order to expedite the convergence, however, appropriate preconditioning

processes are important. These and other topics on the equation solvers such as GMRES

and the EBE algorithms will be presented in Section 11.5.

10.4 EXAMPLE PROBLEMS

10.4.1 SOLUTION OF POISSON EQUATION WITH ISOPARAMETRIC ELEMENTS

In this example, we repeat Example 10.1.2 using 6 and 24 bilinear (4 node) isoparametric

elements by removing the diagonals (Figure 10.4.1.1). Use the three-point Gaussian
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Figure 10.4.1.1 Meshes for Example 10.4.1.1. (a) Six bilinear isoparametric element system. (b) Twenty-four

bilinear isoparametric element system.
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quadrature integration. The solution procedure is as follows:

K�� =
E⋃

e=1

K(e)
NM�

(e)
N��

(e)
M�

K(e)
NM =

∫
�

�
(e)
N,i�

(e)
M,i d� =

n∑
p=1

n∑
q=1

wpwqkNM(
p, �q)

F� = C�� f� =
E⋃

e=1

C(e)
NM�

(e)
N��

(e)
M� f� =

E⋃
e=1

[
n∑

p=1

n∑
q=1

wpwqcNM(
p, �q)

]
�

(e)
N��

(e)
M� f�

It is obvious that no local evaluation of the load vector is necessary and it is convenient

to leave f� = [4(x2 + y2)]� in the global form, unlike the Neumann boundary vector

which was evaluated in the local level and assembled into a global form.

The Neumann boundary vector remains the same as in the case of triangular ele-

ments, and is independent of the Gaussian quadrature integration. If desired, however,

the Neumann boundary vector may be rederived from the one-dimensional isopara-

metric (natural) coordinate. The results would be the same.

The Neumann boundary vector G� for the six-element problem is the same as in

Example 10.1.2, although the load vector F� is different due to the different integration

scheme. The summary of results is given in Table E10.4.1.1.

The following conclusions are drawn from Examples 10.1.2 and 10.1.3.

(1) The six isoparametric elements provide higher accuracy than twelve triangular

elements. At interior nodes (5 and 8), triangular elements give answers smaller

than the exact solutions, whereas the isoparametric elements lead to larger

values, indicating that triangular elements are stiffer than the isoparametric

elements as seen in Examples 10.1.2 and 10.1.3.

(2) In the coarse grid system, the Neumann problem is not as accurate as in the

Dirichlet problem.

10.4.2 PARABOLIC PARTIAL DIFFERENTIAL EQUATION IN TWO DIMENSIONS

Consider the two-dimensional linear partial differential equation of the form

∂u
∂t

− �

(
∂2u
∂x2

+ ∂2u
∂y2

)
− fx = 0

∂v

∂t
− �

(
∂2v

∂x2
+ ∂2v

∂y2

)
− fy = 0

with

fx = − 1

(1 + t)2
− 2�y, fy = − 1

(1 + t)2
− 2�x



Table E10.4.1.1 Computed Results for Example 10.4.1.1

(a) Dirichlet Data (6 elements) (b) Neumann Data (6 elements)

Node Exact Solution FEM Solution % Error Node Exact Solution FEM Solution % Error

1 0.00 0.00 0.00 1 0.00 −28.99 0.00

2 0.00 0.00 0.00 2 0.00 0.00 0.00

3 0.00 0.00 0.00 3 0.00 0.00 0.00

4 450.00 450.00 0.00 4 450.00 339.18 24.63

5 162.00 197.05 21.64 5 162.00 130.63 19.36

6 0.00 0.00 0.00 6 0.00 0.00 0.00

7 3528.00 3528.00 0.00 7 3528.00 3221.45 8.69

8 648.00 667.45 3.00 8 648.00 601.47 7.18

9 0.00 0.00 0.00 9 0.00 0.00 0.00

10 5832.00 5832.00 0.00 10 5832.00 5697.71 2.30

11 1458.00 1458.00 0.00 11 1458.00 1458.00 0.00

12 0.00 0.00 0.00 12 0.00 0.00 0.00

(c) Dirichlet Data (24 elements) (d) Neumann Data (24 elements)

Node Exact Solution FEM Solution % Error Node Exact Solution FEM Solution % Error

1 0.00 0.00 0.00 1 0.00 −3.69

2 0.00 0.00 0.00 2 0.00 0.00 0.00

3 0.00 0.00 0.00 3 0.00 0.00 0.00

4 0.00 0.00 0.00 4 0.00 0.00 0.00

5 0.00 0.00 0.00 5 0.00 0.00 0.00

6 91.13 91.13 0.00 6 91.12 70.60 22.52

7 63.28 65.68 3.79 7 63.28 49.13 22.36

8 40.50 44.09 8.86 8 40.50 31.82 21.43

9 10.13 12.10 19.47 9 10.12 6.51 35.67

10 0.00 0.00 0.00 10 0.00 0.00 0.00

11 450.00 450.00 0.00 11 450.00 409.87 8.92

12 288.00 287.79 .07 12 288.00 257.40 10.63

13 162.00 170.18 5.05 13 162.00 148.10 8.58

14 40.50 44.51 9.90 14 40.50 34.16 15.65

15 0.00 0.00 0.00 15 0.00 0.00 0.00

16 1458.00 1458.00 0.00 16 1458.00 1392.81 4.47

17 820.13 830.87 1.31 17 820.12 781.97 4.65

18 364.50 379.19 4.03 18 364.50 349.83 4.02

19 91.13 94.76 3.99 19 91.12 81.24 10.84

20 0.00 0.00 0.00 20 0.00 0.00 0.00

21 3528.00 3528.00 0.00 21 3528.00 3381.90 4.14

22 1800.00 1812.86 .71 22 1800.00 1746.66 2.96

23 648.00 648.80 .12 23 648.00 615.65 4.99

24 162.00 163.41 .87 24 162.00 150.18 7.30

25 0.00 0.00 0.00 25 0.00 0.00 0.00

26 4753.13 4753.13 0.00 26 4753.12 4659.78 1.96

27 2538.28 2530.26 .32 27 2538.28 2449.15 3.51

28 1012.50 1005.26 .71 28 1012.50 983.92 2.82

29 253.13 252.50 .25 29 253.12 244.03 3.59

30 0.00 0.00 0.00 30 0.00 0.00 0.00

31 5832.00 5832.00 0.00 31 5832.00 5586.42 4.21

32 3280.50 3280.50 0.00 32 3280.50 3280.50 0.00

33 1458.00 1458.00 0.00 33 1458.00 1458.00 0.00

34 364.50 364.50 0.00 34 364.50 364.50 0.00

35 0.00 0.00 0.00 35 0.00 0.00 0.00
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Figure 10.4.2.1 Geometry and discretization for Section 10.4.2 with N repre-

senting the Neumann boundary conditions. Dirichlet and Neumann boundary

conditions are prescribed from the exact solution.

Exact Solution:

u = 1

1 + t
+ x2 y, v = 1

1 + t
+ xy2

Required: Solve the above partial differential equations using GGM for the coarse,

intermediate, and fine meshes with the Dirichlet and Neumann boundary data as shown

in Figure 10.4.2.1. Set � = 1, �t = 10−4, � = 1/2 Set u = v = 0 initially at all interior

nodes and observe convergence behavior.

Solution: The steady state is reached at t ∼= 0.25 and 0.4 for u and v, respectively, at

x = 4.5 and y = 0.75 to the almost exact steady-state values as shown in Figure 10.4.2.2.

In Section 11.6.4, the results with nonlinear convection terms will be presented, demon-

strating the solution convergence as a function of grid refinements.

Figure 10.4.2.2 Convergence history of u and v(� = 1.0, �t = 0.01,

x = 4.5 and y = 0.75).
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10.5 SUMMARY

In this chapter, we have shown the basic computational procedures involved in finite

element calculations for linear partial differential equations, using the standard Galerkin

methods (SGM). Assembly of multidimensional finite element equations into a global

form and various approaches to implementations of both Dirichlet and Neumann

boundary conditions are demonstrated. Furthermore, we have described the mixed

methods and penalty methods in order to satisfy the incompressibility condition in-

volved in the Stokes flow.

In dealing with time-dependent problems, formulations with the generalized

Galerkin methods (GGM) for parabolic and hyperbolic partial differential equations

are presented. In particular, it was shown that temporal approximations can be provided

independently and discontinuously from spatial approximations.

Solution procedures of finite element equations in general and solution approaches

using element-by-element assembly techniques in particular are also elaborated. It is

shown that, by means of the element-by-element (EBE) vector operations, the formu-

lation of entire stiffness matrix array can be avoided.

Note that convective or nonlinear terms are not included in this chapter, which

constitute one of the most important aspects of fluid dynamics, both physically and

numerically. This is the subject of the next chapter.
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CHAPTER ELEVEN

Nonlinear Problems/Convection-Dominated Flows

For fluid dynamics associated with nonlinearity and discontinuity, there have been sig-

nificant developments in the last two decades both in finite difference methods (FDM)

and finite element methods (FEM). Concurrent with upwind schemes in space and

Taylor series expansion of variables in time for FDM formulations with various or-

ders of accuracy, numerous achievements have been made in FEM applications since

the publication of an earlier text [Chung, 1978]. These new developments include gen-

eralized Galerkin methods (GGM), Taylor-Galerkin methods (TGM) [Donea, 1984],

and the streamline upwind Petrov-Galerkin (SUPG) methods [Heinrich et al., 1977;

Hughes and Brooks, 1982], alternatively referred to as the streamline diffusion method

(SDM) [Johnson, 1987], and Galerkin/least squares (GLS) methods [Hughes and his

co-workers, 1988–1998]. In the sections that follow, it will be shown that computational

strategies such as SUPG or SDM and other similar methods can be grouped under the

heading of generalized Petrov-Galerkin (GPG) methods. Recent developments include

unstructured adaptive methods [Oden et al., 1986; Löhner, Morgan, and Zienkiewicz,

1985], characteristic Galerkin methods (CGM) [Zienkiewicz and his co-workers, 1994–

1998], discontinuous Galerkin methods (DGM) [Oden and his co-workers, 1996–1998],

and flowfield-dependent variation (FDV) methods [Chung and his coworkers, 1995–

1999], among others. On the other hand, the concepts of FDM and FEM have been

utilized in developing finite volume methods in conjunction with unstructured grids

[Jameson, Baker, and Weatherill, 1986]. It appears that FDM and FEM continue to

co-exist and develop into a mature technology, mutually benefitting from each other.

We begin in this chapter with the general discussion of boundary conditions for the

nonlinear momentum equations, followed by Taylor-Galerkin methods (TGM) and gen-

eralized Petrov-Galerkin (GPG) methods as applied to Burgers’ equations. Some spe-

cial topics such as Newton-Raphson methods and artificial viscosity are also discussed

in this chapter. Applications to the Navier-Stokes system of equations characterizing in-

compressible and compressible flows are presented in Chapters 12 and 13, respectively.

11.1 BOUNDARY AND INITIAL CONDITIONS

Detailed treatments of boundary conditions with reference to FDM were presented in

Section 6.7. In FEM formulations, Neumann boundary conditions arise from the partial

347
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integration of the inner product governing equations. This is an important aspect unique

and advantageous in FEM, not available in FDM.

In general, precise definitions and implementations of boundary and initial con-

ditions play decisive roles in obtaining acceptable and accurate solutions in fluid me-

chanics and heat transfer. As seen in Chapters 1 and 2, Neumann boundary condi-

tions are derived from the inner product of the partial differential equation with test

functions and by means of partial integrations of this inner product down to the mth

order from the 2mth order derivatives of the governing partial differential equations.

Neumann boundary conditions arise “naturally” in this process with derivatives of

order 2m −1, 2m −2, . . . m (weak derivatives). Derivatives of order below m (m −1,

m −2, . . . 0) are referred to as Dirichlet boundary conditions. These definitions as given

in Chapters 1 and 2 for linear problems are applied to the nonlinear convective flows

in this section.

Specification of boundary conditions depends on the types of partial differential

equations (elliptic, parabolic, or hyperbolic) and types of flows (incompressible, com-

pressible, vortical, irrotational, laminar, turbulent, chemically reacting, thermal radi-

ation, surface tension, etc.). We shall limit our discussions of boundary and initial

conditions to simpler and general topics of incompressible and compressible flows in

this section. More complicated and specific subjects will be treated in their respective

chapters and sections, Part Five, Applications.

11.1.1 INCOMPRESSIBLE FLOWS

For simplicity, let us first examine the steady-state incompressible flow governed by

the conservation of mass and momentum. In order to obtain the correct forms for the

boundary conditions, the governing equations must be written in conservation form.

This is because the conservation form allows the partial integration to be carried out

correctly. Thus, we write

Continuity

vi,i = 0 (11.1.1a)

Momentum

∂

∂xi
(�vi v j − �i j ) − �Fj = 0 (11.1.1b)

where �i j is the total stress tensor,

�i j = −p�i j + �i j = −p�i j + �(vi, j + v j,i )

To determine the existence of Neumann (natural) boundary conditions, we construct

an inner product of the residual of the governing partial differential equation with an

appropriate variable which leads to a weak form. Since the primary variable is the

velocity for the momentum equation, we write the energy due to the momentum as

J = (v j , Rj ) =
∫

�

v j

[
∂

∂xi
(�vi v j + p�i j − �i j ) − �Fj

]
d� (11.1.2a)
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(y-axis) directions, we have, respectively,

S(2)
j = �i j ni =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2�

(
∂u
∂x

)

�

(
∂v

∂x
+ ∂u

∂y

) (i, j = 1, 2) (11.1.6)

Alternatively, along the left side (inlet), n1 = cos(180◦) = −1 and n2 = sin(180◦) = 0,

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2�

(
∂u
∂x

)

−�

(
∂v

∂x
+ ∂u

∂y

) (i, j = 1, 2) (11.1.7)

Similarly, for the top and bottom horizontal surfaces, respectively, with � = 90◦ and

� = 270◦

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

(
∂u
∂y

+ ∂v

∂x

)

2�

(
∂v

∂y

) (i, j = 1, 2) (11.1.8)

and

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�

(
∂u
∂y

+ ∂v

∂x

)

−2�

(
∂v

∂y

) (i, j = 1, 2) (11.1.9)

This completes the discussion of Neumann boundary conditions for the momentum

equation. The continuity equation (11.1.1a) is a constraint condition for incompress-

ibility or conservation of mass and is incapable of producing the Neumann boundary

conditions. The Dirichlet (essential) boundary conditions arise from further integration

by parts of the domain integral terms of (11.1.2b). Intuitively, we identify them as

vi = vi on �D (11.1.10)

Dirichlet boundary conditions may be implemented wherever available in addi-

tion to commonly assumed no-slip conditions along the solid walls. In principle, either

Dirichlet or Neumann boundary conditions, not both, must be specified everywhere

along the boundary surfaces for elliptic equations.

It is important to realize that the surface pressure is identified as a part of the

Neumann boundary conditions in (11.1.4). For inclined surfaces, n1 �= 0, n2 �= 0, both

components S1 and S2 contain the nonzero surface pressure and velocity gradients in

both directions. Since no further integration by parts can be performed on the second

term of the domain integral in (11.1.2b), the Dirichlet boundary condition does not

arise. The reason for this is that we have m = 1
2

for p,i , 0th order (2m − 1 = 0) for
the Neumann boundary condition and −( 1

2
)th order (m − 1 = − 1

2
) for the Dirichlet

boundary condition, implying that the pressure may be specified either as Neumann

boundary conditions or as Dirichlet boundary conditions.
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In view of these basic rules, any deviation arbitrarily chosen by practitioners may

lead to incorrect solutions. Moreover, it is cautioned that any boundary nodes with-

out specification of either Dirichlet or Neumann data are automatically construed as

having enforced S(1)
i = S(2)

i = 0, because the finite element analog of the Neumann

boundary vector in (11.1.2b) vanishes if either Dirichlet or Neumann data are not

provided.

The numerical analysis involved in incompressible flows often requires the solution

of Poisson equation for pressure in order to maintain the mass conservation and obtain

accurate solutions of momentum equations. The pressure Poisson equation is obtained

by constructing the divergence of the momentum equation. For incompressible flows,

this operation leads to

p,i i + (�vi, j v j ),i = 0 (11.1.11)

The inner product of (11.1.11) with p becomes

J =
∫

�

p[p,i i + (�vi, j v j ),i ]d� = 0

or

J =
∫

�

p (p,i ni + �vi, j v j ni ) d� −
∫

�

(p,i p,i + � p,i vi, j v j ) d� (11.1.12)

It follows that Neumann boundary conditions are

S(1) = p,i ni = ∂p
∂x

cos � + ∂p
∂y

sin � (11.1.13a)

S(2) = �(vi ni ), j v j = �

(
∂u
∂x

cos � + ∂v

∂x
sin �

)
u + �

(
∂u
∂y

cos � + ∂v

∂y
sin �

)
v

(11.1.13b)

Here S(1) represents the normal surface pressure gradients. These data should be pro-

vided along the boundaries wherever the Dirichlet boundary conditions are not avail-

able. Notice that S(2) vanishes if vi ni = 0 along the boundary nodes. In this case, of

course, the pressure must be specified as Dirichlet boundary conditions alone, contrary

to the case in the momentum equation, where pressure is treated as Neumann boundary

conditions.

For transient problems, the momentum equation is written as

�
∂v j

∂t
+ ∂

∂xi
(�vi v j − �i j ) − � Fj = 0 (11.1.14)

In this case, the initial conditions consist of the initial data at t = 0 along the boundaries

and the domain. For the velocity-pressure solutions of (11.1.1), the required initial

conditions are

vi (xi , 0) = v0
i in � = � ∪ � (11.1.15a)

vi ni (xi , 0) = v0
i ni on � (11.1.15b)

In addition to these initial data, the Neumann boundary conditions of (11.1.4) and

(11.1.5) at t = 0 should also be satisfied. Incompressibility conditions, v0
i,i (xi , 0) = 0 in
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For simplified free-surface conditions between liquid and air, we may assume that

p(liquid)
∼= p(gas) − �

(
∂2�

∂x2
+ ∂2�

∂y2

)

v(liquid)
∼= ∂�

∂t
∂v

∂y(liquid)

∼= 0,
∂T
∂y(liquid)

∼= 0

p(liquid)
∼= p(atm)

In addition, we specify the velocity, pressure, and temperature at the inlet and outlet

as well as the no-slip condition (v = 0) at the wall. More detailed treatments of boundary

conditions associated with surface tension will be given in Chapter 25, Multiphase Flows.

11.1.2 COMPRESSIBLE FLOWS

Compressible flows are characterized by additional terms for dilatation in the stress

tensor and temporal and spatial variations of density.

∂

∂t
(�v j ) + ∂

∂xi
(�vi v j + p�i j − �i j ) − �Fj = 0 (11.1.16a)

∂�

∂t
+ (�vi ),i = 0 (11.1.16b)

with

�i j = �(vi, j + v j,i ) − 2

3
�vk,k�i j

For compressible flows, the normal surface convective stress, S(1)
j , remains the same

as in (11.1.4), but the normal surface traction, S(2)
j , is modified as

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

[
∂u
∂x

n1 + ∂u
∂y

n2 + ∂u
∂x

n1 + ∂v

∂x
n2 − 2

3

(
∂u
∂x

+ ∂v

∂y

)
n1

]

�

[
∂v

∂x
n1 + ∂v

∂y
n2 + ∂u

∂y
n1 + ∂v

∂y
n2 − 2

3

(
∂u
∂x

+ ∂v

∂y

)
n2

] ( j = 1, 2)

(11.1.17)

Thus, equations (11.1.6)–(11.1.9) are written as follows:

For � = 0◦

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

(
4

3

∂u
∂x

− 2

3

∂v

∂y

)

�

(
∂v

∂x
+ ∂u

∂y

) ( j = 1, 2) (11.1.18)
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For � = 180◦

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�

(
4

3

∂u
∂x

− 2

3

∂v

∂y

)

−�

(
∂v

∂x
+ ∂u

∂y

) ( j = 1, 2) (11.1.19)

For � = 90◦

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

(
∂u
∂y

+ ∂v

∂x

)

�

(
4

3

∂v

∂y
− 2

3

∂u
∂x

) ( j = 1, 2) (11.1.20)

For � = 270◦

S(2)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�

(
∂u
∂y

+ ∂v

∂x

)

−�

(
4

3

∂v

∂y
− 2

3

∂u
∂x

) ( j = 1, 2) (11.1.21)

For compressible flows, combined solutions of the pressure Poisson equation are not

required as the enforcement of the incompressibility condition is not necessary. Thus,

the pressure will not be used as Dirichlet boundary conditions. It is still a part of the

Neumann boundary conditions as specified in (11.1.4).

Dirichlet boundary conditions and initial conditions for compressible flows are the

same as the incompressible flows. Enforcement of incompressibility conditions as initial

conditions, however, is no longer necessary.

The elliptic-parabolic nature of (11.1.14) tends toward a hyperbolic type in high-

speed flows if the viscosity effect is negligible, resulting in the Euler equation. In this

case, the outflow boundary conditions are not to be specified but, rather, should be

determined by the calculated upstream flows since the downstream effect toward up-

stream is not allowed. Details were discussed in Section 6.7 and will be covered also in

Section 13.6.6 for compressible flows.

■ CONCLUDING REMARKS

In identifying the Neumann boundary conditions, the conservation form of the mo-

mentum equations is used, in general, where convective terms as well as diffusion terms

are integrated by parts. If the convective terms are not written in conservation form,

however, no integration by parts is performed for the convective terms. In this case,

the Neumann boundary conditions do not arise from the convective terms. This is

the case for incompressible flows. In contrast, the conservation form is more conve-

nient for compressible flows, and integration by parts for the convective term is carried

out, resulting in the Neumann boundary conditions for compressible flows. This rule

does not apply if a special test function (i.e., numerical diffusion test function) is used

to induce artificial dissipation for the convective term as discussed in Section 11.3.
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Specification of boundary conditions required for the Navier-Stokes system of equa-

tions is considerably more complicated, and will be discussed in Chapter 13.

11.2 GENERALIZED GALERKIN METHODS AND TAYLOR-GALERKIN METHODS

11.2.1 LINEARIZED BURGERS’ EQUATIONS

To demonstrate the basic concept of generalized Galerkin methods (GGM), we consider

the linearized Burgers’ equations in the form,

Ri = ∂vi

∂t
+ v j vi, j − 	vi, j j − fi = 0 (i = 1, 2, 3) (11.2.1)

where v j is temporarily held constant in the time-marching steps and/or iteration cy-

cles but updated in the following steps and/or iteration cycles. The standard finite ele-

ment formulation of (11.2.1) with DST approximations was introduced as the GGM in

Section 10.2. This requires the successive inner products of the form

(Ŵ(
), Ei ) = (Ŵ(
), [W�(x), Ri ]) =
∫




Ŵ(
)

[∫
�

W�(x)Ri d�

]
d
 = 0 (11.2.2)

in which W�(x) and Ŵ(
) denote the spatial and temporal test functions, respectively.

Furthermore, the trial functions for nodal values of variables are related as follows:

vi = ��(xi )v�i (11.2.3)

v�i = �̂m(
)vm
�i (11.2.4)

where ��(x) and �̂m(
) denote spatial and temporal trial functions, respectively,


 = t/�t , � = global spatial nodes, and m = local temporal station (n + 1, n, n − 1, etc.).

Setting the spatial test function W� equal to the spatial trial function �� and inte-

grating (11.2.2) by parts in the spatial domain, we obtain∫



Ŵ(
)[A��v̇�i + (B�� + K��)v�i − F�i − G�i ]d
 = 0 (11.2.5)

with

A�� =
∫

�

����d�, B�� =
∫

�

����, j v j d�

K�� =
∫

�

	��, j��, j d� G�i =
∫

�

	
∗
� �

∗
� � d�g�i F�i =

∫
�

����d�f�i

Notice here that all matrices are the same as in Chapter 10 except for B��, which is

called the convection matrix. Choosing a linear variation of a variable in the temporal

domain

v�i = (1 − 
)vn
�i + 
vn+1

�i

we obtain from (11.2.5)

[A�� + ��t(B�� + K��)]vn+1
�i = [A�� − �t(1 − �) (B�� + K��)]vn

�i + �t(F�i + G�i )

(11.2.6)



356 NONLINEAR PROBLEMS/CONVECTION-DOMINATED FLOWS

where the temporal parameter � is defined as

� =

∫ 1

0

Ŵ(
) 
 d
∫ 1

0

Ŵ(
) d


For Ŵ(
) = �(
 − 1/2) or Ŵ(
) = 1 with 0 ≤ 
 ≤ 1, the temporal parameter becomes

� = 1/2. Thus,[
A�� + �t

2
(B�� + K��)

]
vn+1

�i =
[

A�� − �t
2

(B�� + K��)

]
vn

�i + �t(F�i + G�i )

(11.2.7)

We may rearrange (11.2.7) in the form[
A�� + �t

2
(B�� + K��)

] (
vn+1

�i − vn
�i

)
�t

= −(B�� + K��) vn
�i + F�i + G�i (11.2.8)

This is identical to the special case of the Taylor-Galerkin Methods (TGM) reported

by Donea [1984]. If vj in (11.2.1) is no longer held constant, then the temporal trial

functions �̂�(
) or temporal test functions Ŵ(
), or both, may be chosen as higher

order polynomials, which would introduce additional temporal stations as shown in

Section 10.2. Note that the scheme as given by (11.2.8) is implicit and resembles the

Crank-Nicholson scheme. In contrast to (11.2.7) in which � = 1/2 is fixed, we may

choose 0 ≤ � ≤ 1. Such choice is general and the expression given by (11.2.6) is known

as the generalized Galerkin method (GGM) for the linearized convection-diffusion

equation.

To prove that (11.2.8) is the same as the TGM of Donea [1984], we proceed as

follows: Expanding vn+1
i in Taylor series about vn

i , we write

vn+1
i = vn

i + �t
∂vn

i

∂t
+ �t2

2

∂2vn
i

∂t2
+ �t3

6

∂3vn
i

∂t3
+ O(�t4) (11.2.9)

Taking a time derivative of (11.2.1) for the time step n and substituting the result into

the above leads to

vn+1
i − vn

i

�t
=

(
−v j

∂

∂xj
+ 	

∂2

∂xj∂xj

)
vn

i + �t
2

(
−v j

∂

∂xj
+ 	

∂2

∂xj∂xj

)
∂vn

i

∂t

+ �t2

6

(
v j vk

∂2

∂x j∂xk
− 2	v j

∂3

∂x j∂xk∂xk
+ 	2 ∂4

∂x j∂x j∂xk∂xk

)
∂vn

i

∂t
+ f i

(11.2.10a)

with

∂vn
i

∂t
= vn+1

i − vn
i

�t

Although the third order time derivative in (11.2.9) may be useful for the convection

dominated flows without the viscous terms, we shall choose to neglect it for our purpose
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here to establish the analogy between GGM and TGM. Rearranging (11.2.10a) leads

to [
1 − �t

2

(
−v j

∂

∂xj
+ 	

∂2

∂xj∂xj

)]
vn+1

i − vn
i

�t
=

(
−v j

∂

∂xj
+ 	

∂2

∂xj∂xj

)
vn

i + fi

(11.2.10b)

The Galerkin finite element analog for (11.2.10b) yields∫
�

��

{[
1 − �t

2

(
−v j

∂

∂xj
+ 	

∂2

∂xj∂xj

)]
��

(
vn+1

�i − vn
�i

)
�t

+
(

v j
∂

∂xj
− 	

∂2

∂xj∂xj

)
��vn

�i − �� f�i

}
d� = 0 (11.2.10c)

Integrating the above equation by parts, we obtain the result identical to (11.2.8):[
A�� + �t

2
(B�� + K��)

](
vn+1

�i − vn
�i

)
�t

= −(B�� + K��) vn
�i + F�i + G�i (11.2.11a)

which can then be rearranged in the form shown in (11.2.7),[
A�� + �t

2
(B�� + K��)

]
vn+1

�i =
[

A�� − �t
2

(B�� + K��)

]
vn

�i + �t(F�i + G�i )

(11.2.11b)

It has been shown that the GGM approach with the temporal test function given by

Ŵ(
) = �(
 − 1/2) or Ŵ(
) = 1 is identical to TGM proposed by Donea [1984] without

the effect of the third order time derivative in the Taylor series expansion. This analogy

of GGM to TGM does not hold true for the nonlinear Burgers’ equations (v j �= v j ) as

will be demonstrated in Section 11.2.5 in which an explicit numerical diffusion arises in

TGM, contributing to both stability and accuracy for the solution of nonlinear equations

in general. The presence of the third order time derivative in the Taylor series expansion

as originally proposed by Donea [1984] will be discussed in Section 11.2.3 in relation

with the Euler method, leap-frog method, and Crank-Nicolson method.

Numerical Diffusion

In general, for convection dominated flows, numerical diffusion is required to sta-

bilize the solution process. To see whether the algorithm of GGM or TGM as given

by (11.2.8) or (11.2.11a) does provide such a numerical diffusion, we may trace from

(11.2.11b) back to (11.2.10a) with �t2 terms neglected.∫
�

��

(
∂vi

∂t
+ v j vi, j − 	vi, j j − f i

)
d� = −

∫
�

�t
2

v j��, j (vkvi,k − 	vi,kk − f i )d�

in which the difference equation has been converted to the differential equation,

with boundary integrals neglected upon integration by parts in the right-hand side.

Note also that integration by parts was performed only for the convective terms. The

viscous terms and body forces on the right-hand side may be neglected. The GGM

formulation can then be applied to the left-hand side. It is clear that the first term on
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the right-hand side,

C�� =
∫

�

�t
2

vkv j��,k��, j d� =
∫

�

	kj��,k��, j d� (11.2.12a)

represents the numerical diffusion matrix with 	kj = �t
2

vkv j being the artificial viscosity
for convection. The numerical diffusion matrix C�� should be added to the convection

matrix B�� in (11.2.8) particularly for high-speed convection-dominated flows.

B�� =
∫

�

����, j v j d� +
∫

�

	kj��,k��, j d� (11.2.12b)

We shall further discuss this issue for the nonlinear Burgers’ equations in Section 11.2.5.

Note that a variety of approximations in GGM for the temporal test function Ŵ(
)

and the temporal trial functions in (11.2.4) may lead to different forms of numerical

diffusion. Similar consequences arise for TGM if the third order time derivative in the

Taylor series expansion in (11.2.9) is retained.

Remarks: In general, we may consider TGM to be a special case of GGM with

� = 1/2 being chosen in (11.2.6). This is not true in some special cases of TGM as

derived by Donea [1984].

11.2.2 TWO-STEP EXPLICIT SCHEME

Nonlinear problems can be solved explicitly by splitting the equation into two parts

within a time step. Equation (11.2.7) or (11.2.8) may be rewritten in the form

Step 1

A�� X (1)
�i = −(B�� + K��)vn

�i + F�i + G�i (11.2.13a)

Step 2

A�� X (2)
�i = −�t

2
(B�� + K��)X(1)

�i (11.2.13b)

where

X (1)
�i = �v

(1)
�i

�t
, X (2)

�i = �v
(2)
�i − �v

(1)
�i

�t
(11.2.14a,b)

Note that substitution of (11.2.14) into (11.2.13b) recovers (11.2.11) if the following

assumption is made upon convergence:

�v
(2)
�i − �v

(1)
�i = vn+1

�i − vn
�i (11.2.15)

A glance at (11.2.13a) and (11.2.13b) suggests that the solution of (11.2.13a) for

X (1)
�i (Step 1) can be substituted into the right-hand side of (11.2.13b) to determine X (2)

�i
(Step 2). At convergence, it is seen that

�v
(2)
�i

�t
→ �v

(1)
�i

�t
→ �vn+1

�i

�t
= vn+1

�i − vn
�i

�t
∼= 0
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and that (11.2.11b) arises by combining (11.2.13a) with (11.2.13b). This process is known

as the two-step scheme, similar to the Lax-Wendroff scheme, contributing to an increase

in accuracy and/or convergence.

It follows from (11.2.14) and (11.2.15) that the unknowns vn+1
�i can be computed

from

vn+1
�i = vn

�i + �t
(
X (1)

�i + X(2)
�i

)
(11.2.16)

which will then be substituted back into Step 1 (11.2.13a) for the next time step, thus

continuously marching in time until steady-state is reached.

In (11.2.13a) and (11.2.13b) the inverse of the mass matrix A�� would be simple if

we chose to use the so-called lumped mass matrix as follows: Let A(L)
�� be the lumped

mass matrix, A(C)
�� the consistent mass matrix as defined by A�� in (11.2.13).

The lumped mass matrix is diagonal with entries from the tributary areas (sum of

the row contributions). For example, the lumped mass matrix, A(L)
NM, for a triangular

element may be obtained from the consistent mass matrix, A(C)
NM, as follows:

A(C)
NM = A

12

⎡
⎣2 1 1

1 2 1

1 1 2

⎤
⎦

A(L)
NM =

3∑
p=1

A(C)

(N)p�NM = A(L)

(NN)
=

⎡
⎢⎢⎢⎣

A(L)

(11)
0 0

0 A(L)

(22)
0

0 0 A(L)

(33)

⎤
⎥⎥⎥⎦ (11.2.17)

with

A(L)

(11)
= A(C)

(11)
+ A(C)

(12)
+ A(C)

(13)
= 4A

12

A(L)

(22)
= A(C)

(21)
+ A(C)

(22)
+ A(C)

(23)
= 4A

12

A(L)

(33)
= A(C)

(31)
+ A(C)

(32)
+ A(C)

(33)
= 4A

12

Notice here that the index within the parentheses is not associated with summing. Thus

we obtain

A(L)

(NM)
= A

3

⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦

Write (11.2.13a) or (11.2.13b) in the form

A(C)
�� Y�i = W�i

or (
A(C)

�� + A(L)
�� − A(L)

��

)
Y�i = W�i
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which may be rewritten as

A(L)
�� Y�i = W�i − A(C)

�� Y�i + A(L)
�� Y�i

Let the left-hand side and the right-hand side be the r + 1 iterative cycle and the r
iterative cycle, respectively:

A(L)
�� �Yr+1

�i = Wr
�i − A(C)

�� Yr
�i (11.2.18)

where

�Yr+1
�i = Yr+1

�i − Yr
�i

The iterations implied by (11.2.18) may be applied to Step 1 (11.2.13a) and then to

Step 2 (11.2.13b) until each step acquires a satisfactory convergence. It has been shown

that, in many instances, the lumped mass approach often leads to excellent results.

For two-dimensional problems, the A(e)
NM matrix must be expanded so that both

x- and y-direction components of vi can be accommodated. As noted earlier, this may

be achieved by means of the Kronecker delta. This will expand (11.2.18) into a 6 × 6

matrix for triangular elements and an 8 × 8 matrix for quadrilateral elements when

coupled with A��.

To transform the generalized finite element equations given by (11.2.7) to the two-

step solution scheme, we may establish the following procedure. Consider the matrix

form of (11.2.7) written as

Dvn+1 = Evn + �tH (11.2.19)

where

D = A+ B + C, E = A− B − C (11.2.20)

(a) Rearrange (11.2.19) in the form

D
vn+1 − vn

�t
= F

vn

�t
+ H (11.2.21)

with F = E − D
(b) Define

�v(2) − �v(1) = vn+1 − vn (11.2.22)

X(1) = �v(1)

�t
(11.2.23a)

X(2) = �v(2) − �v(1)

�t
(11.2.23b)

(c) Write Step 1

AX(1) = F
vn

�t
+ H (11.2.24)

(d) Write Step 2

AX(2) = (A− D)X(1) (11.2.25)
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It can be shown that substitution of (11.2.24) into (11.2.25) together with (11.2.22)

and (11.2.23) recovers (11.2.21) and subsequently (11.2.19).

If quadratic approximations are used for the temporal domain, then we write

Dvn+1 = Evn + Gvn−1 + �tH (11.2.26)

The two-step scheme becomes

Step 1

AX(1) = F
vn

�t
+ Gvn−1

�t
+ H (11.2.27)

Step 2

AX(2) = (A− D)X(1) (11.2.28)

The data for Gvn−1 are saved from the previous time station and used as additional

source terms. A similar approach can be used for all higher approximations which will

contain the terms of vn−2, vn−3, etc.

If fi is time dependent, and if v j in (11.2.1) is treated as a variable, and not held

constant even during the discrete time step, then the second derivative in the Taylor

series expansion would carry additional terms. In this case, v j on the left-hand side of

(11.2.10b) becomes vn
j , and v j on the right-hand side of (11.2.10b) takes the form with

a fractional step (i.e., n + 1/2),

v j − v
n+ 1

2

j = vn
j + �t

2

∂v j

∂t
(11.2.29)

and

f j − f
n+ 1

2

j = f n
j + �t

2

∂ f j

∂t
(11.2.30)

which would require the three-step solution scheme.

Step 1

A�� X (0)
�i = −1

2
(B�� + K��)vn

�i + F�i + G�i (11.2.31)

with

X (0)
�i = v

n+ 1
2

�i − vn
�i

�t

Step 2

A�� X (1)
�i = −B��v

n+ 1
2

�i − K��vn
�i + F

n+ 1
2

�i + G�i (11.2.32)

Step3

A�� X (2)
�i = −1

2
(B�� + K��)�t X (1)

�i (11.2.33)
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The GGM analog for the three-step scheme requires the use of quadratic functions

in the temporal trial functions �̂m, which will involve �t2 and three time steps, including

a fractional time step.

11.2.3 RELATIONSHIP BETWEEN FEM AND FDM

It is interesting to note that the GGM formulations lead to finite difference results such

as Euler Method, Leapfrog Method, Crank-Nicolson Method, etc. We will examine

these results below.

Euler Method

Consider the convection equation

∂vi

∂t
+ v j vi, j = 0 (11.2.34)

Taking a time derivative of (11.2.34) gives

∂2vi

∂t2
+ v j

(
∂vi

∂t

)
, j

⇒ ∂2vi

∂t2
− v j vkvi,kj = 0 (11.2.35)

A further differentiation of (11.2.35) yields

∂3vi

∂t3
− v j vk

(
∂vi

∂t

)
,kj

= 0 (11.2.36)

Expanding vn+1
i in Taylor series about vn

i to the third order derivative, we obtain

vn+1
i = vn

i + �t
∂vn

i

∂t
+ �t2

2!

∂2vn
i

∂t2
+ �t3

3!

∂3vn
i

∂t3
(11.2.37)

Rearranging (11.2.37) to determine the first derivative of vn
i gives

vn+1
i − vn

i

�t
= ∂vn

i

∂t
+ �t

2

∂2vn
i

∂t2
+ �t2

6

∂3vn
i

∂t3
(11.2.38)

Substituting (11.2.34) through (11.2.36) into (11.2.38) leads to

vn+1
i − vn

i

�t
= −v j v

n
i, j + �t

2
v j vkvn

i,kj + �t2

6
v j vk

(
∂vn

i

∂t

)
,kj

(11.2.39)

with

∂vn
i

∂t
= vn+1

i − vn
i

�t

Equation (11.2.39) may be written as(
1 − �t2

6
v j vk

∂2

∂xj∂xk

)
�vn+1

i

�t
= −v j v

n
i, j + �t

2
v j vkvn

i,kj (11.2.40)

where �vn+1
i = vn+1

i − vn
i .
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We construct the Galerkin finite element integral for (11.2.40) in the form(
A�� + �t2

6
K��

)
�vn+1

�i

�t
= −

(
B�� + �t

2
K��

)
vn

�i + �t
2

G�i (11.2.41)

where

A�� =
∫

�

���� d�, B�� =
∫

�

����, j v j d�,

K�� =
∫

�

v j vk��, j��,k d�,

G�i =
∫

�

∗
� �

∗
� � d�g�i , g�i = (v j vkvi,kn j )�

It should be noted that (11.2.41) is equivalent to the Generalized Galerkin finite element

equations,(
A�� + �t2

6
K��

)
vn+1

�i =
(

A�� − �t B�� − �t2

3
K��

)
vn

�i + �t2

2
G�i (11.2.42)

The two-step solution scheme for (11.2.41) becomes

A�� X (1)
�i = −

(
B�� + �t2

2
K��

)
vn

�i + �t
2

G�i (11.2.43)

A�� X (2)
�i = −�t2

6
K�� X (1)

�i (11.2.44)

with X (1)
�i and X (2)

�i defined as in (11.2.14). Notice that, in dealing with the advection

equation with diffusion, we have included the third order time derivative [see (11.2.37)]

which resulted in the numerical (artificial) diffusion characterized by the second order

spatial derivative in (11.2.40) or the matrix K�� in (11.2.41). The presence of these terms

is responsible for the stability of numerical solution.

Leapfrog Method

The leapfrog method is obtained by writing the Taylor series of vn−1
i about vn

i to the

third order,

vn−1
i = vn

i − �t
∂vn

i

∂t
+ �t2

2!

∂2vn
i

∂t2
− �t3

3!

∂3vn
i

∂t3
(11.2.45)

Subtracting (11.2.45) from (11.2.37) and rearranging, we obtain(
1 − �t2

6
v j vk

∂2

∂xj∂xk

)
�vn+1

i

2�t
= −v j v

n
i, j (11.2.46)

with �vn+1
i = vn+1

i − vn−1
i . The finite element analog of (11.2.46) becomes(

A�� + �t2

6
K��

)
�vn+1

�i

2�t
= −B��vn

�i (11.2.47)

The corresponding Generalized Galerkin finite element equations, neglecting the
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Neumann boundary conditions, are given by(
A�� + �t2

6
K��

)
vn+1

�i = −2�t B��vn
�i +

(
A�� + �t2

6
K��

)
vn−1

�i (11.2.48)

The two-step solution scheme consists of

1

2
A�� X (1)

�i = −�t B��vn
�i (11.2.49)

A�� X (2)
�i = −�t2

6
K�� X (1)

�i (11.2.50)

By definition for the leapfrog method, the variables vn+1
�i are calculated as

vn+1
�i = vn−1

�i + 2�t
(
X (1)

�i + X (2)
�i

)
(11.2.51)

Thus, initially both vn
�i and vn−1

�i are assumed to be known and, for the next time step,

vn
�i becomes vn−1

�i .

The leapfrog scheme may be revised to involve vn
�i instead of vn−1

�i (11.2.51) in the

incremental form. This will alter the process as follows:

(
A�� + �t2

6
K��

)
�vn+1

�i

�t
= 1

�t

[(
−2�t B�� − A�� − �t2

6
K��

)
vn

�i

+
(

A�� + �t2

6
K��

)
vn−1

�i

]
(11.2.52)

The two-step solution scheme is now in the form

A�� X (1)
�i = 1

�t

[(
−2�t B�� − A�� − �t2

6
K��

)
vn

�i +
(

A�� + �t2

6
K��

)
vn−1

�i

]

(11.2.53)

A�� X (2)
�i = −�t2

6
K�� X (1)

�i (11.2.54)

This will then allow the variables vn+1
�i to be calculated as

vn+1
�i = vn

�i + �t
(
X (1)

�i + X (2)
�i

)
(11.2.55)

Crank-Nicolson Method

The Crank-Nicolson method is obtained by writing the Taylor series of vn
i about

vn+1
i to the third order:

vn
i = vn+1

i − �t
∂vn+1

i

∂t
+ �t2

2!

∂2vn+1
i

∂t2
− �t3

3!

∂3vn+1
i

∂t3
(11.2.56)

Making use of the relation

1

2

(
∂vn+1

i

∂t
+ ∂vn

i

∂t

)
= vn+1

i − vn
i

�t
(11.2.57)
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and in view of (11.2.35) and (11.2.36), and subtracting (11.2.56) from (11.2.37), we

arrive at(
1 − �t2

6
v j vk

∂2

∂xj∂xk

)
�vn+1

i

�t
= −v j

2

(
∂vn

i

∂xj
+ ∂vn+1

i

∂xj

)

+ �t
4

v j vk

(
∂2vn

i

∂xj∂xk
− ∂2vn+1

i

∂xj∂xk

)
(11.2.58)

(
A�� − �t2

12
K�� + �t

2
B��

)
vn+1

�i =
(

A�� + �t2

12
K�� − �t

2
B��

)
vn

�i (11.2.59)

This is the implicit Crank-Nicolson scheme. However, we may convert (11.2.59) into a

two-step explicit scheme as follows:

(a) Rewrite the finite element equation in the time-step difference form(
A�� − �t2

12
K�� + �t

2
B��

)
�vn+1

�i

�t
= −B��vn

�i (11.2.60)

(b) The two-step explicit form is written using the procedure described earlier,

A�� X (1)
�i = −B��vn

�i (11.2.61)

A�� X (2)
�i =

(
�t2

12
K�� − �t

2
B��

)
X (1)

�i (11.2.62)

Remarks: Appropriate choices of the finite element test functions for W�, ��, �̂m,

and W(
) enable the finite element analogs of Euler (11.2.42), leapfrog (11.2.48), and

Crank-Nicolson (11.2.59) to be generated without the Taylor series expansion. Other

forms of finite difference schemes may be generated by adding discontinuous functions

to W�, which we shall elaborate in Section 11.3.

11.2.4 CONVERSION OF IMPLICIT SCHEME INTO EXPLICIT SCHEME

It follows from the approaches discussed in previous sections for the explicit schemes

that it is possible to convert all implicit schemes into explicit schemes. Consider the

generalized temporal-spatial finite element equations written in matrix form.

(A+ B)vn+1 = (A+ C)vn + (A+ D)vn−1 + (A+ E)vn−2 + · · · −�t H (11.2.63)

where B = B1 + B2 + · · · , C = C1 + C2 + · · · , D = D1 + D2 + · · · , E = E1 + E2 + · · · ,

etc. Note that various forms of (11.2.63) result from unlimited choices of functions in

��, �̂m, and Ŵ(
) in Section 11.2.

The conversion process consists of the following steps:

(a) Write (11.2.63) in an incremental form,

(A+ B)
�vn+1

�t
= [(A+ C) − (A+ B)]

vn

�t
+ (A+ D)

vn−1

�t

+ (A+ E)
vn−2

�t
+ · · · − H (11.2.64)
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where

�vn+1 = vn+1 − vn (11.2.65)

(b) Step 1 is constructed by rewriting (11.2.64) with all terms other than the mass

matrix A removed from the left-hand side of (11.2.64) and designating �vn+1

as �v(1), called the first increment,

AX(1) = [(A+ C) − (A+ B)]
vn

�t
+ (A+ D)

vn−1

�t
+ · · · − H (11.2.66)

where

X(1) = �v(1)

�t

(c) Step 2 is constructed by setting the product of the mass matrix and the second

increment X(2), which is equated to the variant of the first increment,

AX(2) = [A− (A+ B)]X(1) (11.2.67)

where

X(2) = �vn+1 − �v(1)

�t
(11.2.68)

(d) The variable vn+1 is given by

vn+1 = vn + �t
(
X(1) + X(2)

)
(11.2.69)

A glance at (11.2.69) reveals that, for a steady-state condition, t → ∞, and v = vn+1 =
vn = vn−1 = vn−2 = · · · , we obtain

(B + C + D + E + · · ·)v = H (11.2.70)

Thus, it is expected that a steady-state solution would result as recursive calculations

are carried out consecutively.

11.2.5 TAYLOR-GALERKIN METHODS FOR NONLINEAR BURGERS’ EQUATIONS

Let us consider the nonlinear Burgers’ equations of the form

∂vi

∂t
+ v j vi, j − 	vi, j j = f i (11.2.71)

The Taylor series expansion of (11.2.71) as given in (11.2.9) without the third order

derivative term becomes

�vn+1
i = −�t(v j vi, j − 	vi, j j − f i )

n + �t2

2

[
vk

∂

∂xk
(v j vi, j − 	vi, j j − f i )

+ vi, j (vkv j,k − 	v j,kk − f j ) − 	
∂2

∂x j∂x j
(vkvi,k − 	vi,kk − f i ) + ∂ f i

∂t

]n

(11.2.72)

from which the original differential equation can be recovered in the form,

∂vi

∂t
+ v j vi, j − 	vi, j j − f i = Si (11.2.73)
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where

Si = �t
2

[
vk

∂

∂xk
(v j vi, j − 	vi, j j − f i )

]
(11.2.74)

with higher order derivative terms and products of the gradients in (11.2.72) being

neglected. It is clear that the right-hand side of (11.2.74) appears as numerical diffusion.

Applying the Galerkin integral to the right-hand side of (11.2.74) and integrating

by parts, we obtain∫
�

��Si d� = −�t
2

∫
�

vkv j��,k��, j d�v�i (11.2.75)

where all terms other than the convective terms are negligible in practical applications.

Thus, the numerical diffusion matrix is identified as

C�� =
∫

�

	kj��,k��, j d� (11.2.76)

with the numerical viscosity,

	kj = �t
2

vkv j (11.2.77)

It is interesting to note that, using an entirely different approach, the numerical

diffusion similar to (11.2.76) and (11.2.77) arises in the generalized Petrov-Galerkin

(GPG) methods to be presented in Sections 11.3 and 11.4. More general treatments of

TGM will be covered in Section 13.2.

11.3 NUMERICAL DIFFUSION TEST FUNCTIONS

In GGM described in Section 11.2, various degrees of polynomials (linear, quadratic,

cubic, etc.) may be adopted for desired accuracy of solution. However, in convection-

dominated problems, an adequate amount of numerical diffusion or artificial viscosity

is required for numerical stability. To this end, the so-called streamline-upwind Petrov-

Galerkin (SUPG) method [Heinrich et al., 1977; Hughes and Brooks, 1982] has been

successfully used. In this case, the local finite element test functions consist of standard

Galerkin test functions plus numerical diffusion test functions. There are many forms

of numerical diffusion test functions as reported by Hughes and his co-workers during

the 1980s. A similar approach is referred to as the streamline diffusion method (SDM)

by Johnson [1987].

Computational stability is provided effectively through various forms of SUPG,

SDM, or other similar strategies. All of these approaches are nonstandard Galerkin

methods and, for simplicity, they may be combined into a single name “General-

ized Petrov-Galerkin (GPG) methods. The concept of GPG for the one-dimensional

Burgers’ equation will be introduced first in order to identify a one-dimensional numer-

ical diffusion test function which provides the numerical stability, followed by multi-

dimensional numerical diffusion test functions representing the streamline diffusion

and discontinuity-capturing schemes.
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11.3.1 DERIVATION OF NUMERICAL DIFFUSION TEST FUNCTIONS

The concept of streamline diffusion began with the backward (often called upwinding)

finite difference scheme for the convection-diffusion equation first given by Spalding

[1972]. The idea is to introduce the numerical diffusion in the direction of flow or along

the streamline parallel to the velocity in order to obtain stable solutions. In the following,

we use the convection-diffusion equation to demonstrate the concept of streamline

upwinding or streamline diffusion. Our objective here is to prove that numerical stability

can be achieved by test functions written in the form,

W (e)
N = �

(e)
N + �

(e)
N (11.3.1)

where W (e)
N represents the generalized Petrov-Galerkin test functions which are the sum

of the standard Galerkin test function �
(e)
N and the numerical diffusion test function �

(e)
N .

The numerical diffusion test function �
(e)
N in (11.3.1) is intended for adding numerical

diffusion practiced in the finite difference literature. However, in the sequel, it will

be shown that the derivation of numerical diffusion test functions involves significant

physical aspects of convection-dominated flows.

To elucidate the argument involved in this approach, we look at the unsteady con-

vection equation of the form

∂u
∂t

+ a
∂u
∂x

= 0 (11.3.2)

Substituting (11.3.2) into Taylor series of the type (11.2.9), we obtain

un+1 = un + �t
(

−a
∂un

∂x

)
+ �t2

2

(
a2 ∂2un

∂x2

)
(11.3.3)

If un+1 = un at steady-state, we may set a�t = C�x, where C is the nondimensional

artificial viscosity (equal to Courant number for a = u, or C = u�t/�x), and rewrite

(11.3.3) in the form

a
(

∂u
∂x

− C�x
2

∂2u
∂x2

)
= 0 (11.3.4)

in which the second term of the left-hand side of (11.3.4) represents the numerical

diffusion, equivalent to the artificial viscosity. Denoting � = C/2 and h = �x as the

nondimensional numerical diffusion parameter and the mesh parameter, respectively,

we may construct the following inner product:∫
�

(e)
N a

(
∂u
∂x

− �h
∂2u
∂x2

)
dx = 0 (11.3.5)

Integrating (11.3.5) by parts, we obtain

∫ (
�

(e)
N + �h

∂�
(e)
N

∂x

)
a

∂u
∂x

dx = ∗
�Na�h

∂u
∂x

where the integral on the left-hand side is known as the Petrov-Galerkin integral. For
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with R̂ being the Reynolds number (per unit length) R̂ = �u/� = u/d, where d is the

kinematic viscosity (but will be referred to as diffusivity in the following). Notice that

R̂ = �cpu/k is regarded as the Peclet number if u is taken as temperature. Then d = k/�cp

becomes the thermal diffusivity. We write the local element Petrov-Galerkin integral

for (11.3.11) as∫ h

0

W(e)
N

(
R̂

∂u
∂x

− ∂2u
∂x2

)
dx =

∫ h

0

(
�

(e)
N + �

(e)
N

) (
R̂

∂u
∂x

− ∂2u
∂x2

)
dx = 0 (11.3.12)

Apply integration by parts only to the product with the standard Galerkin test function

�
(e)
N which will then produce a boundary term, whereas the integration of the product

term with the numerical diffusion test function �
(e)
N is to be performed only over the

interior domain, not involving the boundaries.{∫ h

0

[
R̂
(

�
(e)
N

∂�
(e)
M

∂x
+ �h

∂�
(e)
N

∂x
∂�

(e)
M

∂x

)
+ ∂�

(e)
N

∂x
∂�

(e)
M

∂x
− �h

∂�
(e)
N

∂x
∂2�

(e)
M

∂x2

]
dx

}
u(e)

M

= ∗
�

(e)
N

∂u
∂x

∣∣∣∣
h

0

(11.3.13a)

If linear trial functions are used, then the second derivative term vanishes, so that we

have(
B(e)

NM + C(e)
NM

)
u(e)

M + K(e)
NMu(e)

M = G(e)
N (11.3.13b)

where

B(e)
NM =

∫ h

0

R̂�
(e)
N

∂�
(e)
M

∂x
dx

is the standard convection matrix and

C(e)
NM =

∫ h

0

R̂�h
∂�

(e)
N

∂x
∂�

(e)
M

∂x
dx

represents the numerical diffusion matrix implying the numerical diffusion arising from

the convection term. The last integral term K(e)
NM is identified as the physical diffusion

matrix.

K(e)
NM =

∫ h

0

∂�
(e)
N

∂x
∂�

(e)
M

∂x
dx

Evaluating these integrals, we obtain

B(e)
NM + C(e)

NM = R̂
2

[−1 + 2� 1 − 2�

−1 − 2� 1 + 2�

]

K(e)
NM = 1

h

[
1 −1

−1 1

]

Consider a two-element system with nodes at i − 1, i , and i + 1 and the global form

of (11.3.13). Expanding the global equation corresponding to the node at i and assuming
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that the Neumann boundary conditions are unspecified (
∗
�

(e)
N = 0), we obtain[

1 + R
2

(2� + 1)

]
ui−1 − (2 + 2R�) ui +

[
1 + R

2
(2� − 1)

]
ui+1 = 0 (11.3.14)

where R is the local Reynolds number, R = R̂h. Equation (11.3.14) represents the

forward, central, and backward finite difference equations for � = −1/2, � = 0, and

� = 1/2, respectively. The backward difference form (� = 1/2) given by

R̂
ui − ui−1

h
− ui+1 − 2ui + ui−1

h2
= 0 (11.3.15a)

can be modified by transforming the convection term into the central difference form

to identify the numerical diffusion with the coefficient R̂h/2,

R̂
(

ui+1 − ui−1

2h

)
−

(
R̂h
2

+ 1

)(
ui+1 − 2ui + ui−1

h2

)
= 0 (11.3.15b)

This is equivalent to the differential equation

R̂
∂u
∂x

− �̂
∂2u
∂x2

− ∂2u
∂x2

= 0 (11.3.16)

with �̂ = R̂h/2 being the coefficient of numerical viscosity and �̂(∂2u/∂x2) representing

the effect of numerical diffusion. We say that the effect of numerical diffusion is built into

this equation if the backward difference is used. We may consider �̂ as being equivalent

to the artificial viscosity.

To obtain the condition for stability (11.3.14), we proceed as follows: Let G = 1 + R�

and H = R/2. Rewrite (11.3.14) in the form

(G − H)ui+1 − 2Gui + (G + H)ui−1 = 0 (11.3.17)

where we assume the relations at the nodes i + 1, i , and i − 1 as

ui = ci , ui+1 = ci+1, ui−1 = ci−1 (11.3.18a,b,c)

Substituting the above into (11.3.17) yields

(G − H) i+1 − 2Gi + (G + H) i−1 = 0

For i = 1, we obtain the quadratic equation

(G − H)2 − 2G + (G + H) = 0

Solving for , we arrive at two values of 

 =
⎧⎨
⎩

1

G + H
G − H

These results call for two constants in (11.3.18).

Now we revise the relation in (11.3.18a) in the form

ui = c1 + c2

(
G + H
G − H

)i

= c1 + c2

⎡
⎢⎣1 + R

2
(2� + 1)

1 + R
2

(2� − 1)

⎤
⎥⎦

i

(11.3.19)



372 NONLINEAR PROBLEMS/CONVECTION-DOMINATED FLOWS

For stability, the denominator of the c2 term must be positive,

G − H > 0

or

1 + R
2

(2� − 1) > 0 (11.3.20a)

which provides the stability criteria⎧⎨
⎩

� = 0 if R < 2

� ≥ 1

2
− 1

R
if R ≥ 2

(11.3.20b,c)

It is clear that the forward difference with � = −1/2 (11.3.20a) becomes uncon-

ditionally unstable for R > 1, whereas the central difference (� = 0) is conditionally

stable and the backward difference (� = 1/2) provides an unconditional stability. For

accuracy, we set the exact solution as

u = c1 + c2eR̂x

which, for x = hi, becomes

u i = c1 + c2eRi (11.3.21)

Setting (11.3.21) equal to (11.3.19), we obtain the relationship⎡
⎢⎣1 + R

2
(2� + 1)

1 + R
2

(2� − 1)

⎤
⎥⎦

i

= eRi

Taking a natural logarithm of the above leads to

ln
(

G + H
G − H

)
= 2 coth−1

(
G
H

)
= 2 coth−1

(
1 + R�

R/2

)
= R

from which we obtain

2� = coth
(

R
2

)
− 2

R
(11.3.22)

with

� = 1

2
C = 1

2
� (11.3.23)

This is the criterion for accuracy. Here, the one-dimensional numerical diffusion pa-

rameter �, which assures the accuracy, is found to be a function of the local Reynolds

number. It should be noted that the value of � is one-half of that in Heinrich et al. [1977],

and � = C, called the effective numerical diffusion parameter, is indeed the Courant

number.

Substituting (11.3.23) into (11.3.22) leads to

� = cothH − 1

H
(11.3.24)
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Figure 11.3.2 Effective numerical diffusivity �.

It can be shown that, expanding cothH in infinite series and retaining terms of fourth

order accuracy in H (doubly asymptotic approximation) results in

� = H/3, if −3 ≤ H ≤ 3 (11.3.25a)

� = sgn H, if |H| > 3 (11.3.25b)

The values of � determined by (11.3.20), (11.3.24), and (11.3.25) are referred to as

the critical value, optimal value, and higher order value, respectively (Figure 11.3.2)

[Heinrich et al., 1977; Brooks and Hughes, 1982]. It is seen that the doubly asymptotic

approximation (11.3.25) is the simpler and practical approach.

It follows from these observations that, for two-dimensional isoparametric elements,

the numerical diffusion parameters �
 and �� are defined as (Figure 11.3.3)

�
 = 1

2
�
 (11.3.26a)

�� = 1

2
�� (11.3.26b)

with the two-dimensional effective numerical diffusion parameters, �
 and ��, defined

as

�
 = coth

(
R


2

)
− 2

R

(11.3.27a)

�� = coth

(
R�

2

)
− 2

R�
(11.3.27b)

where the local Reynolds numbers in the 
 and � directions are of the form

R
 = v
 h


d
, R� = v�h�

d
For multidimensional convection-dominated problems, the directional properties of

velocity are expected to play a key role. The numerical diffusion must be provided in

the direction of flow or along the streamlines parallel to the velocity in both steady and
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general identification appears to be in order. Thus, it is suggested that the term “gener-

alized Petrov-Galerkin (GPG)” may be a reasonable compromise.

For two-dimensional elements with isoparametric coordinates (Figure 11.3.3), we

express the velocity components as

v
 = v · e
 , v� = v · e�

where the isoparametric unit vectors e
 and e� are given by

e
 = 1√
J 


∂xi

∂

ii , e� = 1√

J �

∂xi

∂�
ii , J
 =

(
∂x
∂


)2

+
(

∂y
∂


)2

, J� =
(

∂x
∂�

)2

+
(

∂y
∂�

)2

It follows from (11.3.27) that the two-dimensional numerical diffusion test function

reduces to that of one dimension given by (11.3.9):

�
(e)
N = �v1�

(e)

N,1 =
(

�hu
u2

)
u

∂�
(e)
N

∂x
= �h

∂�
(e)
N

∂x
(11.3.31)

which establishes the complete link between the one- and two-dimensional aspects of

the numerical diffusion test functions. It is interesting to note that, in due course of

derivation of the one-dimensional numerical diffusion test function (11.3.9), the notion

of time scale for the numerical diffusion factor � did not arise, but is now taken into

account as the numerical diffusion must be applied in the direction of flow with velocity

specified in multidimensional cases.

Due to the fact that the gradient ∇�
(e)
N is included in �

(e)
N , it is clear that the use of

the generalized test functions (11.3.1) brings the numerical diffusion automatically into

the formulation. This is equivalent to the retention of artificial viscosity terms in FDM.

Using the similar procedure, the test functions for 3-D problems (with isoparametric

coordinates 
 , �, and �) can be obtained. The three-dimensional test function may still

be written in the general form (11.3.29).

�
(e)
N = �vi�

(e)
N,i , (i = 1, 2, 3) (11.3.32)

where

� = 1

6
(�
 h
 v
 + ��h�v� + �� h� v� )/S (11.3.33)

�� = coth
(

R�

2

)
− 2

R�
, R� = v� h�

d
, S = u2 + v2 + w2

Thus

�
(e)
N = �

(
u

∂�
(e)
N

∂x
+ v

∂�
(e)
N

∂y
+ w

∂�
(e)
N

∂z

)

Once again, it should be emphasized that the numerical diffusion is activated along

the stream line direction, which provides numerical stability. However, it has been

observed that, as the convection domination becomes significant, it is not possible to

eliminate entirely some numerical oscillations. We require additional measures in order

to resolve numerical stability, known as the discontinuity-capturing scheme, which is

discussed next.
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negative. In this case we choose

� (b) − � = max
(
0, � (b) − �

)
(11.3.39)

so that � (b) − � always remains positive. Further details are found in Hughes et al. [1986].

11.4 GENERALIZED PETROV-GALERKIN (GPG) METHODS

11.4.1 GENERALIZED PETROV-GALERKIN METHODS FOR UNSTEADY PROBLEMS

For illustration, let us consider the Burgers’ equation in the form,

Ri = ∂vi

∂t
+ vi, j v j − 	vi, j j − f i = 0

The finite element formulation of the generalized Petrov-Galerkin (GPG) methods

using the numerical diffusion test functions projected on the discontinuous temporal

test function or DST as given in (8.2.41) or (10.2.5) is written in the form.∫



Ŵ(
)

∫
�

W� Ri d�d
 = 0 (11.4.1)

Here, the temporal test functions Ŵ(
) were discussed in Section 10.2.1, whereas the

Petrov-Galerkin test functions W� are the global form of the local test functions as the

sum of the standard Galerkin test functions and the numerical diffusion test function

for streamline diffusion.

W� = �� + �(a)
� (11.4.2)

If the discontinuity-capturing scheme is desired, this can be added to (11.4.1) by

constructing the product of �
(b)
� and the convection term of the residual, leading to the

GPG equations of the form,∫



Ŵ(
)

∫
�

[(
�� + �(a)

�

)(∂vi

∂t
+ vi, j v j − 	vi, j j − f i

)
+ �(b)

� v j vi, j

]
d�d
 = 0

(11.4.3)

Note that the integration by parts is to be performed only with respect to the Galerkin

test functions, which will lead to the Neumann boundary conditions, whereas those terms

of the residual associated with numerical diffusion test functions will not be integrated

by parts since they should be contained within the elements as a measure of numerical

diffusion. Thus, the GPG integral takes the form, known as the variational equation,∫



Ŵ(
)

[∫
�

(
����

∂v�i

∂t
+ v j����, j v�i + 	��, j��, j v�i − �� f i

)
d�

−
∫

�

�∗
�	vi, j n j d�

]
d
 +

∫



Ŵ(
)

∫
�

�vk��,k

(
∂��v�i

∂t
+ v j��, j v�i

− 	��, j j v�i − f i

)
d�d
 +

∫



Ŵ(
)

∫
�

� (b)vkv j��,k��, j v�i d�d
 = 0 (11.4.4)

The first integral indicates the Galerkin integral, with the second representing

the streamline diffusion, and the third integral indicates the discontinuity-capturing.
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Assume that the trial function is linear, independent of time, with the numerical diffusion

due to the source term being negligible. Furthermore, if the temporal test function,

W(
) = �(
 − 1/2) or W(
) = 1 is used and the variation of nodal values of the variables

vi is linear, then we obtain [see (10.2.13) or (11.2.6)]

[A�� + ��t(B�� + C�� + K��)] vn+1
�i = [A�� − (1 − �)�t(B�� + C�� + K��)] vn

�i

+ �t(F�i + G�i ) (11.4.5)

where the definitions of all terms are shown in Section 11.2 except that various forms

of the numerical diffusion matrix, C��, are given below.

C�� =
∫

�

�vkv j��,k��, j d� (11.4.6a)

for streamline diffusion, and

C�� =
∫

�

(
� + � (b)

)
vkv j��,k��, j d� (11.4.6b)

for combined streamline diffusion and discontinuity-capturing. It is seen that the nu-

merical difffusion factor � or � + � (b) in GPG corresponds to �t/2 in (11.2.76) for TGM,

but is much more complicated and actually flowfield-dependent. Note also that effects

of numerical diffusion associated with terms other than convection are neglected in

(11.4.5). The complexity of the numerical diffusion factor increases significantly for the

case of the Navier-Stokes system of equations as discussed in Section 13.3.

Various options for temporal approximations or higher order accuracy may be se-

lected as discussed in Section 10.2. For the case of streamline diffusion (11.4.6a) with the

temporal parameter, � = 1, and linear trial and test functions of finite elements, the ex-

pression given by (11.4.5) is identical to equation 25 of Shakib and Hughes [1991] for the

constant-in-time approximations of the space-time Galerkin/least squares (GLS) in one-

dimensional problems. The GLS formulation will be described in the following section.

11.4.2 SPACE-TIME GALERKIN/LEAST SQUARES METHODS

The formal discussion of the least squares methods (LSM) of obtaining the FEM equa-

tions will be presented in the later chapters. However, in order to understand the

Galerkin/least squares (GLS) methods reported by Hughes and his co-workers, we ex-

amine briefly a basic procedure for the least squares formulation. First, let us introduce

the least squares variational function,

� =
∫

�

1

2
Rj Rj d�

which is then to be minimized with respect to the nodal variables v�i . In this process,

we multiply � by the numerical diffusion factor, � .

�� = ∂��

∂v�i
�v�i = 0 (11.4.7)

or

∂��

∂v�i
= �

∫
�

∂ Rj

∂v�i
Rj d� = 0 (11.4.8)
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Performing the differentiation in (11.4.8) and applying the temporal approximations,

we obtain∫



Ŵ(
)

∫
�

�

(
∂

∂t
+ vk

∂

∂xk
− 	

∂2

∂xk∂xk

)
��

(
∂vi

∂t
+ v j vi, j − 	vi, j j − f i

)
d�d
 = 0

(11.4.9)

which may be written as∫



Ŵ(
)

∫
�

�(L��)(Lvi − f i ) d�d
 = 0 (11.4.10)

where L is the differential operator,

L = ∂

∂t
+ vk

∂

∂xk
− 	

∂2

∂xk∂xk
(11.4.11)

At this point, we add the least squares integral (11.4.10) and the discontinuity-capturing

term as developed in Section 11.3.3 to the standard Galerkin integral. If we choose

only the convective term in (11.4.11), then, these steps lead to the form identical to the

generalized Petrov-Galerkin scheme given by (11.4.4). The sum of the standard Galerkin

integral, the discontinuity capturing term, and the least squares integral represented by

(11.4.10) is referred to as the space-time Galerkin/least squares (GLS) methods [Hauke

and Hughes, 1998]. Note that the contributions from additional terms other than the

convective terms in (11.4.11) are negligible.

The space-time GLS formulation is another form of generalized Petrov-Galerkin

(GPG) methods in which the only difference from the GPG methods of Section 11.4.1

is the numerical diffusion test functions for streamline diffusion,

�(a)
� = � L�� (11.4.12)

where the numerical diffusion factor � can be constructed by introducing the local

curvilinear coordinate contravariant metric tensor [Shakib and Hughes, 1991],

gi j =
(

∂xk

∂
 i

∂xk

∂
 j

)−1

(11.4.13)

With some algebra, it can be shown that one possible option for � is of the form

� =
[(

2

�t

)2

+
(

2|vi |
|hi |

)2

+ 9

(
4	

|hi |2
)2]− 1

2

(11.4.14)

where hi denotes the average element size in local coordinates. Note that if only the

convective term is chosen in (11.4.9), then the GLS formulation becomes identical to the

GPG formulation given by (11.4.4). The standard least squares methods will be discussed

in Section 12.1.8 for incompressible flows and in Section 14.2 for compressible flows.

Applications of GPG to the Navier-Stokes system of equations require some mod-

ifications for the numerical diffusion test functions in which entropy variables can be

employed to advantage. This subject will be discussed in Section 13.4.

Remarks: The temporal integral with the temporal test function Ŵ(
) first intro-

duced in (10.2.5) plays the role identical to the process referred to as the discontinuous

space-time integral [Shakib and Hughes, 1991; Tezduyar, 1997]. Many possible options
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of this temporal test function can be chosen (Tables 10.2.1 and 10.2.2). Explicit forms of

integrals (11.4.4) plus the least squares integrals (11.4.9) as applied to the Navier-Stokes

system of equations are shown in (13.3.19).

11.5 SOLUTIONS OF NONLINEAR AND TIME-DEPENDENT EQUATIONS

AND ELEMENT-BY-ELEMENT APPROACH

As was shown in Section 10.3.2, the global assembly of local stiffness matrices can

be avoided via the element-by-element (EBE) scheme. In dealing with nonlinear and

time-dependent equations, however, some modifications are required. We discuss in this

section the Newton-Raphson methods of solving nonlinear time-dependent equations,

followed by the generalized minimal residual (GMRES) equation solver and EBE

scheme.

11.5.1 NEWTON-RAPHSON METHODS

Recall that in Section 11.2.1 we held v j constant in v j vi, j , which was meant to be updated

in each step of calculations. Otherwise, GGM or GPG, methods described in the previous

sections, must be modified in order to solve nonlinear equations. For example, we may

write (11.2.6) of the GGM formulation in the form where v j is no longer held constant.

E�i = A��vn+1
�i + ��t

(
B�� j� vn+1

� j vn+1
�i + K��vn+1

�i

) − A��vn
�i

+ (1 − �)�t
(
B�� j� vn

� j v
n
�i + K��vn

�i

) − �t(F�i + G�i ) = 0 (11.5.1)

with

B�� j� =
∫

�

����, j�� d� (11.5.2)

This form is based on the assumption that the squares and products of velocity compo-

nents vary linearly within the time step as in (11.2.6),

vn+1
� j vn+1

�i = (1 − 
)vn
� j v

n
�i + 
vn+1

� j vn+1
�i (11.5.3)

One of the most efficient approaches to solve nonlinear equations is the Newton-

Raphson method developed from the Taylor series expansion of the residual of the type

in (11.5.1).

En+1,r+1
�i = En+1,r

�i + ∂ En+1,r
�i

∂vn+1,r
� j

�vn+1,r+1
� j + · · · = 0 (11.5.4)

which implies that the residual at a given time station n + 1 as incremented to the

r + 1 iteration cycle from the previous cycle r should vanish if (11.5.1) is to be satisfied.

Retaining only up to and including the first order term in (11.5.4), we obtain

J n+1,r
��i j �vn+1,r+1

� j = −En+1,r
�i (11.5.5)

where

�vn+1,r+1
� j = vn+1,r+1

� j − vn+1,r
� j (11.5.6)
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and J n+1,r
��i j is the Jacobian,

J n+1,r
��i j = ∂ En+1,r

�i

∂vn+1,r
� j

or

J n+1,r
��i j = A��

∂vn+1,r
�i

∂vn+1,r
� j

+ ��t

[
B��k�

(
∂vn+1,r

�k

∂vn+1,r
� j

vn+1,r
�i + vn+1,r

�k

∂vn+1,r
�i

∂vn+1,r
� j

)
+ K��

∂vn+1,r
�i

∂vn+1,r
� j

]

= A������i j + ��t
[
B��k�

(
����kj v

n+1,r
�i + vn+1,r

�k ����i j
) + K������i j

]
= A���i j + ��t

[
B�� j�vn+1,r

� i + B��k� �i j v
n+1,r
�k + K���i j

]
(11.5.7)

with

B�� j� =
∫

�

����, j�� d�, B��k� =
∫

�

����,k�� d�

The Newton-Raphson procedure described above may be simplified by revising the

Jacobian matrix and the right-hand side residual as follows:

J n+1,r
��i j = A���i j + �t

2
(B��i j + K��i j )

with

B�� =
∫

�

����, j v j d�

and (11.5.1) being replaced by

En+1,r
�i = A��vn+1

�i + �t
2

(B�� + K��)vn+1
�i − A��vn

�i + �t
2

(B�� + K��)vn
�i

− �t(F�i + G�i ) = A���vn+1,r
�i + �t

2
(B�� + K��)�vn+1,r

�i − �t(F�i + G�i )

The Newton-Raphson iterations are performed using (11.5.5) within each time step

until convergence which requires that �vn+1,r+1
� j

∼= 0 in (11.5.5) before proceeding to

the next time step in (11.5.7).

11.5.2 ELEMENT-BY-ELEMENT SOLUTION SCHEME FOR NONLINEAR TIME
DEPENDENT FEM EQUATIONS

The linear and nonlinear simultaneous algebraic equations arising from the entire as-

sembled global system of FEM formulations may be solved using direct or iterative

methods. For a very large system, iterative methods are preferable to direct methods.

Furthermore, it is often necessary to devise special techniques such as the frontal meth-

ods [Irons, 1970; Hood, 1976] or element-by-element (EBE) solution methods [Fox and

Stanton, 1968; Irons, 1970]. In these methods, the standard assembly process of local

stiffness matrices is not necessary. Instead, the product of a matrix by a vector can be ob-

tained by assembling the product of local element matrices and the corresponding part

of the vector, thus reducing the cost of computer time and storage. Initial contributions

of the EBE concept to a large system of equations include Ortiz, Pinsky, and Taylor
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[1983], Hughes, Frencz, and Hallquist [1987], Nour-Omid [1984], and Nour-Omid and

Parlett [1985], among others.

Recall that we discussed the EBE algorithm for the linear equations in Section 10.3.

For nonlinear stiffness matrices and time dependent problems, the procedure for EBE

must be modified. These topics are elaborated below.

If the system of equations is nonlinear, then we may replace the preconditioner D��

(see Section 10.3.2) by the Newton-Raphson Jacobian matrix. The global FEM nodal

error can be written as

E� = K��U� − F� (11.5.8)

Applying the Newton-Raphson scheme as shown in Section 11.5.1, we may rewrite

(10.3.15) in the form

Ur+1
� = Ur

� − J−1
�� (F� − F�)r (11.5.9)

where the EBE scheme is applied to the stiffness matrix as presented in Section 10.3.2

and the Jacobian matrix J�� is given by

J�� = ∂ E�

∂U�
(11.5.10)

which is considered as the preconditioning matrix. Here, as shown in (10.3.17), we may

replace J�� in (11.5.9) by the main diagonal of J�� so that

Ur+1
� = Ur

� − J−1
(��)

(F� − F�)r (11.5.11)

The solution is obtained similarly as in (10.3.17) except that J(��) and F� are nonlinear

and must be updated at each iteration. Note that F� is converted from the EBE-based

stiffness matrices.

In order to improve the solution accuracy, we may use the preconditioned conjugate

gradient (PCG) method or the method known as the Lanczos/ORTHORES solver

[Jea and Young, 1983]. In this method, begin with a starting value Uo
� and compute

Ur+1
� = ar+1

(
br+1 Dr

� + Ur
�

) + (1 − ar+1)Ur
� (11.5.12)

with

br+1 =
(
Dr

� Er
�

)
(
Dr

� K�� Dr
�

) r = 0, 1, . . .

ar+1 =

⎧⎪⎨
⎪⎩

1 r = 0[
1 − br+1

br

(
Dr

� Er
�

)
(Dr−1

� Er−1
� )

1

ar

]−1

r ≥ 1

Er
� =

{
F� − K��Uo

� r = 0

ar
(−br K�� D� + Er−1

�

) + (1 − ar )Er−2
� r = 1, 2, . . .

Dr
� = Q−1

�� Er
� r ≥ 0 (11.5.13)

where Q�� is the Jacobi preconditioner,

Q�� = dia(K��) (11.5.14)
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Thus, the inverse of Q�� is the reciprocal of the diagonal of K�� which can be partitioned

for EBE computations.

The preconditioner may be constructed from the square root of the main diagonal

of the stiffness matrix. To this end, we write (11.5.11) in the form

E� = F� − K��U� (11.5.15)

with

K�� = W
− 1

2
�� K��W

− 1
2

�� U� = W
− 1

2

�� U�

F� =
E⋃

e=1

F
(e)

N �
(e)
N� F

(e)

N = W
(e) 1

2

NR F (e)
R

W(e)
NR = dia

(
K(e)

NR

)
For known initial solution vector Uo

� , compute

Eo
� = F� − K��Uo

� (11.5.16)

Subsequent steps are the same as in (11.5.15). The final solution is obtained as

U� = W
− 1

2

�� U� = dia(K��)− 1
2 U� (11.5.17)

The Lanczos/ORTHOMIN solver [Jea and Young, 1983] may be used. In this scheme,

the preconditioning processes (11.5.15) through (11.5.16) are used together with the

following steps:

Step 1

Eo
� = F� − K��Uo

�

Po
� = Eo

�

Do
� = P̃o

� = Eo
�

bo =
(
Do

� Eo
�

)
(
Do

� K�� Do
�

)
U1

� = Uo
� + boPo

�

Step 2

br =
(
Dr

� Er
�

)
(
Dr

� K�� Dr
�

)
Pr

� = Er
� + b

r
Pr−1

�

P̃
r
� = Dr

� + b
r
P̃

r−1

�

b
r =

(
Dr

� Er
�

)
(
Dr−1

� Er−1
�

)
Er+1

� = Er
� − b

r
K�� Pr

�

Dr+1
� = Dr

� − br K�� P
r
�

Ur+1
� = Ur

� + brPr
�
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Iterative solutions through the above steps lead to the final converged solution as

U� = W
− 1

2

�� U� = dia(K��)− 1
2 U� (11.5.18)

For time-dependent problems, we may consider the main diagonal of the mass matrix

as the preconditioner. For example, the matrix equation

(M�� + ��t K��)U n+1
� = [M�� + (1 − �)�t K��]U n

� + �t F� (11.5.19)

can be written as(
��� + ��t M

− 1
2

�� K��M
− 1

2

��

)
U

n+1

� =
[
��� − (1 − �)�t M

− 1
2

�� K��M
− 1

2

��

]
U

n
� + �t F�

(11.5.20)

where U
n
� = M

1
2

��U� and F� = M
− 1

2

�� F�. Note that the eigenvalues of (11.5.22) are the

same as those of (11.5.20) such that

|��� + ��t M�� K��| =
∣∣∣M− 1

2
��

(
��� + ��t M

− 1
2

�� K��M��

)
M

− 1
2

��

∣∣∣ (11.5.21)

Rewriting (11.5.15) in the form

E� = A��U
n+1

� − B��U
n
� − �t F� (11.5.22)

it is now possible to apply steps 1 and 2 of the steady-state case with initial and boundary

conditions applied to (11.5.22).

11.5.3 GENERALIZED MINIMAL RESIDUAL ALGORITHM

The conjugate gradient method discussed in Section 10.3.1 is accurate and efficient

for linear symmetric matrix equations. However, for problems in CFD where nonsym-

metric nonlinear, indefinite matrices are involved, the Generalized Minimal Residual

(GMRES) algorithm has been proved to be efficient [Saad and Schultz, 1986; Saad,

1996]. This method is based on the property of minimizing the norm of the residual

vector over a Krylov space. The Krylov space is a general concept based on the simple

observation that in any sequence of iterates there will be a smallest set of consecutive

iterates which are linearly dependent, and that the coefficients of a vanishing combina-

tion are the coefficients of a divisor to the characteristic polynomial. See Householder

[1964] for a detailed discussion of the Krylov space.

For the purpose of our discussion, let us consider the global form of the finite element

equations in the form,

K��U� = F� (11.5.23)

in which preconditioning through the EBE scheme is to be implemented as in Sec-

tion 11.5.2.

One of the most effective iteration methods for solving large sparse asymmetric lin-

ear and nonlinear systems of equations is a combination of the CGM with preconditions

in minimizing the norm of residual vector over a Krylov space

K(r) = span
[
U0, KU0, K2U0 . . . , K(r−1)U0

]
(11.5.24)
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This algorithm is a generalization of the MINRES [Paige and Saunders, 1975] for solving

nonsymmetric linear systems and Arnoldi process [Arnoldi, 1951] which is an analogue

of the Lanczos algorithm for nonsymmetric matrices [Lanczos, 1950]. In the GMRES

scheme, we determine U(o)
� + U� where U(o)

� is the initial guess and U� is a member of

the Krylov space K of dimension r such that the L2 norm error

‖E�‖ = ∥∥F� − K��

(
U(o)

� + U�

)∥∥ (11.5.25)

is minimized. Here, we use a smaller value for r and restarting the algorithm after every

r step; thereby, the amount of storage required can be minimized.

The step-by-step GMRES scheme is as follows:

First, let us define:

E(r)
� = total error vector

E
(i)

� = error coefficient vector∥∥E( j)
�

∥∥ = normed error

Ẽ
( j)

� = adjusted error∥∥Ẽ
( j)

�

∥∥ = normed adjusted error

a(i, j) = normed error coefficient

y( j) = minimizer error vector

(1) Choose U(o)
� and compute

E(o)
� = F� − K��U(0)

� = F� − F (0)
� , F� =

E⋃
e=1

F (0)(e)
N �

(e)
N�,

F (0)(e)
N = K(e)

NMU(0)(e)
M

E
(1)

� = E(o)
�

/∥∥E(o)
�

∥∥ (Gram-Schmidt orthogonalization)

(2) Iterate for i = 1, 2, . . . r

a(i+1, j) = Ẽ(i+1)
� E( j)

� = K�� E
(i)

� E
( j)

� , j = 1, 2, . . . , i

Ẽ
(i)

� = K�� E
(i)

� −
i∑

j=1

a(i+1, j) E
( j)

�

E
(i+1)

� = Ẽ
(i)

�

/∥∥Ẽ(i)
�

∥∥
(3) Approximate solution:

Let us consider a matrix consisting of the columns of residuals in the form

B(r)
�
 =

⎡
⎢⎢⎢⎢⎣

E(1)

1 E(2)

1 · · · E(r)

1

E(1)
2 E(2)

2 · · · E(r)
2. . .. . .. . .

E(1)
n E(2)

n · · · E(r)
n

⎤
⎥⎥⎥⎥⎦ (11.5.26)



386 NONLINEAR PROBLEMS/CONVECTION-DOMINATED FLOWS

Then, it can be shown that

K�� B(r,r)
�
 = B(r,r+1)

�� H(r+1,r)
�


(11.5.27)

where H(r+1,r)
�
 is the upper Hessenberg matrix of the form

H(r+1,1)
�
 =

⎡
⎢⎢⎢⎢⎢⎣

a(1,1) a(2,1) · · a(r,1)∥∥Ẽ(1)
�

∥∥ a(2,2) · · a(r,2)

0
∥∥Ẽ(2)

�

∥∥ · · a(r,3)

. . . . .

. . . . .

0 0 · · ∥∥Ẽ(r)
∥∥

⎤
⎥⎥⎥⎥⎥⎦ (11.5.28)

Here, the idea is to find a vector y
 which will minimize the residual error as

follows:

min
∥∥F� − K��

(
U(0)

� + E�

)∥∥ = min
∥∥E(0)

� − K�� B(r,r)
�
 y


∥∥
= ∥∥B(r+1)

��

(
e� − H(r+1)

�
 y


)∥∥
= ∥∥e� − H(r+1)

�
 y


∥∥ ∼= 0 (11.5.29)

with

e� = {∥∥E(1)
�

∥∥, 0, . . . 0
}T (11.5.30)

y
 = H−1
�
 e�

(11.5.31)

The minimization process above does not provide the approximate solution explic-

itly at each step. Thus, it is difficult to determine when to stop. This may be simplified

using the so-called Q-R algorithm as suggested by Saad and Schultz [1986]. In this

approach, we utilize the Givens-Householder rotation matrix, R��, such that

H�
 = R��H�
 (11.5.32)

where

R�
 = Rr Rr−1 . . . .R1

R�� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

.

.

1

cr sr

−sr cr

1

.

.

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.5.33)

with c2
r + s2

r = 1 and the size of the matrix being (m + 1) × (m × 1) for m steps of the

GMRES iterations. The scalars cr and sr of the r th rotation Rr , being orthogonal,
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are defined as

cr = Hrr√
(Hrr )2 + H2

r+1,r

, sr = Hr+1,r√(
(Hrr )2 + H2

r+1,r

) (11.5.34)

For example, let us assume r steps of the GMRES iterations so that (11.5.28) is written

as ∥∥e� − Hr+1
�
 y


∥∥ = ∥∥R�


(
e� − Hr+1

�
 y


)∥∥ = ∥∥e� − Hr+1
�
 y


∥∥ (11.5.35)

leading to the minimization,

min
∥∥e� − Hr+1

�
 y


∥∥ = ∣∣er+1
�

∣∣ (11.5.36)

and y
 satisfies⎡
⎢⎢⎢⎢⎣

H1,1 · · H1,r−1 H1,r

0 · · · ·
0 0 · · ·
0 0 0 Hr−1,r−1 Hr−1,r

0 0 0 0 Hr,r

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y1

·
·

yr−1

yr

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

e1·
·

er−1

er

⎤
⎥⎥⎥⎥⎦ (11.5.37)

in which the back substitution provides the inverse required in (11.5.31).

To obtain the Hessenberg matrix in (11.5.37), we proceed as follows. If m = 5,

then we have

H5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

h32 h33 h34 h35

h43 h44 h45

h54 h55

h65

⎤
⎥⎥⎥⎥⎥⎥⎦

(11.5.38)

h(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h11

h21

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a(1,1)

‖Ẽ�‖
0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(11.5.39)

r1 = (
h2

11 + h2
21

)1/2
, c1 = h11/r1, s1 = h21/r1

The first column of H5 becomes

h(1) = R1h(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, h
(m) = RmRm−1 · · · R2h

(1)

Similarly,

e(1)
� = R1e(0)

� , e(m) = RmRm−1 · · · R2e(0)
�
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This process leads to the tridiagonalized form,

H
(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(5)

11 h(5)

12 h(5)

13 h(5)

14 h(5)

15

h(5)
22 h(5)

23 h(5)
24 h(5)

25

h(5)
33 h(5)

34 h(5)

35

h(5)
44 h(5)

45

h(5)

55

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.5.40)

which is then inserted in (11.5.37) to determine y
 , required in (11.5.31).

(4) Calculate the error residuals U
(r)

� ,

E(r)
� = E�r − yr

(5) The converged solution is obtained as

U� = Uo
� + E(r)

�

Example 11.5.1

Solve the following equations with an unsymmetric stiffness matrix using the GMRES

algorithm. Compare with the exact solution: U1 = 1, U2 = 2, U3 = 3.⎡
⎣ 3 2 −2

−4 −1 1

5 −2 −1

⎤
⎦

⎡
⎣U1

U2

U3

⎤
⎦ =

⎡
⎣ 1

−3

−2

⎤
⎦

Solution:
Note that the EBE process is omitted here for simplicity. (The global matrix equation

is used instead of the EBE column vector.) The EBE process must be used for a large

system of equations. See Section 11.5.4 for EBE implementations.

1. Choose U(0)
� =

⎡
⎣3

2
1

⎤
⎦ (This is a deliberate choice to be much different from the

exact solution.)

2. Compute

E(0)
� = F� − K��U(0)

� =
⎡
⎣−10

10

−12

⎤
⎦ ∥∥E(0)

�

∥∥ =
√

344 = 18.5472

E
(1)

� = E(0)
�∥∥E(0)
�

∥∥ =
⎡
⎣−0.5392

0.5392

−0.6470

⎤
⎦

3. Iterate for i = 1, 2, . . . , r
(a) i = 1:

Ẽ(1)
� = K�� E

(1)

� =
⎡
⎣ 0.7543

0.9705

−3.1272

⎤
⎦ For j = 1, . . . , i :
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a(1,1) = Ẽ(1)
� E

(1)

� = 2.1395

Ẽ(1)
� = Ẽ(1)

� − a(1,1) E
(1)

� =
⎡
⎣ 1.9084

−0.1831

−1.7429

⎤
⎦

∥∥Ẽ(1)
�

∥∥ = 2.5910

E
(2)

� = Ẽ(1)
�∥∥Ẽ(1)
�

∥∥ =
⎡
⎣ 0.7366

−0.0707

−0.6727

⎤
⎦

(b) i = 2:

Ẽ(2)
� = K�� E

(2)

� =
⎡
⎣ 3.4137

−3.5482

4.4968

⎤
⎦

For j = 1, 2 Do

j = 1:

a(2,1) = Ẽ(2)
� E

(1)

� = −6.6630

Ẽ(2)
� = Ẽ(2)

� − a(2,1) E
(1)

� =
⎡
⎣−0.1788

0.0442

0.1858

⎤
⎦

j = 2:

a(2,2) = Ẽ(2)
� E

(2)

� = −0.2598

Ẽ(2)
� = Ẽ(2)

� − a(2,2) E
(2)

� =
⎡
⎣0.0126

0.0259

0.0111

⎤
⎦

∥∥Ẽ(2)
�

∥∥ = 0.0308

E
(3)

� = Ẽ(2)
�∥∥Ẽ(2)
�

∥∥ =
⎡
⎣0.4084

0.8392

0.3590

⎤
⎦

(c) i = 3:

Ẽ(3)
� = K�� E

(3)

� =
⎡
⎣ 2.1856

−2.1138

0.0045

⎤
⎦

For j = 1, . . . 3 Do

j = 1:

a(3,1) = Ẽ(3)
� E

(1)

� = −2.3209

Ẽ(3)
� = Ẽ(3)

� − a(3,1) E
(1)

� =
⎡
⎣ 0.9342

−0.8624

−1.4972

⎤
⎦
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j = 2:

a(3,2) = Ẽ(3)
� E

(2)

� = −1.7561

Ẽ(3)
� = Ẽ(3)

� − a(3,2) E
(2)

� =
⎡
⎣−0.3593

−0.7383

−0.3159

⎤
⎦

j = 3:

a(3,3) = Ẽ(3)
� E

(3)

� = −0.8798

Ẽ(3)
� = Ẽ(3)

� − a(3,3) E
(3)

� ≈
⎡
⎣0

0

0

⎤
⎦

∥∥Ẽ(3)
�

∥∥ = 0

E
(4)

� = Ẽ(3)
�∥∥Ẽ(3)
�

∥∥ = 0.

4. Construct Hessenberg matrix⎡
⎢⎢⎢⎢⎣

a(1,1) a(2,1) a(3,1)∥∥Ẽ
(1)

�

∥∥ a(2,2) a3,2

0
∥∥Ẽ

(2)

�

∥∥ a3,3

0 0
∥∥Ẽ

(3)

�

∥∥

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

y(1)

y(2)

y(3)

⎤
⎥⎦ =

⎡
⎣

∥∥E(0)
�

∥∥
0

0

⎤
⎦

⎡
⎣2.1395 −6.6630 −2.3210

2.5910 −0.2598 1.7561

0 0.0308 −0.8798

⎤
⎦

⎡
⎣y(1)

y(2)

y(3)

⎤
⎦ =

⎡
⎣18.5472

0

0

⎤
⎦

5. Apply Givens rotation to reduce matrix for tridiagonalization.

(a) First rotation:

c j = h j j

r j
, s j = h j+1, j

r j
, r j =

√
h2

j j + h2
j+1, j

c1 = a(1,1)√(
a(1,1)

)2+(∥∥Ẽ
(1)

�

∥∥)2
= 0.6367 s1 = Ẽ(1)

�√(
a(1,1)

)2+(∥∥Ẽ
(1)

�

∥∥)2
= 0.7711

⎡
⎣ c s

−s c
1

⎤
⎦

⎡
⎢⎢⎢⎣

a(1,1) a(2,1) a(3,1)∥∥Ẽ(1)
�

∥∥ a(2,2) a(3,2)∥∥Ẽ(2)
�

∥∥ a(3,3)∥∥Ẽ(3)
�

∥∥

⎤
⎥⎥⎥⎦

⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎣ c s 0

−s c 0

0 0 1

⎤
⎦

⎡
⎣

∥∥E(0)
�

∥∥
0

0

⎤
⎦

⎡
⎣3.3602 −4.4429 −0.1237

0 4.9723 2.9079

0 0.0308 −0.8798

⎤
⎦

⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎣ 11.8097

−14.3014

0

⎤
⎦

(b) Second rotation:⎡
⎣1 0 0

0 c s
0 −s c

⎤
⎦

⎡
⎣3.3602 −4.4429 −0.1237

0 4.9723 2.9079

0 0.0308 −0.8798

⎤
⎦

⎡
⎣y1

y2

y3

⎤
⎦
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=
⎡
⎣1 0 0

0 c s
0 −s c

⎤
⎦

⎡
⎣ 11.8097

−14.3014

0

⎤
⎦

c2 = 0.9999 s2 = 0.0062⎡
⎣3.3602 −4.4429 −0.1237

0 4.9724 2.9024

0 0 −0.8798

⎤
⎦

⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎣ 11.8097

−14.3012

0.0886

⎤
⎦

⎡
⎣y(1)

y(2)

y(3)

⎤
⎦ =

⎡
⎣−0.2157

−2.8185

−0.0988

⎤
⎦

6. Compute residual⎡
⎢⎢⎣

E
(1)

1 E
(2)

1 E
(3)

1

E
(1)

2 E
(2)

2 E
(3)

2

E
(1)

3 E
(2)

3 E
(3)

3

⎤
⎥⎥⎦

⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎢⎣E(r)

1

E(r)
2

E(r)
3

⎤
⎥⎦

⎡
⎢⎢⎣

E(r)

1

E(r)
2

E(r)
3

⎤
⎥⎥⎦ =

⎡
⎣−0.5392 0.7366 0.4084

0.5392 −0.0707 0.8392

−0.6470 −0.6727 0.3590

⎤
⎦

⎡
⎣−0.2157

−2.8185

−0.0987

⎤
⎦ =

⎡
⎣−2

0

2

⎤
⎦

7. Update U�⎡
⎣U1

U2

U3

⎤
⎦ =

⎡
⎢⎢⎣

U(0)

1

U(0)
2

U(0)
3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

E(r)

1

E(r)
2

E(r)
3

⎤
⎥⎥⎦ =

⎡
⎣1

2

3

⎤
⎦

Note that the exact solution has been obtained.

11.5.4 COMBINED GPG-EBE-GMRES PROCESS

We consider the solution by generalized Petrov-Galerkin (GPG) method using EBE-

GMRES solver. The global GPG equation (11.4.5) may be written in a local form.

[
A(e)

NM + ��t
(

B(e)
NM + C(e)

NM + K(e)
NM

)]
	

(e)n+1
Mi

=
[

A(e)
NM − (1 − �)�t

(
B(e)

NM + C(e)
NM + K(e)

NM

)]
	

(e)n
Mi + �t

(
F (e)n

Mi + G(e)n
Mi

)
(11.5.41)

or

R(e)
NM 	

(e)n+1
Mi = Q(e)n

Ni (11.5.42)

For illustration, let us consider the global and local configurations as given in Figure

11.5.4.1.
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(a) (b) (c)

2

2

3

11 4

4 5
e = 1e = 1

e = 2 e = 4 e = 6

e = 5e = 3e = 1

3

2

1

6 9 12

11

10
74

5 8

Figure 11.5.4.1 Global and local configurations. (a) Global system. (b) Local. (c) Global.

Using the four-node isoparametric element on the left-hand side of (11.5.42) for

e = 1, we have

D(1)(n+1)
Ni = R(1)

NM 	
(1)(n+1)
Mi (11.5.43)

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(1)

11

D(1)

12

D(1)

41

D(1)
42

D(1)

51

D(1)

52

D(1)

21

D(1)
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R(1)

11 0 R(1)

14 0 R(1)

15 0 R(1)

12 0

0 R(1)

11 0 R(1)

11 0 R(1)

11 0 R(1)

11

R(1)

41 0 R(1)
44 0 R(1)

45 0 R(1)
42 0

0 R(1)

41 0 R(1)
44 0 R(1)

45 0 R(1)
42

R(1)

51 0 R(1)

54 0 R(1)

55 0 R(1)

52 0

0 R(1)

51 0 R(1)

54 0 R(1)

55 0 R(1)

52

R(1)

21 0 R(1)
24 0 R(1)

25 0 R(1)
22 0

0 R(1)

21 0 R(1)
24 0 R(1)

25 0 R(1)
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	
(1)

11

	
(1)

12

	
(1)

41

	
(1)
42

	
(1)

51

	
(1)

52

	
(1)

21

	
(1)
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)

with the local element node numbers being replaced by the global node numbers for

global assembly.

The assembled column vector D�i takes the form

D�i = E∪
e=1

D(e)
Ni �

(e)
N� = E∪

e=1
R(e)

NM 	
(e)
Mi �

(e)
N� (11.5.44)

This operation is identical to the summing process, as shown in Table 11.5.1.

with

D(1)

11 = R(1)

11 	
(1)

11 + R(1)

14 	
(1)

41 + R(1)

15 	
(1)

51 + R(1)

12 	
(1)

21

D(1)

12 = R(1)

11 	
(1)

12 + R(1)

14 	
(1)
42 + R(1)

15 	
(1)

52 + R(1)

12 	
(1)
22

etc.

For illustration let us consider the geometry given in Figure 11.5.4.1c. It represents

189 × 2 = 378 equations given by the column vector D�i , which is assembled from 8 × 8

local stiffness matrices multiplied by the 8 × 1 local variable unknown column vectors.
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Table 11.5.1 Global Summing Procedure

Node e = 1 e = 2 e = 3 e = 4 e = 5 e = 6 D�i (sum)

1 D(1)

11 D11 = D(1)

11

D(1)

12 D12 = D(1)

12

2 D(1)

21 D(2)

21 D21 = D(1)

21 + D(2)

21

D(1)
22 D(2)

22 D22 = D(1)
22 + D(2)

21

3 D(2)

31 D31 = D(2)

31

D(2)
32 D32 = D(2)

32

4 D(1)

41 D(3)

41 D41 = D(1)

41 + D(2)

41

D(1)
42 D(3)

42 D42 = D(1)
42 + D(2)

42

5 D(1)

51 D(2)

51 D(3)

51 D(4)

51 D51 = D(1)

51 + D(2)

51 + D(3)

51 + D(4)

51

D(1)

52 D(2)

52 D(3)

52 D(4)

52 D52 = D(1)

52 + D(2)

52 + D(3)

52 + D(4)

52

6 D(2)

61 D(4)

61 D61 = D(2)

61 + D(4)

61

D(2)

62 D(4)

62 D62 = D(2)

62 + D(4)

62

7 D(3)

71 D(5)

71 D71 = D(3)

71 + D(5)

71

D(3)
72 D(5)

72 D72 = D(3)
72 + D(5)

72

8 D(3)

81 D(4)

81 D(5)

81 D(6)

81 D81 = D(3)

81 + D(4)

81 + D(5)

81 + D(6)

81

D(3)
82 D(4)

82 D(5)
82 D(6)

82 D82 = D(3)
82 + D(4)

82 + D(5)
82 + D(6)

82

9 D(4)

91 D(6)

91 D91 = D(4)

91 + D(6)

91

D(4)
92 D(6)

92 D92 = D(4)
92 + D(6)

92

10 D(5)

10,1 D10,1 = D(5)

10,1

D(5)

10,2 D10,2 = D(5)

10,2

11 D(5)

11,1 D(6)

11,1 D11,1 = D(5)

11,1 + D(6)

11,1

D(5)

11,2 D(6)

11,2 D11,2 = D(5)

11,2 + D(6)

11,2

12 D(6)

12,1 D12,1 = D(6)

12,1

D(6)

12,2 D12,2 = D(6)

12,2

We follow the procedure similar to the one given in Example 11.5.1 except that we

use the EBE process here. Thus, instead of global matrix K�� (378 × 378) we now have

a column vector D�i (378 × 1).

1. Specify initial and boundary conditions on all boundary nodes and assume values

for all interior nodes (	
(e)
Mi = 0, for example)

2. Compute the error coefficient vector E
(1)

�i

E(0)
�i = Q�i − D�i ,

with Q�i = ∪E
e=1 Q(e)

Ni �
(e)
N�and D�i as determined from (11.5.44).

E
(1)

�i = E(0)
�i

‖E(0)
�i ‖

(Gram-Schmidt process)
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3. Iterate for i = 1, 2, 3, . . . r , say r = 4

For this example calculate the adjusted error vector Ẽ(1)
�i , the normed error

coefficient a(1,1), and a new error coefficient vector E
(2)

�i .

(a) i = 1:

Ẽ(1)
�i = E∪

e=1
E(e)(1)

Ni �
(e)
N� = E∪

e=1
R(e)

NM E
(e)

Mi �
(e)
N�

j = 1:

a(1,1) = Ẽ(1)
�i E

(1)

�i

Ẽ(1)
�i = Ẽ(1)

�i − a(1,1) E
(1)

�i

E
(2)

�i = Ẽ(1)
�i

‖Ẽ(1)
�i ‖

(b) i = 2: (Calculate, similarly, new adjusted error vector, normed error coeffi-

cients, and error coefficient vector.)

Ẽ(2)
�i = E∪

e=1
E(e)(2)

Ni �
(e)
N� = E∪

e=1
R(e)

NME
(e)(2)

Mi �
(e)
N�

j = 1:

a(2,1) = Ẽ(2)
�i E

(1)

�i

Ẽ(2)
�i = Ẽ(2)

�i − a(2,1) E
(1)

�i

j = 2:

a(2,2) = Ẽ(2)
�i E

(2)

�i

Ẽ(2)
�i = Ẽ(2)

�i − a(2,2) E
(2)

�i

E
(3)

�i = Ẽ(2)
�i

‖Ẽ(2)
�i ‖

(c) i = 3, similarly,

Ẽ(3)
�i = E∪

e=1
E(e)(3)

Ni �
(e)
N� = E∪

e=1
R(e)

NME
(e)(3)

Mi �
(e)
N�

j = 1:

a(3,1) = Ẽ(3)
�i E

(1)

�i

Ẽ(3)
�i = Ẽ(3)

�i − a(3,1) E
(1)

�i

j = 2:

a(3,2) = Ẽ(3)
�i E

(2)

�i

Ẽ(3)
�i = Ẽ(3)

�i − a(3,2) E
(2)

�i

j = 3:

a(3,3) = Ẽ(3)
�i E

(3)

�i

Ẽ(3)
�i = Ẽ(3)

�i − a(3,3) E
(3)

�i

E
(4)

�i = Ẽ(3)
�i

‖Ẽ(3)
�i ‖
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(d) i = 4: Again similarly,

Ẽ(4)
�i = E∪

e=1
E(e)(4)

Ni �
(e)
N� = E∪

e=1
R(e)

NME
(e)(4)

Mi �
(e)
N�

j = 1:

a(4,1) = Ẽ(4)
�i E

(1)

�i

Ẽ(4)
�i = Ẽ(4)

�i − a(4,1) E
(1)

�i

j = 2:

a(4,2) = Ẽ(4)
�i E

(2)

�i

Ẽ(4)
�i = Ẽ(4)

�i − a(4,2) E
(2)

�i

j = 3:

a(4,3) = Ẽ(4)
�i E

(3)

�i

Ẽ(4)
�i = Ẽ(4)

�i − a(4,3) E
(3)

�i

j = 4:

a(4,4) = Ẽ(4)
�i E

(4)

�i

Ẽ(4)
�i = Ẽ(4)

�i − a(4,4) E
(3)

�i ≈ 0

E
(5)

�i = Ẽ(4)
�i

‖Ẽ(4)
�i ‖

≈ 0

4. Construct Hessenberg matrix to calculate the minimizer vector yr (r = 4 in this

case) ⎡
⎢⎢⎢⎣

a(1,1) a(2,1) a(3,1) a(4,1)

‖Ẽ(1)
�i ‖ a(2,2) a(3,2) a(4,2)

‖Ẽ(2)
�i ‖ a(3,3) a(4,3)

‖Ẽ(3)
�i ‖ a(4,4)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

‖E(0)
�i ‖

0

0

0

⎤
⎥⎥⎦

where ‖Ẽ(4)
�i ‖ ∼= 0 is assumed.

5. Apply Givens rotations to reduce Hessenberg matrix to an upper triangular

form in order to find the minimizer error vector y, as shown in step 5 of Example

11.5.1

6. Compute residuals (for the case of Figure 11.6.3.1a)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
(1)

1 E
(2)

1 E
(3)

1 E
(4)

1

E
(1)

2 E
(2)

2 E
(3)

2 E
(4)

2

· · · ·
· · · ·
· · · ·
· · · ·

E
(1)

378 E
(2)

378 E
(3)

378 E
(4)

378

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(r)

1

E(r)
2

·
·
·
·

E(r)
378

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(378 × 4) (4 × 1) (378 × 1)
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7. Update U�i⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

	1

	2

·
·
·
·

	378

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	
(0)

1

	
(0)
2

·
·
·
·

	
(0)
378

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(r)

1

E(r)
2

·
·
·
·

E(r)
378

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If the adjusted error vector Ẽ(4)
�i and the error coefficient vector E

(5)

�i are not

approximately zero, then further iterations will be required.

11.5.5 PRECONDITIONING FOR EBE-GMRES

Although Krylov subspace methods such as the GMRES method are well founded

theoretically, they are likely to suffer from slow convergence for fluid dynamics ap-

plications, especially in the problems involving high Mach numbers and high Reynolds

numbers. Preconditioning is a key ingredient in the success of Krylov subspace methods

in these applications. In creating a preconditioner for the EBE equations, the first step

is to normalize each element matrix using a scaling transformation that can be viewed

as an initial level of preconditioning, often called “pre-preconditioning” [Saad, 1996;

Shakib et al. 1991]. Typically, a diagonal, or a block diagonal, scaling is first applied to

the element matrices to obtain scaled element matrices.

Step 1: Pre-preconditioning
Consider the local finite element equations given by

R(e)
NMrs �U(e)

Ms = Q(e)
Nr (11.5.45)

The left-hand side may be written as

C(e)
Nr = R(e)

NMrs �U(e)
Ms (11.5.46)

The EBE process provides

Cn+1
�r =

E⋃
e=1

C(e)
Nr �

(e)
N� (11.5.47)

with

Qn+1
�r =

E⋃
e=1

Q(e)
Nr �

(e)
N� (11.5.48)

Construct the diagonal scaling matrix D��rs in the form

D��rs =
E⋃

e=1

R(e)
�prs �pM�

(e)
M�
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Note that since the off-diagonal terms of D��rs are zero, D��rs can be stored as a

vector.

Performing the preconditioning operations on the unassembled element equations

requires three steps:

(1) Gather, or localize, the components of the global diagonal vector into local

element vectors. Let D(e)
NMrs denote the local diagonal matrix for element (e).

(2) Perform the preconditioning operations on the element level. Equation (11.5.48)

is transformed into

R̃(e)
NMrs �Ũ(e)

Ms = Q̃(e)
Nr (11.5.49)

where

R̃(e)
NMrs = (D̃(e)

Np)− 1
2 Rpqrs(D̃(e)

qM)− 1
2

�Ũ(e)
Mr = (D(e)

Mp)− 1
2 �U(e)

pr

Q(e)
Nr = (D(e)

Np)− 1
2 Q(e)

pr

with

C̃(e)
Nr = R̃(e)

NMrs�U(e)
Ms

(3) Scatter, or globalize, the components of the local element vectors into the global

vectors as follows:

C̃(e)
�r =

E⋃
e=1

C̃(e)
Nr �

(e)
N�, Q̃(e)

�r =
E⋃

e=1

Q̃(e)
Nr �

(e)
N� (11.5.50)

Step 2: Main preconditioning by upper and lower triangular matrices
The second step in defining an EBE preconditioner is to regularize the transformed

element matrices from step 1. Using Winget regularization, the diagonal of each co-

efficient matrix is forced to be the identity matrix. In other words, the regularized

matrix is defined as

R̄(e)
NMrs = R̃(e)

NMrs − diag(R̃(e)
NMrs ) + INMrs (11.5.51)

Finally, the factorization must be chosen for the preconditioning matrix. We choose

the LU factorization for the regularized matrix R̄(e)
NMrs to produce the preconditioning

matrix G(e)
NMrs of the form

G(e)
NMrs = L(e)

Nprt U(e)
pMts (11.5.52)

where L(e)
Nprt and U(e)

pMts are obtained by factoring the regularized matrix R̄(e)
NMrs into a

unit lower and an upper triangular matrix. In other words,
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G(e) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0

L21 1 0 0 · · · ...

L31 L32 1 0 · · · ...

L41 L42 · · · . . . 0
... · · · · · · · · · . . . 0

LM1 LM2 · · · · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11 U12 U13 · · · · · · U1M

0 U22 U23 U24 · · · U2M

0 0 U33 U34 · · · U3M

0 0 0 U44 · · · ...

...
...

... 0
. . .

...

0 0 · · · · · · 0 UMM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the indices r t and ts are omitted for simplicity.

Notice that in practice, L(e)
Nprt and U(e)

PMts can be stored together.

We premultiply the left-hand and right-hand sides of (11.5.49) by the inverse of the

preconditioned local element matrices as follows:

G(e)−1

pNrt R(e)
NMts �U(e)

Ms = G(e)−1

pNrs QNs (11.5.53)

However, in practice we do not actually calculate the inverse of the preconditioning

matrix. Instead, consider writing the right-hand side of (11.5.53) as

Q̂(e)
Nr = L(e)−1

NMrtU
(e)−1

Mpts Q̃(e)
ps , or L(e)

NMrtU
(e)
Mpts Q̂(e)

ps = Q̃(e)
Nr (11.5.54)

Consider rewriting (11.5.54) as

L(e)
NMrs Z(e)

Ms = Q̃(e)
Nr (11.5.55)

where Z(e)
Mr = U(e)

MNrs Q̃(e)
Ns . Since L(e)

NMrs is lower triangular, Equation (11.5.55) can be

solved for Z(e)
Mr using forward reduction. Then, the equation U(e)

MNrs Q̂(e)
Ns = Z(e)

Mr can be

solved for Q̂(e)
Ns , which is the right-hand side of (11.5.53), by back substitution. A similar

operation is performed to evaluate the left-hand side of (11.5.53). The element values

are then mapped to the global column vector as shown below.

Ĉ(e)
Nr = G(e)−1

pNrt R(e)
pMts �Ũ(e)

Ms, Ĉ�r =
E⋃

e=1

Ĉ(e)
Nr �

(e)
N�

Q̂(e)
Nr = G(e)−1

NMrs Q̃(e)
Ms, Q̂�r =

E⋃
e=1

Q(e)
Nr �

(e)
N�

The pre-conditioned GMRES process begins with

E(0)
�r = Q̂(0)

�r − Ĉ(0)
�r

and

E
(1)

�i = E(0)
�i∥∥∥E(0)
�i

∥∥∥
Step 2 of the GMRES procedure described in Section 11.5.3 is rewritten as follows:

GMRES iteration: For i = 1, 2, 3, . . . , r Do

E
(i+1)

�r = G−1
��r t R��ts E

(i)

�s =
E⋃

e=1

G(e)−1

NMrt R(e)
Mpts E

(e)

ps �
(e)
N�

The rest follows identically as in step 2 through step 6.
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11.6 EXAMPLE PROBLEMS

11.6.1 NONLINEAR WAVE EQUATION (CONVECTION EQUATION)

Consider the first order nonlinear wave equation of the form used in Section 4.7.5.

∂u
∂t

+ u
∂u
∂x

= 0, 0 ≤ x ≤ 4

u(x, 0) = 1 0 ≤ x ≤ 2

u(x, 0) = 0 2 ≤ x ≤ 4

Required: Solve with GPG using the numerical diffusion given by (11.3.32).

Solution: The GPG formulation begins with∫ L

0

W(
)

[∫
��

(
∂u
∂t

+ u
∂u
∂x

)
dx +

∫
��u

∂u
∂x

dx
]

d
 = 0

with

�
(e)
N = �u

∂�
(e)
N

∂x
where � is the numerical diffusion factor (intrinsic time scale),

� = C
2

h
u

with C being the CFL number,

C = � = coth H − 1

H
which is characterized by the numerical diffusion as shown in Figure 11.3.2 defining the

accuracy and stability for the solution of the nonlinear convection equation.

As a result, it is seen that dispersion or dissipation errors decrease with mesh refine-

ments, as shown in Figure 11.6.1. Accuracies deteriorate significantly with inadequate

numerical diffusivity constants outside the stability and accuracy criteria.

11.6.2 PURE CONVECTION IN TWO DIMENSIONS

The two-dimensional pure convection equation for a concentration cone placed in a

rotating velocity field, as shown in Figure 11.6.2a is given by

∂u
∂t

+ Ai
∂u
∂xi

= 0

where

Ai = (a cos �, a sin �) with a = 1/2

Initial Data:

u0 =

⎧⎪⎨
⎪⎩

1

2
(1 + cos 4��) � ≤ 1

4

0 otherwise
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Figure 11.6.1 GPG solutions for nonlinear convection shock wave propagation (lumped mass matrix).

where

� 2 = (x − 0)2 + (y + 0.5)2

Required: Solve using the GTG and GPG methods with lumped and consistent mass

matrices. Carry out until 1 revolution is reached.

Solution: For the computation, a 32 × 32 grid mesh in a 2.0 × 2.0 domain is chosen,

and initial cosine hill with unit magnitude is centered at (0.0, −0.5) whose base radius

spans eight elements in Figure 11.6.2b. Use a constant time step, �t = 2�/400. The

total number of nodes is 1089, and all boundary conditions are Dirichlet type, u = 0, a

complete rotation is accomplished in 400 time steps. The Courant number at the peak

of the cone is approximately 1/4.

For the GTG method with the lumped mass, the solution with one iteration

(Figure 11.6.2c) has wiggles and reduced cone height more than those with three itera-

tions (Figure 11.6.2d); an improved solution is obtained for the case of consistent mass

(Figure 11.6.2e) for t = �/4 as compared with that for lumped mass. The results of the

GPG method at t = �/4 are shown in (Figure 11.6.2f) (1), (2), (3), and (4) corresponding

to the numerical diffusivity of � = 10−4, 10−2, 1, and 102, respectively. In Figure 11.6.2g,
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(1) and (2), the GPG methods show oscillatory behavior at � = 10−4 and 10−2, which

disappears at � = 1 and 102 in Figure 11.6.2g, (3) and (4). Although the GPG methods

provide numerical diffusion in the direction of the flow for stability, the methods may

be restricted within the low Reynolds numbers unlike the GTG methods.

11.6.3 SOLUTION OF 2-D BURGERS’ EQUATION

The purpose of this section is to show the effectiveness of GPG for the solution of the

Burgers’ equations with convection terms and its solution convergence as a function

of the grid refinements. We use the geometry as shown in Figure 11.6.3.1, the same

geometry as in Section 10.4.2.

Given: The Burgers’ equations with the nonlinear convection terms are given by

∂u
∂t

+ u
∂u
∂x

+ 	
∂u
∂y

− 	

(
∂2u
∂x2

+ ∂2u
∂y2

)
− fx = 0

∂	

∂t
+ u

∂	

∂x
+ v

∂v

∂y
− 	

(
∂2v

∂x2
+ ∂2v

∂y2

)
− fy = 0

with

fx = − 1

(1 + t)2
+ x2 + 2xy

(1 + t)
+ 3x3 y2 − 2	y

fy = − 1

(1 + t)2
+ y2 + 2xy

(1 + t)
+ 3y3x2 − 2	x

Exact Solution:

u = 1

1 + t
+ x2 y

	 = 1

1 + t
+ xy2

Required: Solve the Burgers’ equations using GPG for the coarse, intermediate,

and fine meshes as shown in Figure 11.6.3.1. Neumann boundary conditions are to be

specified at nodes marked by N and all other boundary nodes are Dirichlet. They are

computed by the exact solution as given above. Use bilinear isoparametric elements

with 	 = 1, �t = 10−4, and � = 1/2. Begin with the initial conditions u = 0 and v = 0

specified everywhere.

Solution: Shown in Figure 11.6.3.2 are the solutions at x = 2 and y = 1 for the coarse,

intermediate, and fine meshes. It is seen that, although the initial conditions as given

are u = 0 and v = 0, they quickly rise toward the exact solution. For the coarse grid,

however, the solution overshoots considerably. The convergence to the exact solution

is evident for the intermediate grid and significantly for the fine grid.

11.7 SUMMARY

The generalized Galerkin methods (GGM) introduced in Chapter 10 have been

extended to the Taylor Galerkin methods (TGM) and to the generalized Petrov-Galerkin
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(GPG) methods in order to cope with convection-dominated flows. It was shown

that the basic idea of TGM is to provide numerical diffusivity. In GPG, more rigo-

rous approaches to treat convection-dominated flows are employed through SUPG,

discontinuity-capturing scheme, and space-time Galerkin/least squares. The significant

features available in GPG are to explicitly provide numerical diffusion in the direction

of streamline and toward velocity gradients or acceleration. Furthermore, the concept

of least squares is applied to reinforce the numerical diffusivity.

In this chapter, we also examined numerical solution of nonlinear equations using

the Newton-Raphson methods. The element-by-element methods in which the assem-

bly of total stiffness matrices is replaced by the element-by-element vector operation

introduced in Section 10.3.2 are extended to the nonlinear equations. Furthermore, we

reviewed GMRES which is regarded as the most rigorous equation solver for nonlinear,

nonsymmetric matrices.

Major applications in CFD are the solutions of the Navier-Stokes system of equations

for incompressible and compressible flows. These are the topics to be discussed in the

next two chapters.
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CHAPTER TWELVE

Incompressible Viscous Flows

via Finite Element Methods

As noted in Chapter 5, the condition of incompressibility for incompressible flows is

difficult to satisfy. The consequence of this difficulty results in a checkerboard type

pressure oscillation which occurs when the primitive variables (pressure and velocity)

are calculated directly from the governing equations of continuity and momentum.

Various methods are used to overcome this difficulty. Among them are: mixed methods,

penalty methods, pressure correction methods, generalized Petrov-Galerkin (GPG)

methods, operator splitting (fractional) methods, and semi-implicit pressure correction

methods. Another approach is to use the vortex methods in which stream functions

and vorticity are calculated, thus avoiding the pressure term. Some of the earlier and

recent contributions to the finite element analyses of incompressible flows are found in

[Hughes, Liu, and Brooks, 1979; Carey and Oden, 1986; Zienkiewicz and Taylor, 1991;

Gunzburger and Nicholaides, 1993; Gresho and Sani, 1999], among many others.

Instead of being limited to incompressible flows, we may begin with the conserva-

tion form of the Navier-Stokes system of equations for compressible flows, in which

special steps can be devised to obtain solutions near incompressible limits (M∞ ∼= 0) .

This allows us to use a single formulation to handle both compressible and incompress-

ible flows. We shall address this subject in Section 13.6. For this reason, treatments of

incompressible flows in this chapter will be brief.

12.1 PRIMITIVE VARIABLE METHODS

12.1.1 MIXED METHODS

Consider the governing equations of continuity and momentum for incompressible flow

in the form:

Continuity

vi,i = 0 (12.1.1a)

Momentum
�vi, j v j + p,i − �vi, j j = 0 (12.1.1b)

It is well known that the standard Galerkin formulation of the simultaneous system

of equations for continuity and momentum (12.1.1a,b) becomes ill-conditioned, known

407
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as the LBB condition [Ladyszhenskaya, 1969; Babuska, 1973; Brezzi, 1974] as pointed

out in Section 10.1.4. In order to circumvent the numerical instability, trial functions

for pressure are chosen one order lower than those for the velocity, defined as shown

in Figure 10.1.3. We may write the standard Galerkin integrals in nondimensional form

as follows:∫
�

��

(
vi, j v j + p,i − 1

Re
vi, j j

)
d� = 0 (12.1.2a)

∫
�

�̂�vi,i d� = 0 (12.1.2b)

where the pressure approximation is of one order lower than the velocity approximation

so that the incompressibility condition may be satisfied as discussed in Section 10.1.4.

Combining (12.1.2a,b) yields[
D��i j C��i

C�� j 0

] [
v� j

p�

]
=

[
G�i

0

]
(12.1.3)

with

D��i j =
∫

�

(
����,kvk�i j + 1

Re
��,k��,k�i j

)
d�

C��i =
∫

�

���̂�, j �i j d�, C�� j =
∫

�

�̂���, j d�,

G�i =
∫

�

1

Re

∗
��vi, j n j d�

where the test function �̂� for continuity is the same as the pressure trial function.

As mentioned in Section 10.1.4, if pressure is interpolated as constant (pressure node

at the center of an element) and velocity as a linear function (velocity defined at corner

node, Figure 10.1.3a), then such element becomes overconstrained (known as locking

element). This situation can be alleviated by using linear pressure and quadratic velocity

approximations (Figure 10.1.3b). In this process of unequal order approximations for

pressure, we seek to achieve the computational stability. Many other available options

are discussed below.

12.1.2 PENALTY METHODS

As seen in Section 10.1.4, the incompressibility condition can be satisfied by means of

the penalty function � such that

p= −�vi,i (12.1.4a)

p,i = −�v j, j i (12.1.4b)

which is designed to replace the pressure gradient term in (12.1.2a). The reduced

Gaussian quadrature integration for the penalty term is still required to avoid being

over-constrained, as discussed in Section 10.1.4. In this way, we obtain the solution of
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(12.1.2a) without (12.1.2b), but the mass conservation is maintained through the penalty

constraint.

Another approach is to combine the penalty formulation with the mixed method of

(12.1.2a,b). This can be achieved by replacing the continuity equation with the Galerkin

integral of (12.1.4a),∫
�

��

(
vi,i + p

�

)
d� = 0 (12.1.5)

This will then revise (12.1.3) in the form[
D��i j C��i

C�� j E��

] [
v� j

p�

]
=

[
G�i

0

]
(12.1.6)

with

E�� =
∫

�

1

�
����d�

which provides an additional computational stability in comparison with (12.1.3).

12.1.3 PRESSURE CORRECTION METHODS

The basic idea of the pressure correction methods is to split the pressure and velocity

in the form [Patankar and Spalding, 1972]

pn+1 = pn + p′ (12.1.7a)

vn+1
i = v∗

i + v′
i (12.1.7b)

where v∗
i

denotes the intermediate step velocity. Using (12.1.7) in (12.1.1b) we obtain,

for the case of unsteady flow,(
∂vi

∂t

)∗
+

(
∂vi

∂t

)′
∼=

(
1

Re
v∗

i, j j − v∗
i, j v

n
j − (p,i )

n − (p,i )
′
)

which may be split into(
∂vi

∂t

)∗
= 1

Re
v∗

i, j j − v∗
i, j v

n
j − (p,i )

n (12.1.8a)

(
∂vi

∂t

)′
= −(p,i )

′ (12.1.8b)

where the asterisk and prime indicate intermediate and correction values. The solution

of (12.1.8a) is not expected, in general, to satisfy the conservation of mass. In order to

rectify this situation, we take a divergence of (12.1.8b) and write

p′
,i i = − ∂

∂t
(vi,i )

′ (12.1.9a)

which may be recast in a difference form

p′
,i i

∼= − 1

�t

(
vn+1

i,i − v∗
i,i

)
(12.1.9b)
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Here we intend to force vn+1
i,i to vanish for mass conservation so that

p′
,i i = 1

�t
(v∗

i,i ) (12.1.10)

Thus, the solution procedure consists of

(1) Solve (12.1.8a) for v∗
i with initial and boundary conditions and assumed pressure.

(2) Solve (12.1.10) for pressure corrections, p′, with the boundary conditions p′ = 0

on �D and p′
,i ni on �N.

(3) Determine v′
i from (12.1.8b).

(4) Determine

pn+1 = pn + p′

vn+1
i = v∗

i + v′
i

(5) Repeat steps (1) through (4) until convergence has been achieved.

The generalized Galerkin formulations may be used for (12.1.8a), (12.1.10), and

(12.1.8b). Mixed interpolations (between velocity and pressure) are not required. Al-

though the mass conservation is achieved through the pressure correction methods, the

convective terms may still contribute to nonconvergence if convection dominates the

flowfield. Toward this end, the generalized Galerkin formulation can be replaced by

GPG methods.

12.1.4 GENERALIZED PETROV-GALERKIN METHODS

The mixed method may be modified so that both pressure and velocity can be inter-

polated in a same order. The convection and pressure gradient terms are treated with

generalized Petrov-Galerkin (GPG), and the pressure is updated using the standard

pressure Poisson equation.

∫ 1

0

Ŵ(�)

{∫
�

[
��

(
∂vi

∂t
+ vi, j v j − 1

Re
vi, j j

)
+ ��(vi, j v j + p,i )

]
d�

}
d� = 0

(12.1.11)∫
�

��[p,i i + (vi, j v j ),i ]d� = 0 (12.1.12)

Integrating (12.1.11) by parts leads to[
A�� + �t

2
(B�� + C�� + K��)

]
vn+1

�i =
[

A�� − �t
2

(B�� + C�� + K��)

]
vn

�i

+ �t (F�i + G�i ) (12.1.13)

where

F�i = −
∫

�

	vk��,k��,i d�p� (12.1.14)

with all other quantities being the same as in (11.4.5) except for the Reynolds number.
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The nodal pressure p� will be updated from (12.1.12), which assumes the form

E�� p� = H� + Q� (12.1.15)

with

E�� =
∫

�

��,i��,i d�

H� =
∫

�

��(vi, j v j ),i d�

Q� =
∫

�

∗
�� p,i ni d�

Note that pressure oscillations are suppressed not only from (12.1.15) but also the

damping effect built into (12.1.14).

Remarks: We note that GPG methods can be applied to the incompressible Navier-

Stokes system of equations in which the special treatment for pressure is no longer

required. In this case, the conservation form of the Navier-Stokes system of equations

can be utilized and it is possible to formulate various schemes which can handle both

compressible and incompressible flows. Furthermore, the conservation variables can

be transformed into primitive variables in order to accommodate the incompressible

nature of the flow. In this case, details of derivations of GPG schemes for incompressible

flows are the same as in the case of compressible flows, which will be presented in

Section 13.3.

12.1.5 OPERATOR SPLITTING METHODS

The pressure correction methods may be solved with fractional steps, often called oper-

ator splitting methods or fractional step methods [Yanenko, 1971], such that equations

of hyperbolic, parabolic, and elliptic types are solved separately [Chorin, 1967]. To this

end, we consider the standard Galerkin finite element equations of momentum and

continuity in the form

A��v̇�i + E�� j
 v�i v
 j − C��i p� + K�j� j v�i − G�i = 0 (12.1.16)

C��v�i = 0 (12.1.17)

(1) Hyperbolic Fractional Step Operator for Convective Terms

A��v̇�i = −E�� j
 v�i v
 j + G�i (12.1.18)

where

E�� j
 = B�� j
 + C�� j


with C�� j
 indicating the term constructed from the numerical diffusion test functions.
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The solution of (12.1.18) is obtained from the GPG formulation,(
A�� + �t

2
E�� j
 vn


 j

)
v̂n+1

�i = A��vn
�i − �t

2
E�� j
 vn

�i v
n

 j + �t G�i (12.1.19)

(2) Parabolic Fractional Step Operator for Dissipation Term

A��v̇�i = −K�j� j v�i (12.1.20){
vi = vi on �D

vi, j n j = gi on �N

We solve (12.1.20) with TGM formulation so that(
A�� + �t

2
E��i j

)
ṽn+1

�i = A��v̂n+1
�i − �t

2
K�j� j v̂

n+1
�i + �t G�i (12.1.21)

(3) Elliptic Fractional Step Operator for Pressure Term

A��

vn+1
�i − ṽn+1

�i

�t
= C��i pn+1

� (12.1.22)

C��vn+1
�i = 0 (12.1.23){

p = p0 on �D

p,i ni = gi on �N

Here the enforcement of incompressibility is achieved by substituting the first term

on the right-hand side of (12.1.22) by (12.1.23).

D��i pn+1
� = − 1

�t
C��vn+1

�i (12.1.24)

where

D��i = C�
 A−1

� C��i (12.1.25)

We calculate pn+1
� from (12.1.25) and determine the final velocity from (12.1.22),

vn+1
�i = ṽn+1

�i + �t A−1
�
 C
�i pn+1

� (12.1.26)

Note that the fractional step methods are similar to the pressure correction methods,

although there are two distinctly different aspects:

(1) The solution involved in (12.1.8a) is split into two steps: hyperbolic step and

parabolic step.

(2) The processes (12.1.8b) and (12.1.10) of pressure correction methods are com-

bined into an elliptic step of the fractional step methods. The pressure Poisson

equation is not used here.

It should be noted that (12.1.22) may be differentiated spatially to obtain the pressure

Poisson equation as in the pressure correction method, expediting convergence to a

certain extent.
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12.1.6 SEMI-IMPLICIT PRESSURE CORRECTION

In this scheme, the GPG method is used for convection dominated flows, but we resort

to the pressure correction method to maintain conservation of mass and to suppress

pressure oscillations.

With the continuity equation written in the form

1

c2

∂p
∂t

+ (�vi ),i = 0 (12.1.27)

we obtain the finite element equations as follows:

Continuity

D�� ṗ� + C��i v�i = 0 (12.1.28)

Momentum
A��v̇�i + (B�� j j + K�j� j ) v�i + C��i p� = 0 (12.1.29)

where B�� j j contains the GPG terms.

Denote the following:

�pn
� = pn+1

� − pn
� (12.1.30)

�vn
�i = vn+1

�i − vn
�i = �v

n(1)
�i − �v

n(2)
�i (12.1.31)

and

p = (1 − �)pn + �pn+1

= �(pn+1 − pn) + pn (12.1.32)

= �(�pn) + pn

vi = (1 − �)vn
i + �vn+1

i

= �
(
�v

n(1)
i − �v

n(2)
i

) + vn
i (12.1.33)

= �
(
�vn

i

) + vn
i

Substituting (12.1.32) into (12.1.29) and taking a temporal approximation, we obtain

�vn
�i = −�t

[
(B�� j j + K�j� j )

(
��vn

�i + vn
�i

) + C��i
(
��pn

� + pn
�

)]
(12.1.34)

Combining (12.1.32) into (12.1.34) and separating the resulting equation into two parts

leads to

[�t�(B�� j j + K�j� j )]�v
(1)
�i = �t

[
(B
� j j + K
 j� j )vn

�i + C
�i pn
�

]
(12.1.35a)

[A�� + �t�(B�� j j + K�j� j )]�v
(2)
�i = �t�C
�i�pn

� (12.1.35b)

Substituting (12.1.32) into (12.1.28) and using (12.1.33) and (12.1.35), we obtain(
C�
 i Q−1


� C��i
)
�pn

� = −C��i�t
(
vn

�i + ��v
n(1)
�i

)
(12.1.36)
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where

D�� =
∫

�

1

�2
����d� =

∫
�

M2

q2
����d�, Q�� = A�� + �t�(B�� j j + K�j� j )

(12.1.37)

For incompressible flows, we have D�� = 0. This gives

�t2�2C�
 i Q−1

� C��i�pn

� = C��i�t
(
vn

�i + ��v
n(1)
�i

)
(12.1.38)

The von Neumann analysis shows that, for stable solutions, �t must be limited by

�t ≤ h
|v|

√
1

Re
+ 1 − 1

Re
(12.1.39)

Upon solution of the pressure equation (12.1.38), we return to (12.1.34) for the corrected

velocity components.

A simplified version of the previous approach arises in the absence of viscosity terms:

1

a2

∂p
∂t

+ vi,i = 0 (12.1.40)

∂vi

∂t
+ p,i = 0 (12.1.41)

Rewriting (12.1.40) and (12.1.41) yields

1

a2
�pn + �t

(
vn

i + ��v
n(2)
i − ��v

n(1)
i

)
,i = 0 (12.1.42)

�v
n(2)
i + ��t�pn

,i = 0 (12.1.43)

Substituting (12.1.43) into (12.1.42), we obtain

1

a2
�pn + �t

(
vn

i + ��v
n(1)
i

)
,i − (��t)2�pn

,i i = 0 (12.1.44)

With the finite element approximation,

vi = ��v�i , p= �̂� p�

we have

(D�� − �t2�2 E�i�i )�pn
� = −G��i�t

(
�vn

�i + ��v
n(1)
�i

)
(12.1.45)

The pressure correction as obtained from (12.1.45) can be used to solve (12.1.44) in

which the viscosity term is now restored.

12.2 VORTEX METHODS

Recall that the vortex methods as examined in Section 5.4 utilize the vortex transport

equation in which the terms with pressure gradients vanish upon satisfaction of the

conservation of mass. Thus, the pressure oscillation is not expected to occur in the

solution of the vortex transport equation.
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In many engineering problems, it is not feasible to make two-dimensional simpli-

fications because the flowfield is physically three-dimensional, such as in high-speed

rotational flows and high-Reynolds number turbulent flows. Thus, we begin with three-

dimensional formulations and demonstrate that the two-dimensional analysis can be

derived easily as a simplification of the three-dimensional process if permitted by the

special physical situations.

12.2.1 THREE-DIMENSIONAL ANALYSIS

Three-Dimensional Vorticity Transport Equations

The system of three-dimensional vorticity transport equation takes the form

∂�

∂t
+ (v · ∇) � − (� · ∇) v = �∇2� (12.2.1)

with

� = ∇ × v (12.2.2)

∇2 p = �∇ · [(v · ∇) v] (12.2.3)

The above system provides seven unknowns (, v, p) and seven equations in three

dimensions. We may use GGM , TGM, or GPG to solve the system of equations (12.2.1–

12.2.3).

Three-Dimensional Biharmonic Equation with Stream Function

It is also possible to write (12.2.1) in terms of the stream function vector � as defined

in (5.4.15),

∂

∂t
(∇2�) + (∇ × � · ∇)∇2� − (∇2� · ∇)(∇ × �) = �∇4� (12.2.4a)

or

∂

∂t
(�i, j j ) + εr jk�k, j�i,mmr − εisk�r, j j�k,sr = ��i, j jkk (12.2.4b)

with

 = ∇(∇ · �) − ∇2� = −∇2�

To obtain the TGM equation for (12.2.4b), we proceed as follows:

∫ 1

0

Ŵ(�)

∫
�

��

(
∂

∂t
(�i, j j ) + εr jk�k, j�i,mmr − εisk�r, j j�k,sr − ��i, j jkk

)
d�d� = 0

(12.2.5)

Integrate (12.2.5) twice to obtain

A���i j
∂�� j

∂t
− B��
k��k�
 i + C��
 imk��m�
k + K���i j�� j = −G�i (12.2.6)
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where

R(n+1)(r)
�i = A���i j�

(n+1)
� j + �t

2

(
B��
k�

(n+1)
�k �

(n+1)

 i − C��
 imk�

(n+1)
�m �

(n+1)

k

− K���i j�
(n+1)
� j

)
− A���i j�

(n)
� j + �t

2

(
B��
k�

(n)
�k �

(n)

 i − C��
 imk�

(n)
�m�

(n)

k

− K���i j�
(n)
� j

)
− �tG�i

(12.2.8)

J (r)
��i j = ∂ R(n+1)(r)

�i

∂�
(n+1)(r)
� j

= A���i j + �t
2

(B��
 j�
 i + B��
k�i j�
k − 2C��
 i jk�
k − K���i j )

(12.2.9)

First of all, the local element interpolation functions must be polynomials of at

least third degree which will allow the stream function to be linear. The total number

of element unknowns are thirty-two with four at each node (Figure 12.2.1). Explicit

interpolation functions have been described in Elshabka and Chung [1999].

Typical Neumann and Dirichlet boundary conditions associated with the 3-D stream

function vector components are shown in Figure 12.2.2. The Newton-Raphson solution

of (12.2.7) is expected to be free of numerical oscillations because of the Jacobian matrix

which is well-conditioned.

Computations of (12.2.7) based on the definition of the three-dimensional stream

function vector components as given in (5.4.15) have been carried out in Elshabka

[1995]. Some of the highlights are given in Section 12.3.

The Curl of Three-Dimensional Vorticity Transport Equations

The vorticity transport equations (12.2.1) are derived by taking a curl of the momen-

tum equations. In this process, the pressure gradient terms of the momentum equations

are eliminated, resulting in computationally more stable formulations. However, both

vorticity and velocity are coupled together in the vorticity transport equations. The

vorticity transport equations are written in a modified form,

∂i

∂t
+ εi jkSk, j − �i, j j = 0 (12.2.10)

with

Si = (vi v j ), j

To arrive at a single variable, say velocity alone, we take a curl of (12.2.10) and obtain

∂

∂t
(vi, j j ) + Si, j j − (Sj ), j i − �vi, j jkk = 0 (12.2.11)

or

∂

∂t
(vi, j j ) + (vi vk),kj j − (v j vk),kji − �vi, j jkk = 0 (12.2.12)

This will allow calculations of velocity by solving (12.2.12) alone. Other options

include solving (12.2.10) and (12.2.11) simultaneously with  = ∇ × v.
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Here, there are three unknowns (u, v, ) in the system of three equations (12.2.13a,b,c).

The pressure is then calculated from the Poisson equation.

∇2 p = 2�

(
∂u
∂x

∂v

∂y
− ∂v

∂x
∂u
∂y

)
(12.2.14)

We may rewrite (12.2.13a) in terms of a scalar stream function, � ,

∂

∂t
(� , j j ) + εik� ,k� , j j i − �� ,i i j j = 0 (12.2.15)

The TGM equation for (12.2.15) becomes

A��
∂��

∂t
+ B��
 ���
 − K���� = G� (12.2.16)

where

A�� =
∫

�

��,i��,i d�

B��
 =
∫

�

εik����,k�
, j j i d�

K�� =
∫

�

���,i i��, j j d�

G�i =
∫

�

�
∗
��� ,i i j n j d� −

∫
�

�
∗
��, j � ,i i n j d�

Here, there are three variables (�, �,1, �,2) which are to be specified and calculated at

each of the four nodes of the 2-D isoparametric element. To this end, we require twelve

constants to be determined, with three of them (�, �,1, �,2) at each of the four nodes:

1, �, �, ��, �2, �2, �2�, �2�, �3, �3, ��3, �3�

The 2-D TGM Newton-Raphson formulation of (12.2.16) can be constructed simi-

larly as in (12.2.7) for the 3-D case with the boundary conditions reduced to the two-

dimensional geometry from Figure 12.2.2 and Table 12.2.1.

12.2.3 PHYSICAL INSTABILITY IN TWO-DIMENSIONAL INCOMPRESSIBLE FLOWS

Unstable motions occur during the transition from laminar to turbulent flows. To exam-

ine such motions, the so-called Orr-Sommerfeld equation is solved. Here we may begin

with the 2-D velocity and vorticity as a sum of the mean and fluctuation components,

vi = vi + v∗
i (i = 1, 2) (12.2.17a)

i = i + ∗
i (i = 3) (12.2.17b)

where (−) and (∗) denote mean and fluctuation quantities, respectively.
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Table 12.2.1 Boundary Conditions (3-D cavity)

At x = 0, 1 �1,1 = �2 = �2,2 = �2,3 = �3 = �3,2 = �3,3

�1,3 − �3,1 = 0

�2,1 − �1,2 = 0

At y = 0 �1 = �1,1 = �1,3 = �2,2 = �3 = �3,1 = �3,3

�3,2 − �2,3 = 0

�2,1 − �1,2 = 0

At y = 1 �1 = �1,1 = �1,3 = �2,2 = �3 = �3,1 = �3,3

�3,2 − �2,3 = Umax

�2,1 − �1,2 = 0

At z = 0, 1 �1 = �1,1 = �1,2 = �2 = �2,1 = �2,2 = �3,3

�3,2 − �2,3 = 0

�1,3 − �3,1 = 0

At z = 0.5 �1 = �1,1 = �1,2 = �2 = �2,1 = �2,2 = �3,3

For two-dimensional flows with vi (i = 1, 2), i (i = 3), the vorticity transport equa-

tion takes the form

∂

∂t

(−� ∗
,i i

) + εikvk,i j v j + εikvk,i j ε jr � ∗
,r − � ∗

,i i j v j − � ∗
,i i j ε jr � ∗

,r − 1

Re

(
εikvk,i j j − � ∗

,i i j j

) = 0

(12.2.18)

where we have used the following relationship:

 = εikvk,i

∗ = εikv∗
k,i = εikεkr � ∗

,ri = −� ∗
,i i

Denote

�∗(x, y, t) = q(x, y)e−i�t = Q(y)eikxe−i�t (12.2.19a)

� = �(R) + i�(I) (12.2.19b)

where �(R) is the circular frequency and �(I) is the amplification factor, related as

� = kc, c = c(R) + ic(I) (12.2.20)

with k = wave number and c is the velocity of propagation, (R) and (I) indicating the

real and imaginary parts, respectively. In view of (12.2.18) and (12.2.19) and neglecting

higher order terms (εikvk,i j v j , � ∗
,i i j ε jr � ∗

,r , and εikvk,i j j ), we obtain

−i�q,i i + εikvk,i j ε jr q,r + q,i i j v j − 1

Re
q,i i j j = 0 (12.2.21)

We further denote that

v1 = U(y) and v2 = 0 (12.2.22a)

and

q(x, y) = Q(y)eikx (12.2.22b)



12.3 EXAMPLE PROBLEMS 421

Combine (12.2.22) with (12.2.21) to obtain

− i�Q(ik)2 − i�Q,22 + U,22 Q(ik) + U Q(ik)3 + U Q,22(ik)

− 1

Re
[Q,2222 + Q(ik)4 − 2Q,22(ik)2] = 0 (12.2.23)

Dividing (12.2.23) by ik, we arrive at the Orr-Sommerfeld equation

c
(
k2 Q − Q,22

) − QU,22 − k2 QU + U Q,22 + i
kRe

(Q,2222 + k4 Q − 2k2 Q,22) = 0

(12.2.24)

or

(U − c)

(
d2 Q
dy2

− k2 Q
)

− Q
d2U
dy2

= − i
kRe

(
d4 Q
dy4

− 2k2 d2 Q
dy2

+ k4 Q
)

= 0 (12.2.25)

Since (12.2.25) represents variations only in the lateral direction y, the trial functions

are constructed in one dimension. The finite element formulations of (12.2.25) can be

carried out in a standard manner, resulting in the form,

(K�� − cM��)Q� = 0 (12.2.26)

with the boundary conditions

Q� = 0 and ∂ Q�

/
∂y = 0 (12.2.27)

The expression (12.2.26) is a standard eigenvalue problem,

|K�� − cM��|Q� = 0 (12.2.28)

Eigenvalues are the phase velocity (c) with real and imaginary parts as defined in

(16.6.20),

c(I)<0 stable (12.2.29a)

c(I)=0 neutral stability (12.2.29b)

c(I)>0 unstable (12.2.29c)

Eigenvectors Q� represent fluctuation parts of stream function, which provide fluctua-

tion parts of velocity v∗
i = εi j �

∗
, j . The eigenvalue problem involved in a complex number

may be solved using the so-called QR algorithm [Wilkinson, 1965].

12.3 EXAMPLE PROBLEMS

Three-Dimensional Vorticity Transport Equations

A convenient benchmark problem is the lid-driven cubic cavity flow as shown in

Figure 12.3.1. The corresponding boundary conditions are shown in Table 12.2.1.

In Figure 12.3.2, we show comparisons between the TGM solution of the 3-D vortic-

ity transport equations (12.2.4) and the results of other approaches reported by Takami

and Kuwahara [1974] with the 20 × 10 × 20 FDM velocity-pressure formulation, Goda

[1979] with the 20 × 10 × 20 FDM velocity-pressure formulation, and Mahallati and
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Figure 12.3.3 Profiles of the x-component of the velocity of the 3-D cavity flow at Re = 100. (a) The

X = 0.5 plane. (b) The x = 0.786 plane.

Figure 12.3.4 The 3-D cavity streamlines (�3). (a) The symmetry plane (z = 0.5)

for Re = 10. (b) The symmetry plane (z = 0.5) for Re = 100. (c) The Z = 0.2 plane for

Re = 10. (d) The Z = 0.2 plane for Re = 100.
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Figure 12.3.5 Velocity profile on the 3-D cavity. (a) Vertical centerline. (b) X-horizontal centerline.

Figure 12.3.5 shows the velocity profiles along the vertical and horizontal centerlines

of the symmetry plane of the 3-D cavity. It is seen in Figure 12.3.5a that an increase

in Reynolds number tends to reduce negative x-velocity in the region around y = 0.6,

with the point of maximum negative x-velocity moving downward. At the same time, the

y-velocity becomes less positive upstream and more negative downstream as the

Reynolds number increases, with the position of zero velocity shifted toward down-

stream as shown in Figure 12.3.5b.

Overall, the fourth order partial differential equations of vorticity transport in terms

of the three dimensional stream function vector components lead to an accurate solu-

tion, in which the pressure oscillations are eliminated from the governing equations.

12.4 SUMMARY

Difficulties involved in the satisfaction of mass conservation and prevention of pressure

oscillations discussed in Chapter 5 for FDM are the focus of attention also in this chapter

for FEM. Traditional approaches in FEM include mixed methods, penalty methods,

pressure correction methods, operator splitting methods, and vortex methods. These

methods can be formulated by finite elements using GGM, TGM, or GPG.

Although the incompressible flows occur in many engineering problems and their

accurate solution methods are important, recent trends appear to be an emphasis in

developing computational schemes capable of treating all speed regimes for both in-

compressible and compressible flows and, in particular, interactions between incom-

pressible and compressible flows. Recall that this was the case for the incompressible

flows using FDM. Toward this end, two approaches were introduced: the precondi-

tioning of compressible flow equations and the FDV methods. Similar treatments are

available for FEM applications. These and other topics will be discussed in the next

chapter on compressible flows.
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CHAPTER THIRTEEN

Compressible Flows via Finite Element Methods

In this chapter, finite element analyses of both inviscid and viscous compressible flows

are examined. Traditionally, computational schemes for compressible inviscid flow are

developed separately from compressible viscous flows, governed by Euler equations

and Navier-Stokes system of equations, respectively. However, it is our desire in this

chapter to study numerical schemes capable of treating a compressible flow with or

without the effect of viscosity or diffusion. Furthermore, it would be desirable to de-

velop a scheme that can handle all speed regimes – not only the compressible flow, but

the incompressible flow as well. To accomplish this goal, the most suitable governing

equations to use are the Navier-Stokes system of equations written in conservation

form in terms of conservation variables. Advantages of transforming the conservation

variables into entropy variables and primitive variables will be explored. One of the

most prominent features in compressible flow calculations is the ability of numerical

schemes to resolve shock waves or discontinuities in high-speed flows. Furthermore,

compressible viscous flows at high Mach numbers and high Reynolds numbers lead

to significant numerical difficulties. We shall address these and other issues in this

chapter.

To this end, we begin with the general description of the governing equations in

Section 13.1, followed by the Taylor-Galerkin methods (TGM), generalized Galerkin

methods (GGM), generalized Petrov-Galerkin (GPG) methods, characteristic Galerkin

methods (CGM), and discontinuous Galerkin methods (DGM) in Sections 13.2 through

13.4. Finally, the flowfield-dependent variation (FDV) methods introduced in FDM and

discussed earlier in Section 6.5 will be presented for FEM applications (Section 13.6).

This subject will be treated again in Chapter 16, where many of the methods in both

FDM and FEM can be shown to be the special cases of FDV methods.

13.1 GOVERNING EQUATIONS

So far in the previous chapters, we have dealt with Stokes flows (no convection terms,

Section 10.1.4), Burgers’ equations (with convective terms but without pressure gradi-

ents, Chapter 11), and incompressible flows (with continuity and momentum equations,

Chapter 12). More general types of flows include compressibility or density variations

as a function of space and time and in nonisothermal environments, which are charac-

terized by the Navier-Stokes system of equations for conservation of mass, momentum,

426
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and energy. Although we discussed these equations in Chapters 2 and 6, we shall repeat

them here for convenience.

Continuity Equation

∂�

∂t
+ (�vi ),i = 0 (13.1.1a)

Momentum Equation

�
∂v j

∂t
+ �v j,i vi + p, j − �i j,i − �Fj = 0 (13.1.1b)

Energy Equation

�
∂ε

∂t
+ �ε,i vi + pvi,i − �i j v j,i + qi,i = 0 (13.1.1c)

where �i j,ε, and qi denote viscous stress tensor, internal energy, and heat flux, respec-

tively.

Stress Tensor

�i j = �

(
vi, j + v j,i − 2

3
vk,k�i j

)

Internal Energy

ε = cpT − p
�

= c�T

Heat Flux
qi = −kT,i

where the dynamic viscosity � and thermal conductivity k are given by Sutherland’s

law [(2.2.7) and (2.2.8)], respectively; and cp and cv represent specific heats at constant

pressure and volume, respectively.

These equations may be combined into a conservation form

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (13.1.2)

where U, Fi , Gi , and B are the conservation variables, convection flux, diffusion flux,

and body force vector, respectively.

U =

⎡
⎢⎣

�

�v j

�E

⎤
⎥⎦ , Fi =

⎡
⎢⎣

�vi

�vi v j + p�i j

�Evi + pvi

⎤
⎥⎦, Gi =

⎡
⎣ 0

−�i j

−�i j v j + qi

⎤
⎦, B =

⎡
⎢⎣

0

�Fj

�Fj v j

⎤
⎥⎦

with E being the total energy,

E = ε + 1

2
v j v j (13.1.3)
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and the pressure p given by the equation of state,

p = �RT (13.1.4a)

p = (� − 1) �

(
E − 1

2
vi vi

)
(13.1.4b)

T = 1

c�

(
E − 1

2
vi vi

)
(13.1.4c)

where R is the specific gas constant which may be related to the specific heats as follows:

R = cp(� − 1)

�
, � = cp

c�

The equation of state plays the role of a constraint for the Navier-Stokes system of

equations.

For the purpose of generality, we shall keep the source terms B so that numerical

formulations can be accommodated for the reacting flows as discussed in Chapter 22.

Nondimensional Form of Navier-Stokes System of Equations

The numerical solution of the Navier-Stokes system of equations in dimensional

form typically involves operations between terms that vary by several orders of magni-

tude. This leads to a situation in which the numerical solution fails or becomes unstable

as the computer floating point limits are exceeded. For this reason, the governing equa-

tions are often put into nondimensional form. Placing the flow variables in dimension-

less form insures that variations are maintained within certain prescribed limits between

0 and l. Additionally, writing the Navier-Stokes system of equations in dimensionless

form facilitates generalization to embody a large range of problems. Also, the dimen-

sionless form has the advantage that characteristic parameters such as Mach number,

Reynolds number. Prandtl number, etc., can be regulated independently. Toward this

end, we introduce the nondimensional variables

x∗
i = xi

L
, t ∗ = t

L/v∞
, �∗ = �

�∞
, v∗

i = vi

v∞
, E∗ = E

v2∞
(13.1.5)

p∗ = p
�∞v2∞

, T∗ = T
T∞

, �∗ = �

�∞
, F∗

i = Fi

v2∞/L

where an asterisk denotes nondimensional variables, infinity represents freestream

conditions, and L is the reference length used in the Reynolds number

Re = �∞v∞L
�∞

(13.1.6)

With the nondimensional variables above, the dimensionless form of Navier-Stokes

system of equations in conservation form (13.1.2) becomes

∂U∗

∂t ∗ + ∂F∗
i

∂x∗
i

+ ∂G∗
i

∂x∗
i

= B∗ (13.1.7)

where the conservation flow variable vector, the convection flux vector, the diffusion
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flux vector, and the source vector in nondimensional form are defined by

U∗ =

⎡
⎢⎣

�∗

�∗v∗
j

�∗E∗

⎤
⎥⎦ , F∗

i =

⎡
⎢⎣

�∗v∗
i

�∗v∗
i v∗

j + p∗�i j

�∗E∗v∗
i + p∗v∗

i

⎤
⎥⎦ , G∗

i = 1

Re

⎡
⎢⎣

0

−�∗
i j

−�∗
i j v

∗
j + q∗

i

⎤
⎥⎦ ,

B∗ =

⎡
⎢⎣

0

�∗F∗
j

�∗F∗
j v∗

j

⎤
⎥⎦ , bi = 1

Re

∂Gi

∂U
, ci j = 1

Re

∂Gi

∂U j

Here the nondimensional stagnation energy, the viscous stress tensor, and the thermal

conductivity are

E∗ = p∗

(� − 1)�∗ + 1

2
v∗

j v
∗
j (13.1.8)

�∗
i j = �∗

(
v∗

i, j + v∗
j,i − 2

3
v∗

k,k�i j

)
(13.1.9)

k∗ = �∗

(� − 1)M2∞ Pr
= k

�∞V2∞/T
(13.1.10)

with Sutherland’s law in the nondimensional form,

�∗ = 1 + So/T∞
T∗ + So/T∞

(T∗)
3
2 (13.1.11)

and the freestream Mach number,

M∞ = V∞√
�(� − 1)c�T∞

(13.1.12)

The nondimensional equations of state (13.1.4b,c) become

p∗ = (� − 1)�∗
(

E∗ − 1

2
v∗

j v
∗
j

)
, E∗ = c∗

� T∗ = T∗

�(� − 1)M2∞
(13.1.13)

or

T∗ = 1

c∗
�

(
E∗ − 1

2
v∗

j v
∗
j

)
(13.1.14)

where the nondimensional specific heat at constant volume,

c∗
� = 1

�(� − 1)M2∞
, c∗

p = cp

v2∞/T∞
= 1

(� − 1)M2∞
(13.1.15)

An alternative form of the nondimensional state equations is expressed by

p∗ = �∗ R∗T∗ (13.1.16)

with

R∗ = 1

� M2∞
(13.1.17)
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For convenience, the asterisks will now be omitted, but we continue to work with the

dimensionless form of the governing equations in all or the following discussions.

13.2 TAYLOR-GALERKIN METHODS AND GENERALIZED GALERKIN METHODS

In Chapter 11, the Taylor Galerkin methods (TGM) were formulated by expanding

the variables into Taylor series. It was also shown that similar results can be obtained

from the generalized Galerkin methods (GGM) using the double projections of the

residual onto the spatial and temporal test functions for the linearized Burgers’ equa-

tions in which the numerical diffusion is absent. For the nonlinear Burgers’ equations

(Section 11.2.5), however, it was shown that TGM was capable of explicitly providing

the numerical diffusion. In this section, we examine TGM as applied to the Navier-

Stokes system of equations with the convection and diffusion fluxes transformed to the

conservation variables through Jacobians. It will be shown that the numerical diffusion

arises in much more complicated form than it does for the nonlinear Burgers’ equations.

We then discuss GGM, which is simpler but not as effective as TGM associated with

convection-dominated flows or discontinuities. In Chapter 11 dealing with the Burgers

equations, TGM was identified as a special case of GGM. This is no longer the case in

this chapter working with the Navier-Stokes system of equations. This is because many

different forms of TGM result from various approximations in Taylor series expansion

of the conservation variables. We elaborate these and other topics below.

13.2.1 TAYLOR-GALERKIN METHODS

One of the well-known schemes in FEM as introduced in Chapter 11 is the Taylor-

Galerkin methods (TGM) as applied to the Navier-Stokes system of equations. In deal-

ing with the Navier-Stokes system of equations, unlike the Burgers’ equations discussed

in Chapter 11, it is convenient to work with conservation variables transformed from

the convection and diffusion fluxes as follows [Hassan, Morgan, and Peraire, 1991]:

∂Fi

∂t
= ai

∂U
∂t

(13.2.1)

∂Gi

∂t
= bi

∂U
∂t

+ ci j
∂U, j

∂t
(13.2.2)

with the convection Jacobian ai , diffusion Jacobian bi , and diffusion gradient Jacobian

ci j being defined as in (6.3.8).

Let us consider the Taylor series expansion of Un+1 in the form,

Un+1 = Un + �t
∂Un

∂t
+ �t2

2

∂2Un+1

∂t2
+ O(�t3) (13.2.3)

in which the second derivative is set at the implicit form (n + 1). Substituting (13.1.2)

into (13.2.3) gives

�Un+1 = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

∂

∂t

(
−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n+1

+ O(�t3)

(13.2.4)
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Using the definitions of convection, diffusion, and diffusion gradient Jacobians, the

temporal rates of change of convection and diffusion variables may be written as follows:

∂Fn
i

∂t
=

(
ai

∂U
∂t

)n

=
[

ai

(
−∂F j

∂xj
− ∂G j

∂xj
+ B

)]n

∂Fn+1
i

∂t
= ai

(
−∂Fn+1

j

∂xj
− ∂Gn+1

j

∂xj
+ Bn+1

)

= ai

[(
−a j

∂

∂xj
(Un+1 − Un) − ∂Fn

j

∂xj
− ∂Gn+1

j

∂xj
+ Bn+1

)]
(13.2.5)

∂Gn+1
i

∂t
=

(
bi

∂U
∂t

)n+1

+
[

ci j
∂

∂t

(
∂U
∂xj

)]n+1

or

∂Gn+1
i

∂t
=

(
bi − ∂ci j

∂xj

)
�U
�t

n+1

+ ∂

∂xj

(
ci j

�U
�t

)n+1

(13.2.6)

Substituting (13.2.5) and (13.2.6) into (13.2.4) yields

�Un+1 = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

{
∂

∂xi

[
−ai

(
−a j

∂�Un+1

∂xj
− ∂Fn

j

∂xj
− ∂Gn+1

j

∂xj
+ Bn+1

)

−
(

ei + ∂ci j

∂xj

)
�Un+1

�t

]
+ ∂Bn+1

∂t

}
(13.2.7)

with

ei = bi − ∂ci j

∂xj

Neglecting the spatial and temporal derivatives of B, we rewrite (13.2.7) in the form{
1 + �t

2

∂ei

∂xi
− �t2

2

∂

∂xi

(
ai a j − ci j

�t

)
∂

∂xj

}
�Un+1

= �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

∂

∂xi

(
ai

∂F j

∂xj

)n

Here the second derivatives of Gi are neglected and all Jacobians are assumed to remain

constant within an incremental time step, but updated at subsequent time steps.

We now introduce the trial functions for the various variables in the form,

U = ��U�, Fi = ��F�i , Gi = ��G�i , B = ��B�

Substituting the above into (13.2.8) leads to an implicit scheme,

(A�	�rs + B�	rs)�Un+1
	s = Hn

�r + Nn+1
�r + N

n
�r (13.2.8)

where

A�	 =
∫

�

���	d�
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B�	rs = �t
2

∫
�

eirs���	,i d� + �t2

2

∫
�

[(
airqa jqs − ci jrs

�t

)
��,i�	, j

]
d�

Hn
�r = �t

∫
�

[
��,i�	

(
F n

	ir + Gn
	ir

) + ���	 Bn
	r − �t

2
airs��,i�	, j Fn

	 js

]
d�

Nn+1
�r = �t2

2

∫
�

(
airqa jqs − ci jrs

�t

)
∗
� ��Un+1

s, j ni d�

N
n
�r = −

∫
�

[
�t

∗
� �

(
Fn

ir + Gn
ir

) − �t2

2
airs

∗
� � Fn

js, j

]
ni d�

where the indices �, 	 denote the global node, r, s represent the equation number listed

in (13.1.2), and i, j indicate spatial coordinates. Note also that all quantities with r, s
are lightfaced, indicating that they are no longer vector quantities.

It should be recognized that the integral

�t2

2

∫
�

airqa jsq��,i�	, j d� =
∫

�

�i jrs��,i�	, j d� (13.2.9)

contained in B�	rs represents the numerical diffusion, corresponding to that given in

(11.2.76) for the Burgers’ equations. We note that the velocity components for the

Burgers’ equations are simply replaced by the convection Jacobian components for the

Navier-Stokes system of equations.

Instead of simulating the second order time derivatives implicitly, we may leave

them in an explicit form so that the standard Taylor series can be used.

Un+1 = Un + �t
∂Un

∂t
+ �t2

2

∂2Un

∂t2
+ O(�t3) (13.2.10)

where

∂U
∂t

= −∂Fi

∂xi
− ∂Gi

∂xi
+ B = −ai

∂U
∂xi

− ∂Gi

∂xi
+ B (13.2.11)

∂2U
∂t2

= − ∂

∂t

(
ai

∂U
∂xi

+ ∂Gi

∂xi
− B

)
or

∂2U
∂t2

= ∂

∂xj

(
ai a j

∂U
∂xi

)
+ ∂

∂xi

(
ai

∂G j

∂xj

)
− ∂

∂xi
(ai B) + ∂B

∂t
(13.2.12)

Substituting (13.2.11) and (13.2.12) into (13.2.10), we obtain

�Un+1 = �t
{

− ∂Fi

∂xi
− ∂Gi

∂xi
+ B + �t

2

[
∂

∂xj

(
ai a j

∂U
∂xi

)

+ ∂2(ai G j )

∂xi∂xj
− ∂

∂xi
(ai B) + ∂B

∂t

]}n

(13.2.13)

or

�Un+1 = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

{
∂

∂xi

(
ai a j

∂�Un+1

∂xj
+ ai

∂Fn
j

∂xj

)

+ ∂2(ai G j )
n+1

∂xi∂xj
+ ∂

∂xi
(ai B)n+1 + ∂Bn+1

∂t

}
(13.2.14)
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Rearranging (13.2.14) gives

[
1 − �t2

2

∂

∂xi

(
ai a j − ci j

�t

)
∂

∂xj

]
�Un+1

= �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

∂

∂xi

(
ai

∂F j

∂xj

)n

(13.2.15)

where the second derivatives of Gi are assumed to be negligible and B is constant in

space and time. We then arrive at an implicit finite element scheme,

(A�	�rs + B�	rs) �Un+1
	s = Hn

�r + Nn+1
�r + N

n
�r (13.2.16)

where

A�	 =
∫

�

���	 d�

B�	rs = �t2

2

∫
�

[(
airqa jqs − ci jrs

�t

)
��,i�	, j

]
d�

Hn
�r = �t

∫
�

[
��,i�	

(
Fn

	ir + Gn
	ir

) + ���	 Bn
	r − �t

2
airs��,i�	, j Fn

	 js

]
d�

Nn+1
�r = �t2

2

∫
�

(
airqa jqs − ci jrs

�t

)
∗
� ��Un+1

s, j ni d�

N
n
�r = −

∫
�

[
�t

∗
� �

(
Fn

ir + Gn
ir

) − �t2

2
airs

∗
� � Fn

js, j

]
ni d�

It is interesting to note that both (13.2.8) and (13.2.16) are identical if the first integral

of B�	rs in (13.2.8) is negligible or ei = bi − ∂ci j

∂x j

∼= 0, in which the role of the diffu-

sion Jacobian bi no longer exists. However, in other formulations such as in FDV (see

Section 6.5 and Section 13.6), the diffusion Jacobian is shown to be important in mod-

eling convection-diffusion interactions.

13.2.2 TAYLOR-GALERKIN METHODS WITH OPERATOR SPLITTING

If the source term B contains time scales widely disparate in comparison with fluid

convection time scales such as occur in chemical reactions, then it is advantageous to

split the Navier-Stokes system of equations into two parts so that the flow can be treated

explicitly whereas the source terms are accommodated implicitly, a scheme known as

the point implicit method. To this end, we may split the governing equations (13.1.7)

into two parts:

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= 0

∂U
∂t

= B

(13.2.17a,b)
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where (13.2.17) is identified as the fluid operator written in two-step Taylor-Galerkin

method.

Step 1

�Un+1/2 = Un+1/2 − Un = −�t
2

(
∂Fi

∂xi
+ ∂Gi

∂xi

)n

, A�	�rsU
n+1/2
	s = Qn

�r (13.2.18a)

Step 2

�Un+1 = −�t
(

∂Fi

∂xi
+ ∂Gi

∂xi

)n+1/2

, A�	�rsUn+1
	s = Qn+1/2

�r (13.2.18b)

with the right-hand side of (13.2.18a,b) consisting of domain and boundary integrals as

usual.

The source term operator is provided with the intermediate iterative increment

m + 1 and m between n + 1 and n so that

∂Um+1

∂t
= Bm+1 (13.2.19)

where

∂Um+1

∂t
= Um+1 − Un

�t
= �Um+1

�t
+ �Um

�t
(13.2.20a)

Bm+1 = Bm + ∂B
∂U

�Um+1 (13.2.20b)

with

�Um+1 = Um+1 − Um, �Um = Um − Un

Substituting (13.2.20a,b) into (13.2.19) yields

Step 3(
I − �t

∂B
∂U

)
�Um+1 = −�Um + �tBm (13.2.21)

To implement these three steps, we must first obtain the finite element analogs

(13.2.18a,b) using the standard approach. The Galerkin finite element formulation of

(13.2.21) gives

(A�	�rs − �t B�	rs) �Um+1
	s = −A�	�rs�Um

	s + �t A�	�rsBm
	s (13.2.22)

with

A�	 =
∫

�

���	 d� (13.2.23a)

B�	rs =
∫

�

frs���	 d� (13.2.23b)

frs = ∂B(r)

∂U(s)

(13.2.23c)
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Here, �Um is set equal to �Un+1 with the final solution being �Um+1. The solu-

tion will begin with the initial and boundary conditions, followed by steps 1, 2, and

3 being repeated until convergence. Applications of this scheme are demonstrated in

Section 22.6.1.

13.2.3 GENERALIZED GALERKIN METHODS

Recall that, in Section 11.2, TGM is shown to be a special case of generalized Galerkin

methods (GGM) in dealing with the linearized Burgers’ equations. Such is not the case

for the Navier-Stokes system of equations, as demonstrated by the nonlinear Burgers’

equations in Section 11.2.5.

Constructing the double projections of the residual of the Navier-Stokes system of

equations in terms of Jacobians onto the spatial and temporal test functions, we obtain

(Ŵ(
), (��, R)) =
∫




Ŵ(
)

∫
�

��

(
∂U
∂t

+ ai
∂U
∂xi

+ bi
∂U
∂xi

+ ci j
∂2U

∂xi∂x j
− B

)
d�d
 = 0

(13.2.24)

or without the Jacobians,

(Ŵ(
), (��, R)) =
∫




Ŵ(
)

∫
�

��

(
∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
− B

)
d�d
 = 0 (13.2.25)

Using the various forms of the temporal test functions W(
) and temporal parameters

� as given in Chapter 10, we obtain numerous options for the finite element equations

from (13.2.24) or from (13.2.25).

For simplicity, let us examine (13.2.24), using the temporal test function, W(
) =
�(
 − 1

2
) or W(
) = 1 with linear variations of nodal values of the conservation variables.

The generalized Galerkin finite element equations are of the form(
A�	�rs + �t

2
(B�	rs + K�	rs)

)
�Un+1

	s = Hn
�r + Nn

�r (13.2.26)

where

A�	 =
∫

�

���	d� B�	rs = −
∫

�

(airs + birs)��,i�	d�

K�	rs =
∫

�

ci jrs��,i�	, j d� Hn
�r = �t

∫
�

���	 B	r d�

Nn
�r = �t

∫
�

∗
� �

(
Fn

ir + Gn
ir

)
ni d�

Similarly, for (13.2.25), we obtain

A�	�rs�Un+1
	s = �t

2

[
E�	i

(
Fn

	ir + Gn
	ir

)] + �t
(
Hn

�r + Nn
�r

)
(13.2.27)

where

E�	i =
∫

�

��,i�	 d�

with all other notations being the same as in (13.2.26).
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For the solution of (13.2.27), we may begin with the fractional step n + 1/2 in an

explicit scheme, which is updated in the following step, n + 1.

Step 1

A�	�rs�Un+1/2
	s = �t

2

[
E�	i

(
Fn

	ir + Gn
	ir

)] + 2
(
Hn

�r + Nn
�r

)
(13.2.28)

Step 2

A�	�rs�Un+1
	s = �t

2

[
E�	i

(
F

n+ 1
2

	ir + G
n+ 1

2

	ir

)]
+ 2

(
H

n+ 1
2

�r + Nn
�r

)
(13.2.29)

The nodal values, F n+1/2
	ir , Gn+1/2

	ir , and Hn+1/2
�r at step 1, are estimated or determined

from the boundary conditions, and Fn+1
	ir , Gn+1

	i , and Hn+1
�r at step 2 are calculated from

U
n+ 1

2
	s of step 1.

As was demonstrated in (11.2.12), it is necessary to add the numerical diffusion inte-

gral (13.2.9) to the convection matrix in (13.2.26) for high-speed convection-dominated

flows.

13.3 GENERALIZED PETROV-GALERKIN METHODS

13.3.1 NAVIER-STOKES SYSTEM OF EQUATIONS IN VARIOUS VARIABLE FORMS

In Chapter 11, we studied the generalized Petrov-Galerkin (GPG) methods, also known

as the streamline upwind Petrov-Galerkin (SUPG) methods, streamline diffusion meth-

ods (SDM), or Galerkin/least squares (GLS) as discussed in Sections 11.2 and 11.3. They

were originally developed for incompressible flows, and subsequently extended to com-

pressible flows governed by the Navier-Stokes system of equations. These methods were

explored extensively by Hughes and others and are now considered as some of the most

robust computational schemes that deal with discontinuities such as in shock waves. In

Sections 11.3 and 11.4, it was suggested that SUPG, SDM, and GLS be called GPG for

the sake of uniformity and convenience. This is because all of these methods provide nu-

merical diffusion test functions of various forms in addition to the standard Galerkin test

functions, leading to the Petrov-Galerkin methods. The concept of space/time approx-

imations suggests and lends itself to the generalized Petrov-Galerkin (GPG) methods.

As demonstrated in Sections 11.3 and 11.4, the basic idea is to apply numerical

diffusion in the direction of the streamline parallel to the velocity as in (11.3.29). Sharp

discontinuities require additional numerical diffusion parallel to the velocity gradients

directed toward the acceleration as in (11.3.35b), known as the discontinuity-capturing

scheme. These treatments were developed for Burgers’ equations where the velocity

can be identified as a single variable.

In dealing with multivariables such as in the Navier-Stokes system of equations,

however, numerical diffusion test functions are modified accordingly. To this end, let us

consider the conservation form of the Navier-Stokes system of equations,

R = ∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
− B = 0 (13.3.1a)
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or

R = ∂U
∂t

+ (ai + bi )
∂U
∂xi

+ ci j
∂2U

∂xi∂x j
− B = 0 (13.3.1b)

where ai , bi , and ci j denote the Jacobians of convection, diffusion, and diffusion gradi-

ents, respectively, as shown in Section 13.2. It should be noted that, in some applications

in CFD, the diffusion Jacobian bi is neglected, but it is important where inviscid-viscous

interactions are taken into account such as in FDV to be discussed in Section 13.6.

Although the governing equations given by either (13.3.1a) or (13.3.1b) may be

solved using the GPG methods, it is possible that improved solutions are obtained if the

conservation variables are transformed into entropy variables in which the Clausius-

Duhem inequality is satisfied, contributing to numerical stability [Harten, 1983; Tadmor,

1984; Hughes, Franca, and Mallet, 1986; Hauke and Hughes, 1998].

The relationship between conservation variables U and entropy variables V can be

established using the following definitions:

Conservation Variables

U =

⎡
⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

�

�v
1

�v2

�v3

� E

⎤
⎥⎥⎥⎥⎥⎦ = �ε

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−V5

V2

V3

V4

1 − V2
2 + V2

3 + V2
4

2V5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.3.2)

Entropy Variables

V =

⎡
⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

V5

⎤
⎥⎥⎥⎥⎥⎦ = 1

�ε

⎡
⎢⎢⎢⎢⎢⎣

−U5 + �ε(� + 1 − s)

U2

U3

U4

−U1

⎤
⎥⎥⎥⎥⎥⎦ = 1

cvT

⎡
⎢⎢⎢⎢⎢⎢⎣

H − cvTs − 1

2
vivi

v1

v2

v3

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(13.3.3)

where H is the enthalpy and s is the dimensionless entropy

s = � − V1 + (
V2

2 + V2
3 + V2

4

)/
2V5 (13.3.4a)

with

�ε = U5 − (
U2

2 + U2
3 + U2

4

)/
2U1 (13.3.4b)

Substituting (13.3.2) and (13.3.3) into (13.3.1) leads to

R = C
∂V
∂t

+ Ci
∂V
∂xi

+ Ci j
∂2V

∂xi∂x j
− B = 0 (13.3.5)

where the entropy variable Jacobians are defined as

C = ∂U
∂V

, Ci = (ai + bi )C, Ci j = ci j C (13.3.6a,b,c)
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with the explicit form of the entropy variable Jacobian C being given in terms of the

entropy variables as follows [Shakib, Hughes, and Johan, 1991]:

C = �ε

�̄ V5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−V2
5 e1 e2 e3 V5(1 − k1)

c1 d1 d2 V2k2

c2 d3 V3k2

c3 V4k2

symm. −k3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.3.7)

with

� = � − 1

k1 = 1

2

(
V2

2 + V2
3 + V2

4

) /
V5

k2 = k1 − �

k3 = k2
1 − 2�k1 + �

k4 = k2 − �

k5 = k2
2 − �(k1 + k2)

c1 = � V5 − V2
2

c2 = � V5 − V2
3

c3 = � V5 − V2
4

d1 = −V2V3

d2 = −V2V4

d3 = −V3V4

e1 = V2V5

e2 = V3V5

e3 = V4V5

It should be noted that all coefficient matrices, C, Ci , and Ci j are symmetric, and the

eigenvalues associated with the convective terms are well conditioned.

Primitive Variables

For calculations involving both compressible and incompressible flows, the formula-

tions based on conservation variables may lead to difficulties when the incompressible

limit (M∞ = 0) is approached. In this case, convergence toward a steady state can be

very slow. To circumvent such difficulties, the concept of preconditioning is introduced

as in FDM [Choi and Merkle, 1993] and also as in FEM [Hauke and Hughes, 1998] by

means of the primitive variable Jacobian,

D = ∂U
∂W

(13.3.8)

where W represents the primitive variables,

W =

⎡
⎢⎢⎢⎢⎣

�

v1

v2

v3

T

⎤
⎥⎥⎥⎥⎦ (13.3.9)

Introducing (13.3.8) and (13.3.9) into (13.3.1), we obtain

R = D
∂W
∂t

+ Di
∂W
∂xi

+ Di j
∂2W

∂xi∂x j
− B = 0 (13.3.10)
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with

Di = (ai + bi )D (13.3.11)

Di j = ci j D (13.3.12)

where the explicit form of the primitive variable Jacobian D is given below,

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

v1 � 0 0 0

v2 0 � 0 0

v3 0 0 � 0

ε̂ �v1 �v2 �v3 �cv

⎤
⎥⎥⎥⎥⎥⎥⎦

(13.3.13)

with

ε̂ = cpT + 1

2
vivi − cvT(� − 1)

The governing equations given by (13.3.10) are well behaved as the eigenvalues of the

convective terms are well conditioned even when the incompressible limit is reached.

13.3.2 THE GPG WITH CONSERVATION VARIABLES

Following the procedure presented in Section 11.4, let us now consider the GPG for-

mulations of the Navier-Stokes system of equations in terms of conservation variables

given by (13.3.1).∫



Ŵ(
)

∫
�

[(
�� + �(a)

�

)(∂U
∂t

+ (ai + bi )
∂U
∂xi

+ ci j
∂2U

∂xi∂x j
− B

)

+ �(b)ai
∂U
∂xi

]
d�d
 = 0 (13.3.14)

As shown earlier in Section 11.4, the integration by parts is to be performed only to those

terms associated with the Galerkin test function ��. With assumptions made similarly

as in the case of the Burgers equation for those terms associated with the numerical

diffusion test function for streamline diffusion, we obtain∫



Ŵ(
)

[ ∫
�

{
��

(
∂U
∂t

− B
)

− (��,i (ai + bi )U + ��,i ci j U, j )

}
d�

+
∫

�

∗
�� (Fi + Gi )ni d�

]
d
 +

∫



Ŵ(
)

∫
�

[
�(a)

� (ai U, i + ci j U, j i)

+ �(b)
� ai U, i

]
d�d
 = 0 (13.3.15)

where the numerical diffusion test functions are given by

�(a)
� = �ai��,i , streamline diffusion in GPG (13.3.16a)

�(a)
� = �L��, streamline diffusion in GLS (13.3.16b)

�(b)
� = � (b)ai��,i , discontinuity-capturing (13.3.17)
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The differential operator L in (13.3.16b) is written as

L = ∂

∂t
+ ai

∂

∂xi
+ ci j

∂2

∂xi∂x j
(13.3.18)

With the trial functions applied to the conservation variables, together with linear tem-

poral test functions (Section 10.2), we arrive at

[A�	rs + ��t(C�	rs + D�	rs − B�	rs − K�	rs)]Un+1
	s �t

= [A�	rs − (1 − �)(C�	rs + D�	rs − B�	rs − K�	rs)]Un
	s

+ �t
(
Hn

�r + Nn
�r

)
(13.3.19)

with

A�	rs =
∫

�

�rs���	d� (13.3.20a)

C�	rs =
∫

�

(�airt a jts + � �i j �rs)��,i�	, j d� (13.3.20b)

K�	rs =
∫

�

ci jrs��,i�	, j d� (13.3.20c)

B�	rs =
∫

�

(airs + birs)��,i�	d� (13.3.20d)

D�	rs =
∫

�

�akci jrs��,k�	, j i d� (13.3.20e)

Hn
�r =

∫
�

�� Br d� (13.3.20f)

Nn
�r =

∫
�

∗
� �(Fir + Gir )ni d� (13.3.20g)

where the intrinsic time scale � and the discontinuity-capturing factor � constitute the

equivalent artificial diffusivity,

� = (
gi j airt a jst C−1

rs

)− 1
2 (13.3.21)

� = max(0, � d − � s) (13.3.22)

with

� d =
(

C−1
rs aitr a jusUt,iUu, j

C�wgmnU�,mUw,n

) 1
2

� s = �airt a jstUr,iUs, j

Cu�Uu,kU�,k

where Crs is the entropy variable Jacobian (13.3.5) and gmn is the contravariant metric

tensor in the curvilinear isoparametric coordinates (Figure 11.3.3),

gmn = ∂
m

∂x p

∂
n

∂x p

Here, the indicies i, j, k, m, n, p refer to the spatial coordinates (1,2,3) and r, s, t, �, �, w
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denote the equation number (1,2,3,4,5) in the Navier-Stokes system of equations. It

should be noted that the criterion used in (13.3.21) is motivated by the fact that the

gradients of all variables are involved in determining the dimensionally equivalent ar-

tificial diffusivity rather than artificial time scale associated with only the velocity and

velocity gradients. This is in contrast to the case of the numerical diffusion test functions

developed for the Burgers’ equations as given by (11.3.35b) and (11.3.38). Note also

that another criterion in (13.3.22) is to ensure positive numerical diffusion for highly

distorted elements.

There are other versions of numerical diffusion factors, as proposed in Hauke and

Hughes [1998], Aliabadi and Tezduyar [1993], and other related references for the past

decade. The basic idea is to apply the numerical diffusion in the direction of velocity

for streamline diffusion and in the direction of gradients for discontinuity-capturing, as

described in Section 11.3.

Instead of using the linear temporal variations, we may enhance temporal approxi-

mations with a second order accuracy of the form

∂U
∂t

= 3Un+1 − 4Un + Un−1

2�t
(13.3.23)

together with quadratic variations of U	 between nodes,

U	 = 5

8
Un+1

	 + 3

4
Un

	 − 3

8
Un−1

	 (13.3.24)

These approximations lead to[
3A�	rs + 5

4
�t(C�	rs − K�	rs)

]
Un+1

	s =
[

4A�	rs − 3

2
�t(B�	rs − D�	rs)

]
Un

	s

−
[

A�	rs − 3

4
�t(B�	rs − D�	rs)

]
Un−1

	s

+ �t
(
Hn

�r + Nn
�r

)
(13.3.25)

Other possibilities for temporal approximations such as discussed in Section 10.2 may

be considered for applications to various physical problems as required for higher order

accuracy.

13.3.3 THE GPG WITH ENTROPY VARIABLES

The GPG formulations in terms of entropy variables can be carried out similarly as in

(13.3.14) using (13.3.5),∫
�

Ŵ(
)

∫
�

[(
�� + �(a)

�

)(
C

∂V
∂t

+ Ci
∂V
∂xi

+ Ci j
∂2V

∂xi∂x j
− B

)

+ �(b)
� ai C

∂V
∂xi

]
d�d
 = 0 (13.3.26)

which leads to

[A�	rs + ��t(C�	rs + D�	rs − B�	rs − K�	rs)]Vn+1
	s

= [A�	rs − (1 − �)�t(C�	rs + D�	rs − B�	rs − K�	rs)]Vn
	s

+ �t
(
Hn

�r + Nn
�r

)
(13.3.27)
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where

A�	rs =
∫

�

Crs���	d�

C�	rs =
∫

�

(�airt a jst + vrs�i j )��,i�	, j d�

K�	rs =
∫

�

ci jr t Cst��,i�	, j d�

B�	rs =
∫

�

airt Cst��,i�	d�

D�	rs =
∫

�

�akci jr t Cst��,k�	,i j d�

Hn
�r =

∫
�

�� Br d�

Nn
�r = −

∫
�

∗
� �(Fir + Gir )ni d�

with

� = (
gi j Cirt C jst C−1

rs

)− 1
2 (13.3.28)

� rs = max(0, � d − � s)Crs (13.3.29)

� d =
(

C−1
rs Citr C jus Vt,i Vu, j

C�wgmnV�,mVw,n

) 1
2

� s = �Cirt C jst Vr,i Vs, j

Crs Vr,kVs,k

The criterion given in (13.3.29) is to ensure that the discontinuity-capturing diffusivity

is larger than the streamline diffusivity, which may not be true for highly distorted

elements. As in the case of conservation variables, temporal approximations may be

enhanced with a second order accuracy as in (13.3.22). Further details of the GPG with

entropy variables are found in Hughes et al. [1986], Shakib et al. [1991], and Hauke and

Hughes [1998].

13.3.4 THE GPG WITH PRIMITIVE VARIABLES

The projections of the residuals of the governing equations in terms of primitive vari-

ables (13.3.10) onto the various test functions are given by

∫



Ŵ(
)

∫
�

[(
�� + �(a)

�

)(
D

∂W
∂t

+ Di
∂W
∂xi

+ Di j
∂2W

∂xi∂x j
− B

)

+ �(b)
� ai D

∂W
∂xi

]
d�d
 = 0 (13.3.30)
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The resulting algebraic equations are of the form

[A�	rs + ��t(C�	rs − K�	rs)]Wn+1
	s

= [A�	rs − (1 − �)�t(B�	rs + D�	rs)]Wn
	s+ �t

(
Hn

�r + Nn
�r

)
(13.3.31)

where

A�	rs =
∫

�

Drs���	d�

C�	rs =
∫

�

(�airt a jts + � rs�i j )��,i�	, j d�

K�	rs =
∫

�

ci jr t Dts��,i�	,i d�

B�	rs =
∫

�

airt Dts��,i�	d�

D�	rs =
∫

�

�akrt ci j tu Dus��,k�	, j i d�

Hn
�r =

∫
�

�� Br d�

Nn
�r = −

∫
�

∗
� �(Fir + Gir )ni d�

with

� =
(

gi j Dirt Djts D−1
rs

)− 1
2

(13.3.32)

� rs = max(0, � d − � s)Drs (13.3.33)

� d =
(

D−1
rs Ditr Djus Wt,i Wu, j

D�wgmnW�,mWw,n

) 1
2

� s = � Dirt Djts Wr,i Ws, j

Du�Wu,kW�,k

Once again, the transformation of the conservation variable into primitive variables re-

sults in appropriate modifications of the parameters involved in the numerical diffusion

test functions.

13.4 CHARACTERISTIC GALERKIN METHODS

The characteristic Galerkin methods (CGM) are based on the concept of trajectories

or characteristics [Zienkiewicz and Codina, 1995; Zienkiewicz et al., 1998; Codina,

Vazquez, and Zienkiewicz, 1998] with

xn
i = xn+1

i − �tvn
i (13.4.1)

Differentiating (13.4.1) with respect to time, we have

vn
i = vn+1

i − �tvn
j
∂vn

i

∂x j
(13.4.2)



444 COMPRESSIBLE FLOWS VIA FINITE ELEMENT METHODS

Combining (13.4.1) and (13.4.2) leads to

xn+1
i − xn

i = �tvn
i − �t2

2
vn

j
∂vn

i

∂x j
(13.4.3)

The main idea of CGM is to write the governing equations along the characteristics

so that the Navier-Stokes system of equations may be recast in the form similar to

(13.4.3).

�Un+1 = �tRn − �t2

2
an

j
∂Rn

∂x j
(13.4.4)

where an
j is the convection Jacobian, with Rn is the residual defined as

Rn = −
(

∂Fi
n

∂xi
+ ∂Gn

i

∂xi
− Bn

)

Instead of solving (13.4.4) directly, the fractional step approach may be used for

convenience. Here, the momentum equations are solved first without pressure, followed

by the continuity equation to compute the pressure. With these results, we return to

the momentum equations again to update the flowfield, before the energy equation is

solved.

Momentum (initially):

��vn
i = �t Rn

i − �t2

2
vk

∂ R̂n
i

∂xk
(13.4.5)

with

Rn
i = − ∂

∂x j
(�vi v j − � i j ) + �gi

R̂n
i = Rn

i − ∂pn

∂xi

Continuity:

��n = −�t
∂

∂xi

(
�vn

i + 1��vn
i

) + 1�t2 ∂2 pn+2

∂xi∂xi
(13.4.6)

with

0 ≤ 1, 2 ≤ 1

Momentum (updated):

��vn
i = ��vn

i − �t
∂pn+2

∂xi
(13.4.7)

Energy:

�� En = �t Rn − �t2

2
vk

∂ Rn

∂xk
(13.4.8)
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with

Rn = − ∂

∂xi

[
(�E + p)vi − k

∂T
∂xi

− � i j v j

]

The standard Galerkin approximations can now be applied to these equations sep-

arately and the solution proceeds as follows:

(1) Solve the momentum equations (13.4.5).

(2) Solve the continuity equation (13.4.6), using the mass flux obtained from step 1

to calculate the pressure.

(3) Update the mass flux with (13.4.7), using the pressure from step 2.

(4) Solve the energy equation (13.4.8) to obtain the total energy or temperature

using the results obtained from step 3.

(5) Repeat the steps 1 through 4 until the steady state is reached.

To explore the physical significance of the CGM procedure, let us substitute (13.4.5)

into (13.4.7) to obtain

∂

∂t
(�vi ) + (�vi v j ), j + p,i − � i j, j − � f i = Si (m) (13.4.9)

with

Si (m) = �t
2

{vk[(�vi v j ), j + p,i − � i j, j − � f i ]},k (13.4.10)

Similarly, the continuity equation (13.4.6) and energy equation (13.4.8) are rewritten,

respectively, as

∂�

∂t
+ (�vi ),i = S(c) (13.4.11)

with

S(c) = �t
2

[(�vi v j − � i j ), j i + p,i i − (� f i ),i ] (13.4.12)

by setting 1 = 1/2 and 2 = 0 in (13.4.6), and

∂� E
∂t

+ [(� E + p)vi − kT,i − � i j v j ] ,i = S(e) (13.4.13)

with

S(e) = �t
2

v j [(� Evi + pvi − kT,i − � ikvk),i ] , j (13.4.14)

The consequence of the CGM process is that additional terms S(m), S(c), and S(e)

on the right-hand side of momentum, continuity, and energy equations, respectively,

have been generated as numerical diffusion. It is remarkable that the combination of

all equations, (13.4.5) through (13.4.8), which represents (13.4.4) can be identified in the

TGM equations. The similar results arise in TGM with the right-hand side of (13.2.14)
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revised by substituting

a j
∂�Un+1

∂x j
= ∂�F j

n+1

∂x j

The advantage of the fractional step approach is the fact that the continuity equation

can be written in the form given by (13.4.11) in which the spatial second derivatives of

pressure arise explicitly, acting as numerical diffusion. Of course, this effect is present,

implicitly embedded, when the entire equations are solved simultaneously in TGM.

An important conclusion here is that the CGM concept is found to be identical to

TGM. It will be shown in Section 13.6.3 that these results arise as a special case of the

flowfield-dependent variation methods.

Direct assessments of the fractional step approach can be made by applying the

Galerkin formulation of (13.4.9) and (13.4.11) separately and combining the results in

a matrix form:[
K�	i j C�	i

D�	 j B�	

] [
v	 j

p	

]
=

[
E�i

F�

]
(13.4.15)

where it can be shown that the presence of B�	 is due to the numerical diffusion terms

characterized by Si (m) and S(c) in (13.4.9) and (13.4.11), respectively. Otherwise, B�	

would have been zero, resulting in numerical instability. In this case, the so-called LBB

restriction requires a special treatment in incompressible flow as discussed in Chapter 12.

It is reminded that the simultaneous solution of all equations in terms of the conservation

variables have the advantage of versatility and simplicity with all numerical diffusion

terms appearing on the left-hand side rather than on the right-hand side.

13.5 DISCONTINUOUS GALERKIN METHODS OR COMBINED FEM/FDM/FVM METHODS

The basic idea of discontinuous Galerkin methods (DGM) is to combine FDM schemes

with upwind finite differences into the FEM formulation such as standard Galerkin

methods or Taylor-Galerkin methods. In this process, integration by parts in the FEM

equations provides the boundary terms in which the convection numerical flux terms

are discretized using the upwind FDM schemes via finite volume approximations. Thus,

in DGM, all currently available CFD schemes are combined together, alternatively re-

ferred to as the combined FEM/FDM/FVM methods. Various authors have contributed

to DGM. Among them are La Saint and Raviart [1974], Johnson and Pitkäranta [1986],

Cockburn, Hou, and Shu [1990, 1997], and Oden, Babuska, and Baumann [1998].

In the DGM approach, we begin with the standard Galerkin integral,

∫
�

��

(
∂U
∂t

+ Fi,i + Gi,i − B
)

d� = 0 (13.5.1)

or ∫
�

��

[
∂U
∂t

+ (ai U),i + (bi U + ci j U, j ),i − B
]

d� = 0 (13.5.2)
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Integrating (13.5.1) or (13.5.2) by parts, we obtain∫
�

��
∂U
∂t

d� −
∫

�

��,i (Fi + Gi )d� −
∫

�

��Bd� +
∫

�

∗
� �Fi ni d�

+
∫

�

∗
� �

(
Gi + Ĝi

)
ni d� = 0 (13.5.3)

with

Fi = ai U, Gi = bi U, Ĝi = ci j U,i (13.5.4)

In a compact notation, we write (13.5.3) in the form

(A�	 + B�	)�Un+1
	 = F� + G� + H� (13.5.5)

with

A�	 =
∫

�

���	d� (13.5.6a)

B�	 = �t
∫

�

((ai + bi )(��,i�	 − ci j��,i�	, j ))d� (13.5.6b)

F� = �t
∫

�

��Bd� (13.5.6c)

G� = −�t
∫

�

∗
� � Fi ni d� (13.5.6d)

H� = −�t
∫

�

∗
� �

(
Gi + Ĝi

)
ni d� (13.5.6e)

Instead of using the standard Galerkin formulation of (13.5.1–13.5.3), we may utilize

the Taylor-Galerkin methods (TGM) as described in Section 13.2. In this case, the

expression given by (13.2.15) is used instead of (13.5.3).∫
�

��

{
1 − �t2

2

∂

∂xi

(
ai a j − ci j

�t

)
∂

∂xj

}
�Un+1d�

=
∫

�

��

{
�t

(
−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

∂

∂xi

(
ai

∂F j

∂xj

)n}
d� (13.5.7)

Note that the first integral on the right-hand side of (13.5.5), upon integration by parts,

becomes identical to the form given in (13.5.3), resulting in the same boundary integrals.

All quantities resulting from (13.5.5) are identical to those given in (13.5.6) except for

(13.5.6b,c),

B�	 = �t2

2

∫
�

((
ai a j − ci j

�t

)
��,i�	, j

)
d� (13.5.8a)

F� = �t
∫

�

��Bd� − �t
∫

�

��,i (Fi + Gi ) d� (13.5.8b)

Here, the boundary integrals (13.5.6d) for convection represent possible discontinuities

characterized by the eigenvalues and eigenvectors of the convection Jacobian ai in the
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spirit of flux vector splitting. Similarly, the flux variables Fi may be reconstructed using

the various FDM second order upwind schemes [Godunov, 1959; Harten, 1984; Roe,

1984; Osher, 1984; van Leer, 1979; etc.] or flux-corrected transport (FCT) [Boris and

Book, 1976; Zalesak, 1979]. Recall that FDM schemes were presented in Chapter 6. The

idea of DGM is to combine FDM into FEM. Some examples of various FDM schemes

which may be combined to DGM are the flux vector splitting for the convection Jacobian

and various second order upwind schemes as detailed in Section 6.2.

Some numerical applications of (13.5.5) have been reported by Baumann and Oden

[1999] for the hp adaptive first order upwind scheme and by Atkins and Shu [1998] for

the second order TVD upwind scheme, among others.

13.6 FLOWFIELD-DEPENDENT VARIATION METHODS

Recall that the flowfield-dependent variation (FDV) theory was developed in Sec-

tion 6.5, in which the FDV equations were solved using FDM. The basic theory of

FDV will not be repeated here. Thus, the reader should review the process of devel-

opment presented in Section 6.5 thoroughly. In this section, some additional items of

interest such as the source terms of gravity, surface tension, and chemical species reac-

tion rate are included. These and other aspects of the FDV theory to be emphasized

are presented next.

13.6.1 BASIC FORMULATION

As stated in Section 6.5, the FDV theory was devised in response to the need to charac-

terize the complex physics of shock wave turbulent boundary layers in which transitions

between, and interactions of, inviscid/viscous, incompressible/compressible, and lami-

nar/turbulent flows constitute the most complex physical phenomena in fluid dynamics

[Chung and his co-workers, 1996–1999]. The complexities of physics, in general, lead

directly to computational difficulties. This is where the very low velocity in the vicin-

ity of the wall and very high velocity far away from the wall coexist within a domain

of study. Transitions from one type of flow to another and interactions between two

distinctly different flows have been studied for many years, both experimentally and

numerically. Incompressible flows were analyzed using the pressure-based formulation

with the primitive variables for the implicit solution of the Navier-Stokes system of

equations together with the pressure Poisson equation. On the other hand, compress-

ible flows were analyzed using the density-based formulation with the conservation

variables for the explicit solution of the Navier-Stokes system of equations.

In a given domain, however, dealing with all speed flows of various physical prop-

erties, we encounter different equations of state for compressible and incompressible

flows, transitions between laminar and turbulent flows, dilatational dissipation due to

compressibility as well as difficulties of satisfying the mass conservation or incompress-

ibility condition. To cope with this situation, we must provide very special and powerful

numerical treatments. The FDV scheme has been devised toward resolving these issues.

For most of the CFD methods, the numerical formulation begins with a particu-

lar physical phenomenon. Thus, if the physics is changed, then the numerics must be

accordingly changed. Our goal in FDV, instead, is to derive a scheme in which all pos-

sible physical aspects are already taken into account in the final form of the governing
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equations so that FDM or FEM is reduced to an option of how to discretize between

nodal points or elements. Thus, the formulation of FDV procedure in terms of FEM is

identical to that of FDM.

To this end, we shall consider the most general form of Navier-Stokes system of

equations in conservation form, including the chemically reacting species equations

and source terms for the body force, surface tension, and chemical reaction rates, which

will be useful for applications of FDV to problems in Part Five.

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (13.6.1)

where U, Fi , Gi , and B denote the conservation flow variables, convection flux variables,

diffusion flux variables, and source terms, respectively,

U =

⎡
⎢⎢⎢⎣

�

�v j

�E

�Yk

⎤
⎥⎥⎥⎦ , Fi =

⎡
⎢⎢⎢⎣

�vi

�vi v j + p�i j

�Evi + pvi

�Ykvi

⎤
⎥⎥⎥⎦ , Gi =

⎡
⎢⎢⎢⎢⎣

0
−�i j

−�i j v j − kT,i −
∑

�cpkTDkmYk,i

−� DkmYk,i

⎤
⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

0

� f j

−
∑

H0
k�k + � f j v j

�k

⎤
⎥⎥⎥⎥⎦

where f j = ∑N
k=1 Yk f kj is the body force, Yk is the chemical species, Ho

k is the zero-point

enthalpy, �k is the reaction rate, and Dkm is the binary diffusivity. Additional equations

for vibrational and electronic energies may be included in (13.6.1) for hypersonics

(see Section 22.5).

Using the Taylor series expansion of Un+1 in terms of the FDV parameters, following

the process given by (6.5.2) through (6.5.13a,b) together with the source terms, the

residual of the Navier-Stokes system of equations can be written as

R = �Un+1 − �t
[
−∂Fn

i

∂xi
− ∂Gn

i

∂xi
+ Bn − s1

∂�Fn+1
i

∂xi
− s3

∂�Gn+1
i

∂xi
+ s5 �Bn+1

]

− �t2

2

{[
∂

∂xi
(ai + bi )

(
∂Fn

j

∂xj
+ ∂Gn

j

∂xj
− Bn

)
− d

(
∂Fn

i

∂xi
+ ∂Gn

i

∂xi
− Bn

)]

+ s2

[
∂

∂xi
(ai + bi )

(
∂�Fn+1

j

∂xj

)
− d

∂�Fn+1
i

∂xi

]
+

[
∂

∂xi
(ai + bi )

×
(

s4

∂�Gn+1
j

∂xj
. − s6 �Bn+1

)
− d

(
s4

∂�Gn+1
i

∂xi
. − s6�Bn+1

)]}
+ O(�t3)

(13.6.2a)

with the convection, diffusion, and diffusion gradient Jacobians (ai , bi , cik) being defined

in (6.3.9) for 2-D and Appendix A for 3-D. The source term Jacobian is given by

d = ∂B
∂U
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Now, rearranging and expressing the remaining terms associated with the variation

parameters in terms of the Jacobians, we have

�Un+1 + �t
[

s1

(
∂ai�Un+1

∂xi

)
+ s3

(
∂bi�Un+1

∂xi
+ ∂2ci j�Un+1

∂xi∂xj

)
− s5 d�Un+1

]

− �t2

2

{
s2

[
∂2(ai a j + bi a j )�Un+1

∂xi∂xj
− d

∂ai�Un+1

∂xi

]
+ s4

[(
∂2(ai b j + bi b j )�Un+1

∂xi∂xj

)

− d
(

∂bi�Un+1

∂xi
+ ∂2ci j�Un+1

∂xi∂xj

)]
− s6

[
d

∂(ai + bi )�Un+1

∂xi
− d2 �∪n+1

]}

+ �t
(

∂Fn
i

∂xi
+ ∂Gn

i

∂xi
− Bn

)
− �t2

2

[
∂

∂xi
(ai + bi )

(
∂Fn

j

∂xj
+ ∂Gn

j

∂xj
− Bn

)

− d
(

∂Fn
i

∂xi
+ ∂Gn

i

∂xi
− Bn

)]
+ O(�t3) = 0 (13.6.2b)

with

�Bn+1 = ∂B
∂U

�Un+1 = d�Un+1 (13.6.3)

Here, the product of the diffusion gradient Jacobian with third order spatial derivatives

is neglected and all Jacobians ai , bi , ci j , and d are assumed to remain constant spatially

within each time step and to be updated at subsequent time steps. The FDV parameters

s1, s2, s3, s4 are defined in Section 6.5.1 and Figures 6.5.1 through 6.5.3. Additional

parameters for source terms s5, s6 are defined in a similar manner:

sa�B ⇒ s5�B

sb�B ⇒ s6�B
(13.6.4)

where the source term FDV parameters s5 (first order source term FDV parameter)

and s6 second order source term FDV parameter) are evaluated as

s5 =

⎧⎪⎪⎨
⎪⎪⎩

min(r, 1) r > �, � ∼= 0.01

0 r < �, Damin �= 0

1 Damin = 0

(13.6.5a)

s6 = 1

2

(
1 + s�

5

)
, 0.05 < � < 0.2 (13.6.5b)

with

r =
√

Da2
max − Da2

min

/
Damin (13.6.5c)

where the Damköhler number Da can be defined in five different ways as shown in

Table 22.2.1.

For simplicity, we may rearrange (13.6.2b) in a compact form,

R = A�Un+1 + ∂

∂xi

(
Ei �Un+1

) + ∂2

∂xi∂xj

(
Ei j �Un+1

) + Qn + O(�t3), (13.6.6)
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or, lagging Ei and Ei j one time step behind,(
A + En

i
∂

∂xi
+ En

i j
∂2

∂xi∂xj

)
�Un+1 = −Qn (13.6.7)

with

A = I − �t s5 d − �t2

2
s6 d2 (13.6.8a)

En
i =

{
�t(s1ai + s3bi ) + �t2

2
[s6 d(ai + bi ) + s2 dai + s4dbi ]

}n

(13.6.8b)

En
i j =

{
�t s3ci j − �t2

2
[s2(ai a j + bi a j ) + s4(ai b j + bi b j − dci j )]

}n

(13.6.8c)

Qn = ∂

∂xi

[(
�t + �t2

2
d
)(

Fn
i + Gn

i

) + �t2

2
(ai + bi )Bn

]

− ∂2

∂xi∂xj

[
�t2

2
(ai + bi )

(
Fn

j + Gn
j

)] −
(

�t + �t2

2
d
)

Bn (13.6.8d)

An alternative scheme is to allow the source term in the left-hand side of (13.6.7) to lag

from n + 1 to n so that (13.6.7) may be written as(
I + En

i
∂

∂xi
+ En

i j
∂2

∂xi∂xj

)
�Un+1 = −Qn (13.6.9)

Qn = ∂

∂xi

[(
�t + �t2

2
d
)(

Fn
i + Gn

i

) + �t2

2
(ai + bi )Bn

]
− ∂2

∂xi∂xj

×
[
�t2

2
(ai + bi )

(
Fn

j + Gn
j

)] −
(

�t s5 + �t2

2
s6d

)
d�Un−

(
�t + �t2

2
d
)

Bn

(13.6.10)

13.6.2 INTERPRETATION OF FDV PARAMETERS ASSOCIATED WITH JACOBIANS

The flowfield-dependent FDV parameters as defined earlier are capable of allowing var-

ious numerical schemes to be automatically generated as summarized in Section 6.5.4.

For the purpose of completeness and emphasis, they are repeated here along with ad-

ditional features associated with FEM and the source terms.

The first order FDV parameters s1 and s3 control all high-gradient phenomena such

as shock waves and turbulence. These parameters as calculated from the changes of

local Mach numbers, and Reynolds (or Peclet) numbers between adjacent nodes are

indicative of the actual local element flowfields. The contours of these parameters closely

resemble the flowfields themselves, with both s1 and s3 being large (close to unity) in

regions of high gradients, but small (close to zero) in regions where the gradients are

small (see Figures 6.5.1 through 6.5.3).

The second order FDV parameters s2 and s4 are also flowfield dependent, exponen-

tially proportional to the first order FDV parameters. However, their primary role is

to provide adequate computational stability (artificial viscosity) as they were originally



452 COMPRESSIBLE FLOWS VIA FINITE ELEMENT METHODS

introduced into the second order time derivative term of the Taylor series expansion of

the conservation flow variables Un+1.

The s1 terms represent convection. This implies that if s1
∼= 0, then the effect of

convection is small. The computational scheme is automatically altered to take this ef-

fect into account, with the governing equations being predominantly parabolic-elliptic.

The s3 terms are associated with diffusion. Thus, with s3
∼= 0, the effect of viscosity or

diffusion is small and the computational scheme is automatically switched to that of

Euler equations where the governing equations are predominantly hyperbolic. If the

first order variation parameters s1 and s3 are nonzero, this indicates a typical situation

for the mixed hyperbolic, parabolic, and elliptic nature of the Navier-Stokes system of

equations, with convection and diffusion being equally important. This is the case for

incompressible flows at low speeds.

The unique property of the FDV scheme is its capability to control pressure oscilla-

tions adequately without resorting to the separate hyperbolic-elliptic pressure equation

for pressure corrections. The capability of the FDV scheme to handle incompressible

flows is achieved by a delicate balance between s1 and s3 as determined by the local

Mach numbers and Reynolds (or Peclet) numbers. If the flow is completely incompress-

ible (M = 0), the criteria given by (13.6.9) leads to s1 = 1, whereas the FDV parameter

s3 is to be determined according to the criteria given in (13.6.11). Make a note of the

presence of the convection-diffusion interaction terms given by the product of bi a j in

the s2 terms and ai bj in the s4 terms. These terms allow interactions between convection

and diffusion in the viscous incompressible and/or viscous compressible flows.

If temperature gradients rather than velocity gradients dominate the flowfield, then

s3 is governed by the Peclet number rather than by the Reynolds number. Such cases

arise in high-speed, high-temperature compressible flows close to the wall.

The transition to turbulence is a natural flow process as the Reynolds number in-

creases, causing the gradients of any or all flow variables to increase. This phenomenon

is a physical instability and is detected by the increase of s3 if the flow is incompressible,

but by both s3 and s1 if the flow is compressible. Such physical instability is likely to

trigger the numerical instability, but will be countered by the second order variation

parameters s2 and/or s4 to ensure numerical stability automatically. In this process,

these flowfield dependent variation parameters are capable of capturing relaminariza-

tion, compressibility effect or dilatational turbulent energy dissipation, and turbulent

unsteady fluctuations. These physical phenomena are originated from transitions and

interactions between inviscid and viscous flows. They are characterized by the product

of s3 and the fluctuation stress tensor (s3� i j ) in which the stresses consist of mean and

fluctuation parts. As a consequence, �Un+1 in (13.6.3) or (13.6.5) may not uniformly

vanish, indicating that some regions of the domain (such as in the boundary layers) re-

main unsteady if the flow is turbulent. However, if turbulent microscales (Kolmogorov

microscale) are to be resolved, then we must allow mesh refinements normally required

for the direct numerical simulation (DNS).

A unique feature in finite element applications of the FDV theory is the FDV pa-

rameters, which can be used as error indicators for adaptive meshing. The source terms

such as those contributing to the finite rate chemistry were not included in Section 6.5.

These topics are elaborated next.
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FDV Parameters Used as Error Indicators for Adaptive Mesh. An important contribution

of the first and second order FDV parameters is the fact that they can be used as error

indicators for adaptive mesh generations (see Figure 19.2.5, Section 19.2.1). That is, the

larger the FDV parameters, the higher the gradients of any flow variables. Whichever

governs (largest first or second order variation parameters) will indicate the need for

mesh refinements. In this case, all variables (density, velocity, pressure, temperature,

species mass fraction) participate in resolving the adaptive mesh, contrary to the con-

ventional definitions of the error indicators.

Finite Rate Chemistry. In the case of reacting flows, the source term B contains the

reaction rates which are functions of the flowfield variables. With widely disparate time

and length scales involved in the fast and slow chemical reaction rates of various chemi-

cal species as characterized by Damköhler numbers, the first order source term variation

parameter s5 is instrumental in dealing with the stiffness of the resulting equations to

obtain convergence to accurate solutions. On the other hand, the second order source

term FDV parameter s6 contributes to the stability of solutions. It is seen that the criteria

given by (13.6.5) will adjust the reaction rate terms in accordance with the ratio of the

diffusion time to the reaction time in finite rate chemistry so as to assure the accurate

solutions in dealing with stiffness and computational stability.

Influence of FDV Parameters on Jacobians. Physically, the FDV parameters will influence

the magnitudes of Jacobians. The diffusion variation parameters s3 and s4 as calculated

from Reynolds number and Peclet number can be applied to the Jacobians (ai , bi , ci j ),

corresponding to the momentum equations and energy equation, respectively. Further-

more, two different definitions of Peclet number (PeI, PeII) (see Table 22.2.1) would

require the s3 and s4 as calculated from the energy and species equations to be applied

to the corresponding terms of the Jacobians. Similar applications for the source term

variation parameters s5 and s6 should be followed for the source term Jacobian d, based

on the various definitions of Damköhler number (DaI , DaI I , DaI I I , DaIV, DaV) as

shown in Table 22.2.1. In this way, high temperature gradients arising from the momen-

tum and energy equations and the finite rate chemistry governed by the energy and

species equations can be resolved accordingly.

13.6.3 NUMERICAL DIFFUSION

Note that the numerical diffusion is implicitly embedded in the FDV equations. This

can be demonstrated by writing (13.6.2a) separately for the equations of momentum,

continuity, and energy. Combining the momentum and continuity equations and recon-

structing the original differential equations, we identify the numerical diffusion terms

which are produced for all governing equations as a consequence of FDV formula-

tions. We summarize the reconstructed equations of momentum, continuity, and en-

ergy without the source terms from (6.5.25), (6.5.28), (6.5.31). It is interesting to note

that if we neglect all incremental (fluctuation) terms, we arrive at the results identical

or analogous to many of the recent developments in FEM for the treatment of con-

vection dominated flows, including the generalized Petrov-Galerkin (GPG) methods,
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characteristic Galerkin methods (CGM), etc., presented in the previous chapters. To

demonstrate this analogy, let us neglect all incremental and higher order terms, but

retain only the second order derivative terms, with s1 = 1/2, so that we may arrive at

the form more easily recognizable. Here, all components of convection and diffusion

Jacobians can be shown to be the velocity components, a(m)
i = a(c)

i = a(e)
i = vi . These

arrangements lead to

Momentum
∂

∂t
(�v j ) + (�viv j ),i + p, j − � i j,i = Sj (m) (13.6.11)

with

Sj (m) = �t
2

[vk (�viv j + p�i j − � i j ),i ],k (13.6.12)

Continuity

∂�

∂t
+ (�vi ),i = S(c) (13.6.13)

with

S(c) = �t
2

[(�vi v j ),i j + p, j j − � i j,i j + (vi (�v j ), j ),i ] (13.6.14)

Energy

∂

∂t
(�E) + [(�E + p)vi − kT,i − � i j v j ],i = S(e) (13.6.15)

with

S(e) = �t
2

{
vk[((�E + p)vi ),i − kT,i i − (� i j v j ),i ]

}
,k (13.6.16)

Examining the right-hand side terms for all equations, they are identified as nu-

merical diffusions which arise from GPG or CGM formulations. It is seen that second

derivatives of pressure arise on the right-hand side explicitly. Direct comparisons can

be made with reference to CGM through (13.4.9) through (13.4.14).

13.6.4 TRANSITIONS AND INTERACTIONS BETWEEN COMPRESSIBLE AND
INCOMPRESSIBLE FLOWS AND BETWEEN LAMINAR AND TURBULENT FLOWS

In order to understand how the FDV scheme handles computations involving both

compressible and incompressible flows, fundamental definitions of pressure as involved

in compressible and incompressible flows must be recognized, as pointed out in

Section 6.5.6. In view of (6.5.33) through (6.5.36), we note that, if po as given by (6.5.36)

remains a constant, equivalent to a stagnation (total) pressure, then the compressible

flow as assumed in the conservation form of the Navier-Stokes system of equations

has now been turned into an incompressible flow, which is expected to occur when

the flow velocity is sufficiently reduced (approximately 0.1 ≤ M < 0.3 for air). Thus,

(6.6.36) serves as an equivalent equation of state for an incompressible flow. This can

be identified nodal point by nodal point or element by element for the entire domain.
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When inviscid flow becomes viscous, we may expect that the flow may become lami-

nar or turbulent through inviscid/viscous interactions across the boundary layer. Below

the laminar boundary layer, if viscous actions are significant, then the fluid particles are

unstable, causing the changes of Mach number and Reynolds number between adja-

cent nodal points (assuming they are closely spaced) to be irregular, the phenomenon

known as transition instability prior to the state of full turbulence. Fluctuations due to

turbulence are characterized by the presence of the terms such as in (6.5.37). Physically,

this quantity represents the fluctuations of total stresses (physical viscous stresses plus

Reynolds stresses) controlled by the Reynolds number changes between the local adja-

cent nodal points. Thus, the FDV solution contains the sum of the mean flow variables

and the fluctuation parts of the variables. Once the solution of the Navier-Stokes system

of equations is carried out and all flow variables are determined, then we compute the

fluctuation part, f ′ of any variable f , as given in (6.5.38). Unsteady turbulence statis-

tics (turbulent kinetic energy, Reynolds stresses, and various energy spectra) can be

calculated once the fluctuation quantities of all variables are determined. Although the

solutions of the Navier-Stokes system of equations using FDV are assumed to contain

the fluctuation parts as well as the mean quantities, it will be unlikely that such infor-

mation is reliable when the Reynolds number is very high and if mesh refinements are

not adequate to resolve Kolmogorov microscales. In this case, it is necessary to invoke

the level of mesh refinements as required for DNS.

Unsteadiness in turbulent fluctuations may prevail in the vicinity of the wall, al-

though a steady-state may have been reached far away from the wall. This situation can

easily be verified by noting that �Un+1 will vanish only in the region far away from the

wall, but remain fluctuating in the vicinity of the wall, as dictated by the changes of Mach

number in the variation parameter s3 between the nodal points and fluctuations of the

stresses due to both physical and turbulent viscosities in �� i j characterized by (6.5.37).

13.6.5 FINITE ELEMENT FORMULATION OF FDV EQUATIONS

We recall that all the provisions and numerical aspects for the physical phenomena such

as discontinuities and fluctuations of flow variables have already been incorporated in

the FDV equations. The standard Galerkin integral formulations of the FDV equations

are all that will be necessary. Thus, we begin by expressing the conservation and flux

variables and source terms as a linear combination of trial functions �� with the nodal

values of these variables in the form,

U(x, t) = ��(x)U�(t), Fi (x, t) = ��(x)F�i (t)

Gi (x, t) = ��(x)G�i (t), B(x, t) = ��(x)B�(t)

Applying the standard Galerkin approximations to (13.6.7), we obtain∫
�

��R(U, Fi , Gi , B) d� = 0 (13.6.17)

or

(A�	�rs + B�	rs) �Un+1
	s = Hn

�r + Nn
�r (13.6.18)
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where

A�	 =
∫

�

���	 d�, �rs = �rs + �t s5 drs + �t2

2
s6 drm dms (13.6.19)

B�	rs =
∫

�

[
−

{
�t(s1airs + s3 birs) + �t2

2
[s2drt aits + s6drt (aits + bits) + s4drt bits]

}

× ��,i�	 −
{
�t s3ci jrs − �t2

2
[s2(airt a jts + birt a jts) + s4(airt bjts + birt bjts

− drt ci j ts) ]

}
��,i�	, j

]
d � +

∫
�

[{
�t(s1airs + s3 birs) + �t2

2
[s2drt aits

+ s6drt (aits + bits) + s4drt bits]

}
∗
� �

∗
� 	 +

{
�t s3ci jrs − �t2

2
[s2(airt a jts

+ birt a jts) + s4(airt bjts + birt bjts − drt ci j ts)]

}
∗
� �

∗
� 	, j

]
ni d � (13.6.20)

Hn
�r =

∫
�

{[
�t

(
Fn

	ir + Gn
	ir

) + �t2

2
drs

(
Fn

	is + Gn
	is

) + �t2

2
(airs + birs)Bn

	s

]
��,i�	

− �t2

2
(airs + birs)

(
Fn

	 js + Gn
	 js

)
��,i�	, j +

[
�t Bn

	r + �t2

2
drs Bn

	s

]
���	

}
d�

(13.6.21)

Nn
�r =

∫
�

{[
− �t

(
Fn

	ir + Gn
	ir

) − �t2

2
drs

(
Fn

	is + Gn
	is

) − �t2

2
(airs + birs)Bn

	s

]
∗
��

∗
�	

+ �t2

2
(airs + birs)

(
Fn

	 js + Gn
	 js

) ∗
��

∗
�	, j

}
ni d� (13.6.22)

Here all Jacobians must be updated at each iteration step,
∗
�� represents the Neu-

mann boundary trial and test functions, with �, 	 denoting the global node number

and r , s providing the number of conservation variables at each node. For three di-

mensions, i, j = 1, 2, 3 associated with the Jacobians imply directional identification

of each Jacobian matrix (a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33) with

r, s = 1, 2, 3, 4, 5 denoting entries of each of the 5 × 5 Jacobian matrices. These indices

can be reduced similarly for 2-D.

Evaluation of integrals in (13.6.19)–(13.6.22) must begin with local elements of the

form(
A(e)

NM�rs + B(e)
NMrs

)
�U(e)

Ms = Hn(e)
Nr + Nn(e)

Nr

We shall describe the procedure for two-dimensional isoparametric elements using

Gaussian quadrature integrations with an EBE process for assembly into a global form

as shown in Section 10.3.2. The local FDV finite element equation given above repre-

sents a system of 16 equations with N, M = 1, 2, 3, 4 and r, s = 1, 2, 3, 4. These matrix

equations are constructed by summing terms with repeated indices. A simple computer
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algorithm can be developed to achieve this process. For example, A(e)
NM�rs�U(e)

Ms takes

the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14

A11 A12 A13 A14

A11 A12 A13 A14

A11 A12 A13 A14

A21 A22 A23 A24

A21 A22 A23 A24

A21 A22 A23 A24

A21 A22 A23 A24

A31 A32 A33 A34

A31 A32 A33 A34

A31 A32 A33 A34

A31 A32 A33 A34

A41 A42 A43 A44

A41 A42 A43 A44

A41 A42 A43 A44

A41 A42 A43 A44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�U11

�U12

�U13

�U14

�U21

�U22

�U23

�U24

�U31

�U32

�U33

�U34

�U41

�U42

�U43

�U44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, B(e)
NMrs�U(e)

Ms is of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1111 B1112 B1113 B1114 B1211 B1212 B1213 B1214 B1311 B1312 B1313 B1314 B1411 B1412 B1413 B1414

B1121 B1122 B1123 B1124 B1221 B1222 B1223 B1224 B1321 B1322 B1323 B1324 B1421 B1422 B1423 B1424

B1131 B1132 B1133 B1134 B1231 B1232 B1233 B1234 B1331 B1332 B1333 B1334 B1431 B1432 B1433 B1434

B1141 B1142 B1143 B1144 B1241 B1242 B1243 B1244 B1341 B1342 B1343 B1344 B1441 B1442 B1443 B1444

B2111 B2112 B2113 B2114 B2211 B2212 B2213 B2214 B2311 B2312 B2313 B2314 B2411 B2412 B2413 B2414

B2121 B2122 B2123 B2124 B2221 B2222 B2223 B2224 B2321 B2322 B2323 B2324 B2421 B2422 B2423 B2424

B2131 B2132 B2133 B2134 B2231 B2232 B2233 B2234 B2331 B2332 B2333 B2334 B2431 B2432 B2433 B2434

B2141 B2142 B2143 B2144 B2241 B2242 B2243 B2244 B2341 B2342 B2343 B2344 B2441 B2442 B2443 B2444

B3111 B3112 B3113 B3114 B3211 B3212 B3213 B3214 B3311 B3312 B3313 B3314 B3411 B3412 B3413 B3414

B3121 B3122 B3123 B3124 B3221 B3222 B3223 B3224 B3321 B3322 B3323 B3324 B3421 B3422 B3423 B3424

B3131 B3132 B3133 B3134 B3231 B3232 B3233 B3234 B3331 B3332 B3333 B3334 B3431 B3432 B3433 B3434

B3141 B3142 B3143 B3144 B3241 B3242 B3243 B3244 B3341 B3342 B3343 B3344 B3441 B3442 B3443 B3444

B4111 B4112 B4113 B4114 B4211 B4212 B4213 B4214 B4311 B4312 B4313 B4314 B4411 B4412 B4413 B4414

B4121 B4122 B4123 B4124 B4221 B4222 B4223 B4224 B4321 B4322 B4323 B4324 B4421 B4422 B4423 B4424

B4131 B4132 B4133 B4134 B4231 B4232 B4233 B4234 B4331 B4332 B4333 B4334 B4431 B4432 B4433 B4434

B4141 B4142 B4143 B4144 B4241 B4242 B4243 B4244 B4341 B4342 B4343 B4344 B4441 B4442 B4443 B4444

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�U11

�U12

�U13

�U14

�U21

�U22

�U23

�U24

�U31

�U32

�U33

�U34

�U41

�U42

�U43

�U44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For example, let us examine one of the terms in B1214,

B1214 = �t2

2

∫
�

s2ai1t a jt4�1,i�2, j d� + · · · with i, j = 1, 2, t = 1, 2, 3, 4

All integrals are to be integrated using Gaussian quadrature.

The domain integrals on the right-hand side are evaluated similarly. However, they

will result in a column vector compatible with left-hand side.
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The evaluation of boundary integrals that appear in both left-hand side and right-

hand side are discussed in the next section.

13.6.6 BOUNDARY CONDITIONS

Treatment of boundary conditions in finite element methods is simple and straight-

forward as discussed in Section 10.1.2. Particularly, in FDV formulations where all

regimes of velocity are to be accommodated in multidimensions, implementations of

boundary conditions are self-explanatory. Neumann boundary conditions in FDV oc-

cur in both left-hand side and right-hand side. The left-hand side Neumann boundary

integrals are evaluated and summed into the corresponding domain integrals as first

discussed in Section 10.2.4, whereas the right-hand side Neumann boundary conditions

appear as a column vector as shown in Section 10.1.3.

The Neumann boundary conditions

To illustrate, let us consider one of the boundary integrals multiplied by the conser-

vation variable vector on the left-hand side.

(1) N = 1, r = 1, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2∫
�

airs
∗
�N

∗
�Mni d��UMs =

∫
�

{(a111n1 + a211n2)�U11 + (a112n1 + a212n2)�U12

+(a113n1 + a213n2)�U13 + (a114n1 + a214n2)�U14}
∗
�1

∗
�1d�

+
∫

�

{(a111n1 + a211n2)�U21 + (a112n1 + a212n2)�U22

+(a113n1 + a214n2)�U23 + (a114n1 + a214n2)�U24}
∗
�1

∗
�2d�

(2) N = 1, r = 2, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2

(3) N = 1, r = 3, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2

(4) N = 1, r = 4, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2

(5) N = 2, r = 1, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2

(6) N = 2, r = 2, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2

(7) N = 2, r = 3, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2

(8) N = 2, r = 4, M = 1, 2, s = 1, 2, 3, 4, i, j = 1, 2

Note that the terms with repeated indices will be summed for the free indices N =
1, 2 and r = 1, 2, 3, 4 for the two-node boundary line elements, resulting in the 8 × 8

square matrix corresponding to the 8 × 1�UMs (see Figures 10.1.2 and 13.6.1). If two

nodes, node 1 and node 2, of the boundary line element coincide with node 1 and node

2 of the local element adjoining the boundary line shown in Figure 13.6.1, then the 8 × 8

boundary line element matrix is algebraically added to the corresponding 16 × 16 local

element matrix. This is the influence of the boundary conditions affecting the domain

at the current time step n + 1.

The situation is different for the case of the right-hand side boundary integrals

at the time step n. They simply result in a column vector as is the case for the reg-

ular time-dependent finite element equations. Note also that various Jacobians are
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Using Figure 10.1.2b or Figure 13.6.1, let us examine the following integrals:

∫
�

∗
�1

∗
�1,1n1d� =

∫ L

0

∗
�1

∂
∗
�1

∂s
∂s
∂x

cos ds,
∗
�1 =

(
1 − s

L

)

∫
�

∗
�1

∗
�1,2n2d� =

∫ L

0

∗
�1

∂
∗
�21

∂s
∂s
∂y

sin ds,
∗
�2 =

( s
L

)

Notice that ∂s/∂x = 1/cos  and ∂s/∂y = 1/sin  lead to indeterminate forms when

dealing with horizontal or vertical boundary lines ( = 0◦, 90◦). The boundary integrals

should be set equal to zero when these conditions arise.

The Dirichlet boundary conditions

Implementations of Dirichlet boundary conditions as discussed in Section 10.1.2

cannot be applied. This is because the solution vector is in terms of the incremental

conservation flow variables�Un+1
	s . At the boundary nodes with Dirichlet data (constant

throughout the entire process), we have �Un+1 = Un+1 − Un = 0. This must be verified

at each time step. As seen already for the case of Neumann boundary conditions, all

Dirichlet data are to be implemented in the Jacobians and flux variables that appear at

boundary nodes. No other steps are needed for the specification of Dirichlet boundary

conditions.

Remarks: The FDV equations can be solved using FDM (see example problems in

Figure 6.8.2) or FEM. However, the solution process via FEM is much more rigorous.

Using the EBE assembly, the maximum size of matrix is 16 ×16 or 32 ×32, respectively,

for 2-D or 3-D isoparametric elements. The column assembly of EBE strategy combined

with GMRES introduced in Section 11.5.3 leads to an expedient solution process. Thus,

matrix multiplication must be replaced by the local element equations, which will then

be transformed into a global column vector. This allows the finite element equations of

the large grid system to be solved with the GMRES scheme effectively.

13.7 EXAMPLE PROBLEMS

(1) Quasi–1-D Supersonic Flows (Euler Equations) with Two-Step GPG

Given: Quasi–one-dimensional rocket nozzle given in Section 6.8.1.

Solution: This problem was solved using 500 linear finite elements with two-step

GPG. The computed results are shown to be in good agreement with the analytical

solution in Figure 13.7.1.

(2) Two-dimensional Supersonic Flows (Euler Equations) with Two-Step TGM

Given: Geometry and initial and boundary conditions are as shown in Figure 13.7.2a.

Solution: The results of calculations using TGM are shown in Figure 13.7.2b-e. The

L2 norm error convergence history of all variables is shown in Figure 13.7.2f.
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Figure 13.7.1 Quasi–one-dimensional supersonic flow calculations using GPG. (a) Supersonic inlet, super-

sonic outlet. (b) Supersonic inlet, subsonic outlet.
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Figure 13.7.2 Supersonic two-dimensional inviscid flow (TGM). (a) Geometry, initial, and boundary

conditions (M∞ = 1.4, V∞ = 1230m/s, T∞ = 1900K, P∞ = 0.81MPa). (b) Density contours. (c) Pressure

contours. (d) Mach number contours. (e) Temperature contours. (f) Convergence.

(3) Examples for FDV Methods

(a) Shock Tube Problems. Two shock tube problems of differing shock strengths of the

following data (AI unit) are tested:

(i) pL = 105, � L = 1, pR = 104, � R = 0.125

(ii) pL = 105, � L = 1, pR = 103, � R = 0.01
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Figure 13.7.3.1 Shock tube calculations (1,200 elements) using the FDV theory, solid lines and symbols

indicating analytical solutions and numerical results, respectively.

The FDV solutions for the above shock tube cases indicate perfect agreements with

the analytical solutions as shown in Figure 13.7.3.1. The advantage of the FDV theory

is an automatic switch from the Navier-Stokes system of equations to Euler equations

with the calculated diffusion variation parameters (s3,s4) being zero everywhere in the

domain. Only the convection variation parameters (s1,s2) remain nonzero.
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Figure 13.7.3.2 Contour plots of calculated variation pa-

rameters to test flow field-dependent properties in FDV.

Note that variation parameter contours resemble those of

flowfields themselves. (a) Calculated variation parameter

contour distributions. (b) Flowfield contour distributions.

(b) Compression Corner Flows. To demonstrate the role of the variation parameters,

we examine the FDV solution for the flow over a ten-degree compression corner at

M∞ = 3, Re = 1.68 × 104 (Figure 13.7.3.2). Note that the contour distributions of the

first order convection variation parameter s1 resemble the flowfield depicting the shock

waves, as shown in Figure 13.7.3.2a. The second order convection variation parameter

s2 which represents the artificial viscosity for shock capturing closely follows s1 with

somewhat wavy distributions (s2 = s1/4
1 ). It is seen that the s1 = 0 region (no changes

in Mach number) is clearly distinguished from the region near the wall where s1 is close

to unity (rapid changes of Mach number). Note that s1 = 0 changes to s1 = 1 abruptly

along the line where the shock is expected to appear.

It is seen that the contour distributions of the first order diffusion variation parameter

s3 resemble the boundary layer formation in the vicinity of the wall with thickening of

contours toward the wall as compared to the first order convection variation parameter

s1. The second order diffusion variation parameter s4 whose role is to provide numerical

diffusion for stability for the calculation of fluctuations of turbulent motions follows

the trend of s3 with wavy distributions (s4 = s1/4
3 ). No change in Reynolds number

is indicated by s3 = 0 in the upper upstream region, which coincides with s1 = 0 for

convection as expected.

The actual flowfield calculations based on these variation parameters are shown

in Figure 13.7.3.2b. As the FDV theory dictates, the first order variation parameters

(s1, s3) control the physics and accuracy, whereas the second order variation parameters

(s2, s4) address numerical diffusion for stability. These variation parameters are updated
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throughout the computational process until the steady-state is reached, with their con-

tours continuously resembling the actual flowfield.

It should be noted that the physical interactions between inviscid/viscous, compress-

ible/incompressible, and laminar/turbulent flows are simultaneously controlled by the

first and second order convection/diffusion variation parameters. These assessments

will be verified from additional example problems presented below.

(4) Driven Cavity Flow Problems to Test Compressibility/Incompressibility Characteristics

This example is to demonstrate that the FDV scheme is capable of reaching the

incompressible limit at low speeds as well as the shock capturing capability at high

speeds. The cavity flow problem [Ghia et al., 1982; Yoon et al., 1998] is examined

here for two different Mach numbers (M = 0.01 and M = 0.1). Streamline and vor-

ticity contours shown in Figure 13.7.4a–d are in good agreement with FDM results

of Ghia et al. [1982]. Density distributions (Figure 13.7.4e) for M = 0.01 are constant

throughout the domain, whereas at M = 0.1 we note that variations begin to occur

near the downstream upper region. The most significant feature is the distribution

Figure 13.7.4 Driven cavity problems testing incompressibility/compressibility characteristics based on

FDV theory. (a) Streamlines for M = 0.01. (b) Streamlines for M = 0.1. (c) Vorticity contours for M = 0.1.

(d) Vorticity contours for M = 0.01.
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Figure 13.7.4 Continued. (e) Density distributions. (f) Stagnation (total) pressure distributions. (g) Comparison

of velocity distributions with experiments.
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of the stagnation (total) pressure (Figure 13.7.4f) as calculated from (6.5.36), indi-

cating that the stagnation pressure is constant at M = 0.01 and it begins to vary at

M = 0.1, almost exactly the same way as density. This proves that (6.5.36) acts as

the equation of state encompassing the incompressible and compressible flows. Com-

parisons of the FDV solutions for the velocity distributions at the centerlines (Fig-

ure 13.7.4g) confirm the trend disclosed in Figure 13.7.4e,f. The velocity distributions

for M = 0.01 are identical to the results of the experimental data for incompressible

flow, whereas the solution for M = 0.1 (compressible effect present) deviates from

the incompressible case. The evidence is overwhelming that the FDV scheme is capa-

ble of treating the transition automatically between the incompressible and compress-

ible limit.

(5) Hypersonic Flow Solutions by the FDV Method, M = 20, Re = 300,000, with Impinging

Shock Wave on a Flat Inlet Combustion Chamber

This example uses the impinging shock wave angle of 12.7◦ corresponding to the de-

flection angle of 10◦. The solution clearly shows the advantage of the FDV method, with

FDV Parameter s  1 FDV Parameter s3

Temperature Contours Pressure Contours 

Figure 13.7.5 FDV parameters s1 and s2 as calculated from the local Mach numbers and Reynolds

numbers resembling the flow field itself.
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Figure 13.7.6 Velocity vectors near the wall showing the primary and

secondary boundary layers and reversed flows.

the FDV parameters s1 and s3 guiding the actual flow field topology and the flow field

Jacobians dictating the shock wave turbulence boundary layer interactions. Further-

more, the primary and secondary boundary layers are shown clearly with the reverse

and rotational flows close to the walls (Figures 13.7.5–13.7.7). No chemical reactions are

considered in this solution. See Chapter 22 for detailed discussions on chemical reac-

tions. The results in this example were obtained from the computer program developed

by Gary Heard.

Figure 13.7.7 Velocity vectors near the wall showing the rota-

tional flow.
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13.8 SUMMARY

In this chapter, most of the currently available compressible flow analyses using FEM

have been presented. They include GGM (generalized Galerkin methods), TGM

(Taylor-Galerkin methods), GPG (generalized Petrov-Galerkin methods), CGM (char-

acteristic Galerkin methods), DGM (discontinuous Galerkin methods), and FDV

(flowfield-dependent variation methods). Exhaustive numerical results on TGM and

GPG are available in the literature, and no attempt is made to introduce them here.

Only a few selective examples are shown in Section 13.7 for illustration.

Transitions and interactions between inviscid/viscous, compressible/incompressible,

and laminar/turbulent flows can be resolved by the FDV theory. It is shown that the FDV

parameters initially introduced in the Taylor series expansion of the conservation vari-

ables of the Navier-Stokes system of equations are translated into flowfield-dependent

physical parameters responsible for the characterization of fluid flows. In particular,

the convection FDV parameters (s1, s2) are identified as equivalent to the TVD limiter

functions. The FDV equations are shown to contain the terms of fluctuation variables

automatically generated in due course of developments, varying in time and space, but

following the current physical phenomena. In addition, adequate numerical controls

(artificial viscosity) to address both nonfluctuating and fluctuating parts of variables

are automatically activated according to the current flowfield. Just as important are

the Jacobians providing interactions of any one variable with all other variables in the

conservation form of the governing equations. It has been shown that practically all

existing numerical schemes in FDM and FEM are the special cases of the FDV theory.

Some simple example problems have demonstrated most of the features available

in the FDV theory. It was shown that the calculated FDV parameters resemble the

flowfield itself. The program originally designed for the solution of the supersonic flows

is used to resolve incompressible flows of driven cavity problems, with the transition

from incompressibility to compressibility automatically realized.

There are other methods related to FEM which are not introduced in this chapter.

They include spectral element methods, least square methods, and finite point methods.

These are the subjects of the next chapter.

REFERENCES

Aliabadi, S. K. and Tezduyar, T. E. [1993]. Space-time finite element computation of compressible

flows involving moving boundaries. Comp. Meth. Appl. Mech. Eng., 107, 209–23.

Atkins, H. L. and Shu, C. W. [1998]. Quadrature-free implementation of discontinuous Galerkin

method for hyperbolic equations. AIAA J., 36, 5, 775–82.

Baumann, C. E. and Oden, J. T. [1999]. A discontinuous hp finite element methods for the Euler

and Navier-Stokes equations. Int. J. Num. Meth. Fl., 31, 79–95.

Boris, J. P. and Book, D. L. [1976]. Solution of the continuity equation by the method of flux

corrected transport. J. Comp. Phys., 16, 85–129.

Choi, D. and Merkle, C. L. [1993]. The application of preconditioning for viscous flows. J. Comp.
Phys., 105, 203–23.

Chung, T. J. [1999]. Transitions and interactions of inviscid/viscous, compressible/incompressible

and laminar/turbulent flows. Int. J. Num. Meth. Fl., 31, 223–46.



470 COMPRESSIBLE FLOWS VIA FINITE ELEMENT METHODS

Cockburn, S., Hou, S., and Shu, C. W. [1990]. TVD Runge-Kutta local projection discontinuities

Galerkin finite element for conservation laws, IV. The multidimensional case. Math. Comp.
54–65.

——— [1997]. The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multi-

dimensional systems. ICASE Report 97–43.

Codina, R., Vazquez, M., and Zienkiewicz, O. C. [ 1998]. A general algorithm for compressible

and incompressible flows. Part III: The semi-implicit form. Int. J. Num. Meth. Fl., 27, 13–32.

Ghia, U., Ghia, K. N., and Shin, C. T. [1982]. High-Reynolds number solutions for incompressible

flow using the Navier-Stokes equations and Multigrid method. J. Comp. Phys., 48, 387–411.

Godunov, S. K. [1959]. A difference scheme for numerical computation of discontinuous solution

of hydrodynamic equations. Math. Sbornik, 47, 271–306.

Harten, A. [1983]. On the symmetric form of systems of conservation laws with entropy. J. Comp.
Phys., 49, 151–64.

——— [1984]. On a class of high resolution total variation stable finite difference schemes. SIAM
J. Num. Anal., 21, 1–23.

Hassan, O., Morgan, K., and Peraire, J. [1991]. An implicit explicit element method for high-speed

flows. Int. J. Num. Meth. Eng., 32(1): 183.

Hauke, G. and Hughes. T. J. R. [1998]. A comparative study of different sets of variables for

solving compressible and incompressible flows. Comp. Meth. Appl. Mech. Eng., 153, 1–44.

Hughes, T., Franca, L., and Mallet, M. [1986]. A new finite element formulation for computational

fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and

the second law of thermodynamics. Comp. Meth. Appl. Mech. Eng., 54, 223–34.
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CHAPTER FOURTEEN

Miscellaneous Weighted Residual Methods

In the previous chapters, with an exception of GPG, the finite element formulations are

based on the Galerkin methods in which test functions are chosen to be the same as the

trial functions. This is not required in the weighted residual methods.

Weighted residual methods other than the Galerkin methods include spectral ele-

ment methods (SEM), least square methods (LSM), moment methods, or collocation

methods, in which the test functions or weighting functions are not necessarily the same

as the trial functions. In spectral element methods (SEM), polynomials in terms of

nodal values of the variables are combined with special functions such as Chebyshev

or Legendre polynomials. For least square methods, the test functions are constructed

by the derivative of the residual with respect to the nodal values of the variables. Some

arbitrary functions are chosen as test functions for the moment and collocation meth-

ods. Recently, the weighted residual concept has been used in meshless configurations,

known as the finite point method (FPM), partition of unity method, meshless cloud

method, or element-free method.

In the following sections, we shall describe a certain type of spectral element meth-

ods, least square methods, optimal control methods (OCM), and finite point methods

(FPM). They are selected here for discussion because of their possible future potential

for further developments.

14.1 SPECTRAL ELEMENT METHODS

The term “spectral” as used here implies a special function. Examples of such functions

may be Chebyshev, Legendre, or Laguerre polynomials. These functions are expected

to portray physical phenomena more realistically and precisely than other functions

that have been discussed previously, leading to a greater solution accuracy. However,

their applications are limited to simple geometries and simple boundary conditions.

The spectral element methods (SEM) represent a recent development as a com-

bination of the classical spectral methods and finite element methods, thus the term

“spectral element.” The classical spectral methods resemble the classical method of

weighted residuals.

In the classical spectral methods, trial and test functions are chosen such that they

satisfy global boundary conditions. In the spectral element method, the trial and test

functions are local and combined with isoparametric finite element functions as first

472
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proposed by Patera [1984]. Applications of the spectral element methods to triangular

finite elements were reported by Sherwin and Karniadakis [1995]. The basic idea, how-

ever, was employed earlier in the so-called p-version finite elements [Babuska, 1958].

Later extensions can be seen in the h-p methods [Oden et al., 1989] and the flowfield-

dependent variation spectral element methods (FDV-SEM) [Yoon and Chung, 1996].

The classical spectral methods are well documented in the book by Canuto et al. [1987].

Here, in this section, we utilize the concept of the classical spectral methods and apply it

to the finite element method in such a way that the accuracy and efficiency are realized

with a reasonable compromise. The most important aspect of SEM as applied to the

FDV scheme is to portray turbulent behavior in direct numerical simulation (DNS)

calculations. This will allow direct numerical simulation to be more efficient in which

turbulence models are no longer required, as indicated in Section 13.6.

In SEM formulations, we may use either Chebyshev polynomials or Legendre poly-

nomials. Patera [1984] demonstrated the SEM formulation using Chebyshev polynomi-

als. We illustrate the use of Legendre polynomials [Szabo and Babuska, 1991] as test

functions in the following subsection.

14.1.1 SPECTRAL FUNCTIONS

In the traditional spectral methods, we use spectral functions that are normally provided

by Chebyshev polynomials or Legendre polynomials. Either one of these polynomials

can be used in the spectral element methods. Before we proceed to SEM, we briefly

summarize the basic properties involved in the Chebyshev polynomials and Legendre

polynomials.

Chebyshev Polynomials

The basic concept of the least squares approximations is used to derive the

Chebyshev polynomials in which orthogonality properties are preserved. To this end,

consider a polynomial �r (x) of degree r in x such that

∫ 1

−1

W(x)�r (x)qr−1(x)dx = 0 (14.1.1)

where W(x) is the weighting function

W(x) = 1√
1 − x2

(14.1.2)

and qr−1(x) is an arbitrary polynomial of degree r − 1 or less in x.

Let us now introduce the change in variables

x = cos � (14.1.3)

Substituting (14.1.3) into (14.1.2) and (14.1.1) yields∫ �

0

�r (cos �)qr−1(cos �)d� = 0 (14.1.4)



474 MISCELLANEOUS WEIGHTED RESIDUAL METHODS

which is satisfied by∫ �

0

�r (cos �) cos k�d� = 0 (k = 0, 1, . . . , r − 1) (14.1.5)

with

�r (cos �) = Cr cos r� (14.1.6)

It follows from (14.1.3) that

�r (x) = Cr cos(r cos−1 x) (14.1.7)

are the required orthogonal polynomials with Cr = 1. These polynomials are known as

Chebyshev polynomials, which possess the orthogonality property∫ 1

−1

(1 − x2)− 1
2 Tr (x)Ts(x)dx = 0 (r �= s) (14.1.8)

Tr+1(x) = 2xTr (x) − Tr−1(x) (14.1.9)

To(x) = 1, T1(x) = x (14.1.10)

The orthogonal square factor �r is given by

�r =
∫ 1

−1

(1 − x2)− 1
2 T2

r (x)dx = 0 (14.1.11)

Since x = cos �, Tr (x) = cos r�, we have

�r =
∫ �

0

cos2 r�d� =
{

�, r = 0
�
2

, r �= 0
(14.1.12)

Thus, the nth degree least squares polynomial approximation to f (x) in (−1, 1), relevant

to the weighting function W(x) = (1 − x2)− 1
2 , is defined as

y(x) =
n∑

r=0

ar Tr (x) (−1 ≤ x ≤ 1) (14.1.13)

The least squares approximations require that∫ 1

−1

W(x)[ f (x) − y(x)]2dx = min (14.1.14)

or

∂

∂ar

∫ 1

−1

W(x)

[
f (x) −

n∑
r=0

ar Tr (x)

]2

dx = 0 (14.1.15)

ar

[∫ 1

−1

W(x)T 2
r dx

]
−

∫ 1

−1

W(x) f (x)Tr (x)dx = 0 (14.1.16)
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with

ak =

∫ 1

−1

W(x) f (x)Tr (x)dx

∫ 1

−1

W(x)T 2
r dx

a0 = 1

�

∫ 1

−1

(1 − x2)− 1
2 f (x)dx

ar = 2

�

∫ 1

−1

(1 − x2)− 1
2 f (x)Tr(x)dx (14.1.17a)

or in general

ar = 2

NCr

N∑
j=0

1

c j
f (xj )Tr (xj )

{
xj = cos

j�
N j = 0, 1 . . .

C0 = CN = 2, Cr = 1

which has all polynomials of degree n or less, the integrated weighted square error∫ 1

−1

(1 − x2)− 1
2 [ f (x) − yn(x)]2dx (14.1.17b)

is the least when yn(x) is identified with the right-hand side of (14.1.13).

In terms of the nondimensional variable � = x/�x, the Chebyshev polynomials are

summarized as follows:

Tn(�) = cos n�, � = cos−1 � −1 ≤ � ≤ 1

T0(�) = cos 0 = 1

T1(�) = cos(cos−1 �) = �

�Tn(�) = cos n� cos � = 1

2
[cos(n − 1)� + cos(n + 1)�]

or

�Tn(�) = 1

2
[Tn−1(�) + Tn+1(�)]

thus, the general formula is given by

Tn+1(�) = 2�Tn(�) − Tn−1(�) (14.1.18)

T0(�) = 1

T1(�) = �

T2(�) = 2�2 − 1

T3(�) = 4�3 − 3�

T4(�) = 8�4 − 8�2 + 1

T5(�) = 16�5 − 20�3 − 5�

...

Similar developments are applied to other directions for 2-D and 3-D geometries,

which will then be utilized through tensor products for applications to multidimensional
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problems. Applications of the Chebyshev polynomials to a spectral element method will

be shown in Section 22.6.4.

Legendre Polynomials

The Legendre polynomials are based on the orthogonal properties of the least square

concept. To this end, we require a polynomial �r (x) of degree r in x such that∫ b

a
W(x)�r (x)qr−1(x)dx = 0 (14.1.19)

where W(x) = 1 is used for the Legendre polynomial. Consider the notation

W(x)�r (x) = dr ur (x)

dxr
(14.1.20)

Thus, it follows from (14.1.19) and (14.1.20) that∫ b

a
u(r)

r (x)qr−1(x)dx = 0 (14.1.21)

Integrating by parts[
u(r−1)

r qr−1 − u(r−2)
r q′

r−1 + · · · + (−1)r−1ur q(r−1)

r−1

]b
a = 0 (14.1.22)

The requirement for the function �r (x) defined by (14.1.20)

�r (x) = 1

W(x)

dr ur (x)

dxr
(14.1.23)

be a polynomial of degree r implies that ur (x) must satisfy the differential equation

dr+1

dxr+1

[
1

W(x)

dr ur (x)

dxr

]
= 0 (14.1.24)

in [a, b] with the 2r boundary conditions

ur (a) = u′
r (a) = u′′

r (a) = · · · = u(r−1)
r (a) = 0

ur (b) = u′
r (b) = u′′

r (b) = · · · = u(r−1)
r (b) = 0

(14.1.25)

For the least squares approximation over an interval of finite length, it is convenient

to suppose that a linear change in variables has transformed that interval into the interval

[−1, 1]. With W(x) = 1, we obtain

d2r+1ur

dx2r+1
= 0 (14.1.26)

Using the boundary conditions (14.1.15) for (−1, 1)

ur = �r (x2 − 1)r (14.1.27)

where �r is an arbitrary constant. Hence, from (14.1.23) it follows that the r th relevant

orthogonal polynomial is of the form

�r (x) = �r
dr

dxr
(x2 − 1)r (14.1.28)
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with

�r = 1

2r p!
(14.1.29)

The polynomial obtained in this manner is the r th Legendre polynomial

Lr (x) = 1

2r r !

dr

dxr
(x2 − 1)r (14.1.30)

From the orthogonal property it follows that∫ 1

−1

Lr (x)Ls(x)dx = 0 r �= s (14.1.31)

The value assigned to �r is such that Lr (x) = 1 and it is true that |Lr (x)| ≤ 1 when

|x| ≤ 1. With the nondimensional variable, this gives

L0(�) = 1

L1(�) = �

L2(�) = 1

2
(3�2 − 1)

L3(�) = 1

2
(5�3 − 3�)

L4(�) = 1

8
(35�4 − 30�2 + 3)

L5(�) = 1

8
(63�5 − 70�3 − 15�)

L6(�) = 1

16
(231�6 − 315�4 + 105�2 − 5)

L7(�) = 1

16
(429�7 − 693�5 + 315�3 − 35�)

...

The recurrence formula is given by

Lr (�) = 1

2r r !

dr

d�r
(�2 − 1)r

(14.1.32)
Lr+1(�) = 2r+1

r+1
� Lr (�) − r

r + 1
Lr−1(�)

Applications of the Legendre polynomials to a spectral element method will be

shown in the next section.

14.1.2 SPECTRAL ELEMENT FORMULATIONS BY LEGENDRE POLYNOMIALS

The most efficient approach toward multidimensional applications of the spectral el-

ement methods is to utilize the isoparametric elements (quadrilaterals for 2-D and

hexahedrals for 3-D). Using a linear element with only corner nodes, but accepting as

high a spectral degree of freedom as desired for the side and interior modes for 2-D
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Side modes: Legendre spectral mode functions, �
(s)
m

Interior modes: Legendre spectral mode functions, �
(I)
mn

U = ��U� + �(s)
m Ûm + �(I)

mnÛmn (14.1.33)

For three dimensions (Figure 14.1.1b) we have

Corner nodes: linear isoparametric function, �
(c)
N

Edge modes: Legendre spectral mode functions, �
(E)
m

Face modes: Legendre spectral mode functions, �
(F)
mn

Interior modes: Legendre spectral mode functions, �
(I)
mnp

U = ��U� + �(E)
m Ûm + �(F)

mn Ûmn + �(I)
mnpÛmnp (14.1.34)

where U� are the variables to be calculated at the corner nodes and Ûm, Ûmn, and Ûmnp

denote spectral degrees of freedom.

The global trial functions �� are assembled from the corner node linear isopara-

metric functions �
(C)
N . The Legendre functions for the side modes �

(s)
m and the interior

modes �
(I)
mn for two dimensions, and edge modes �

(E)
m , face modes �

(F)
mn , and interior

modes �
(I)
mnp for three dimensions are given as follows:

For Two Dimensions

Side modes:

�(S1)
m = 1

2
(1 − �)Gm(�)

�(S2)
m = 1

2
(1 + �)Gm(�)

(14.1.35)

�(S3)
m = 1

2
(1 + �)Gm(�)

�(S4)
m = 1

2
(1 − �)Gm(�)

with m = 2, . . . q; N(S) = 4(q − 1); q ≥ 2

Interior modes:

�(I)
mn = Gm(�)Gn(�) (14.1.36)

with m, n = 2, . . . , q − 2; (m + n) = 2, . . . , q; N(I) = 1

2
[(q − 2)(q − 3)], q ≥ 4

where N(S) and N(I) denote, respectively, the total number of functional modes available

for sides (1, 2, 3, 4) and interior. The highest polynomial order chosen is denoted by q,

and Gm refers to the Legendre polynomials defined as

Gm(�) = 1√
2(2m − 1)

[Lm(�) − Lm−2(�)] (14.1.37)

with the recursive formula given by

Lm+1(�) = 2m + 1

m + 1
� Lm(�) − m

m + 1
Lm−1(�) (14.1.38)

Similar results are obtained for the �-direction. For illustration, variable orders of

Legendre polynomials specified in different elements are shown in Figure 14.1.2. At
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Figure 14.1.2 Two-D interpolation functions constructed by Legendre polynominal, �
(C)
N

(corner nodes), �
(S)
M (side nodes), �

(1)
mn (interior nodes).

boundaries, higher order functions prevail over the lower order functions. In addition

to the above polynomial space, (called S1) we may use another option of the space

(called S2) in which (q − 1)2 interior modes are applied.

For Three Dimensions

Edge mode: �
(E1)
m = 1

4
(1 − �)(1 − 	)Gm(�)

�
(E2)
m = 1

4
(1 + �)(1 − 	)Gm(�)

etc.

(14.1.39)

with m = 2, . . . , q; N(E) = 12(q − 1); q ≥ 2

Face mode: �
(F1)
mn = 1

2
(1 − �)Gm(�)Gn(�)

�
(F2)
mn = 1

2
(1 + �)Gm(�)Gn(	)

etc.

(14.1.40)

with m, n = 2, . . . , q − 2; (m + n) = 4, . . . , q;

N(F) = 3(q − 2)(q − 3); q ≥ 4
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Interior mode: �(I)
mnp = Gm(�)Gn(�)Gp(	) (14.1.41)

with m, n, p = 2, . . . , q − 4; (m + n + p) = 6, . . . , q;

N(I) = (q − 3)(q − 4)(q − 5)/6; q ≥ 6

In addition to the above polynomials (S1), we may use an optional space (S2) in which

(q − 1)2 face modes and (q − 1)3 interior modes (q ≥ 2) are applied.

14.1.3 TWO-DIMENSIONAL PROBLEMS

Spectral element methods may be implemented through the generalized Galerkin

scheme. A more rigorous approach such as the FDV-FEM technique introduced in

Chapter 13 can be combined with the spectral functions. This is particularly useful for

dealing with high-speed flows where shock wave/turbulent boundary layer interactions

occur.

In general, the spectral element formulation begins with the Galerkin integral ex-

pressed in the following form:

For Corner Nodes∫
�

��R(�U)d� = 0 (14.1.42a)

For Side Modes∫
�

�(S)
m R(�U)d� = 0 (14.1.42b)

For Interior Modes∫
�

�(I)
mnR(�U)d� = 0 (14.1.42c)

where the conservation variables U in the residual R(�U) of the Navier-Stokes system

of equations are approximated by the trial functions, and the source terms are assumed

to be zero.

Substituting (14.1.33) into (14.1.42) yields the matrix equations,

⎡
⎢⎣

A�
�rs + B�
rs A�
�n�rs + B�

�nrs A�np�rs + B�nprs

A�
m
�rs + B�

m
rs A��
mn�rs + C��

mnrs A�
mnp�rs + C�

mnprs

Amk
�rs + Bmk
rs A�
mkn�rs + C�

mknrs Amknp �rs + Dmknprs

⎤
⎥⎦

⎡
⎢⎣

�U
s

�Û�
ns

�Ûnps

⎤
⎥⎦

n+1

=

⎡
⎢⎣

W�r

Ŵ�
mr

Ŵmkr

⎤
⎥⎦

n

(14.1.43)

where �, 
 denote the product of the global corner node number times the total number

of physical variables, whereas m, n, p, and q refer to degrees of freedom from the

side and internal modes of Legendre polynomials with �, � = 1, 4 and r, s denoting the

number of conservation variables (4 in two dimensions and 5 in three dimensions).
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If the residual R(�U) is chosen to be the same as (13.1.2) for the FDV-FEM scheme

without source terms, we obtain the matrix entries of (14.1.43) as follows:

A�
 =
∫

�

���
 d� A�
�n =

∫
�

���̂�
n d� A�np =

∫
�

���̂np d�

A�
m
 =

∫
�

�̂�
m�
 d� A��

mn =
∫

�

�̂�
m�̂�

n d� A�
mnp =

∫
�

�̂�
m�̂np d�

Amk
 =
∫

�

�̂mk�
 d� A�
mkn =

∫
�

�̂mk �̂�
n d� Amknp =

∫
�

�̂mk �̂np d�

(14.1.44)

B�
rs =
∫

�

{
�t [−s1airs��,i�
 − s3(birs��,i�
 + ci jrs��,i�
, j )]

+ �t2

2
([s2(airt a jts + birt a jts)��,i�
, j − drt aits��,i�
]

+ s4[(airt bjts + birt bjts − drt ci j ts)��,i�
, j − drt bits��,i�
])
}

d�

B�
�nrs =

∫
�

{
−�t

[
(s1airs + s3 birs)��,i�̂

�
n + s3ci jrs��,i�̂n, j

]

+ �t2

2
(s2di jrs + s4ei jrs)��,i�̂

�
n, j

}
d�

with

di jrs = airt a jts + birt a jts

ei jrs = airt bjts + birt bjts

B�nprs =
∫

�

{
−�t [(s1airs + s3 birs)��,i�̂np + s3ci jrs��,i�̂np, j ]

+ �t2

2
(s2di jrs + s4ei jrs)��,i�̂np, j

}
d�

B�
m
rs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂

�
m,i�
 + s3ci jrs�̂

�
m,i�
, j

]
+ �t2

2
(s2di jrs + s4ei jrs)�̂

�
m,i�
, j

}
d�

C��
mnrs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂

�
m,i�̂

�
n + s3ci jrs�̂

�
m,i�̂

�
n, j

]
+ �t2

2
(s2di jrs + s4ei jrs)�̂

�
m,i�̂

�
n, j

}
d�

C�
mnprs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂

�
m,i�̂np + s3ci jrs�̂

�
m,i�̂np, j

]
+ �t2

2
(s2di jrs + s4ei jrs)�̂

�
m,i�̂np, j

}
d�
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Bmk
rs =
∫

�

{
−�t [(s1airs + s3 birs)�̂mk,i�
 + s3ci jrs�̂mk,i�
, j ]

+ �t2

2
(s2di jrs + s4ei jrs)�̂mk,i�
, j

}
d�

C�
mknrs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂mk,i�̂

�
n + s3ci jrs�̂mk,i�̂

�
n, j

]

+ �t2

2
(s2di jrs + s4ei jrs)�̂mk,i�̂

�
n, j

}
d�

Dmknprs =
∫

�

{
−�t [(s1airs + s3 birs)�̂mk,i�̂np + s3ci jrs�̂mk,i�̂np, j ]

+ �t2

2
(s2di jrs + s4ei jrs)�̂mk,i�̂np, j

}
d� (14.1.45)

W�r = Hn
�r + Nn

�r + N
n+1

�r (14.1.46)

with

Hn
�r =

∫
�

{
�t ��,i�


(
Fn


ir + Gn

ir

) − �t2

2
(airs + birs)��,i�
, j

(
Fn


 js + Gn

 js

)}
d�

Nn
�r =

∫
�

∗
� �

[
−�t

(
Fn

ir + Gn
ir

) + �t2

2
(airs + birs)

(
Fn

js, j + Gn
js, j

)]
ni d�

N
n+1

�r =
∫

�

∗
� �

{
−�t

[
(s1airs + s3birs)�Un+1

s + s3 ci jrs�Un+1
s, j

]

+ �t2

2
(s2di jrs + s4ei jrs)�Un+1

s, j

}
ni d�

Ŵ�
mr =

∫
�

{
�t �̂

�
m,i�


(
Fn


ir + Gn

ir

) − �t2

2
(airs + birs)�̂

�
m,i�
, j

(
Fn


 js + Gn

 js

)}
d�

+
∫

�

∗
�̂�

m

{
�t

[−s1

(
airs�Un+1

s

) − s3

(
birs�Un+1

s + ci jrs�Un+1
s, j

)]

+ �t2

2

[
s2 (airt a jts + birt a jts) �Un+1

s, j + s4 (airt bjts + birt bjts)�Un+1
s, j

]}
ni d�

+
∫

�

∗
�̂�

m

{
−�t

(
Fn

ir + Gn
ir

) + �t2

2
(airs + birs)

(
Fn

js, j + Gn
js, j − Bn

s

)}
ni d�

Ŵmkr =
∫

�

{
�t �̂mk,i�


(
Fn


ir + Gn

ir

)

− �t2

2
(airs + birs)�̂mk,i�
, j

(
Fn


 js + Gn

 js

)}
d� (14.1.47)

If the Neumann boundary conditions for spectral modes are not specified, then,

by definition, �̂∗
m = �̂∗

mn = 0 and only the corner nodes are subjected to the Neumann

boundary conditions. However, these spectral Neumann boundary conditions may be

computed and added after the initial corner node computation, resulting in possible

improvements for the final solution.
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The orthogonal properties of the Legendre polynomials give rise to sparse local

matrices. For example, the following orthogonal properties arise for diffusion terms:∫
�

�N,i�̂
�
n,i d� �= 0 if and only if n = 2, or 3, zero otherwise

∫
�

�N,i�̂np,i d� ≡ 0 always

∫
�

�̂
�
m,i�

�
n,i d� �= 0 if and only if � − � = even and m = n or m = n ± 2,

zero otherwise∫
�

�̂�
m,i�̂np,i d� �= 0 if and only if m = p and n = 2 or 3, with � = 1 or 3; m = n

and p = 2 or 3, with � = 2 or 4; zero otherwise∫
�

�̂mk,i �̂np,i d� �= 0 if and only if m = n or m = n ± 2 and k = p; k = p or

k = p ± 2, and m = n; zero otherwise

It should be noted that these results are also obtained by using the Gaussian quadrature

routine for integration.

Although the direct solution of (14.1.43) can be obtained, a number of other options

are available. For example, we may initially consider only the corner node equations,

(A�
�rs + B�
rs) �Un+1

s = W�r (14.1.48)

The solution of (14.1.48) can be subsequently applied to the side-mode and edge-mode

equations of (14.1.43) to solve[
A��

mn�rs + C��
mnrs A�

mnp�rs + C�
mnprs

A�
mkn�rs + C�

mkmrs Amknp �rs + Dmknprs

] [
�Û�

ns

�Ûnps

]
=

[
Ŵ�

mr − X�
mr

Ŵmkr − Xmkr

]
(14.1.49)

where

X�
mr = (

A�
m
�rs + B�

m
rs

)
�U
s

Xmkr = (
Amk
�rs + Bmk
rs

)
�U
s

This allows (14.1.48) to be revised as

(A�
�rs + B�
rs)�Un+1

s = W�r − (

A�
�n�rs + B�

�nrs

)
�Û�

ns − (A�np�rs + B�nprs)�Ûnps

(14.1.50)

This approach resembles the so-called static condensation performed in reverse

order. Thus, the solutions between (14.1.50) and (14.1.49) may be repeated until the

desired convergence is obtained.

Notice that one advantage of this formulation is that, although the corner node

isoparametric finite element function remains linear, the side and interior mode spectral

orders can vary from element to element (Figure 14.1.2) as high as desired in order to

simulate particular physical phenomena such as turbulence. Furthermore, the corner

node linear isoparametric functions allow the computation of variables only at the
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corner nodes, irrespective of high order spectral functions chosen for side and interior

modes.

Remark: It has been demonstrated that the SEM is effective for nonlinear problems,

particularly for problems with singularities such as in shock waves and with high gra-

dients such as in turbulence. For linear partial differential equations with smooth exact

solutions, the numerical analysis by SEM may produce results which are worse than

those of linear FEM (corner nodes only). This is an important observation in that the

imposition of the higher order functions (Legendre polynomials) upon the linear solu-

tion surface may distort the numerical solution. This distortion may be drastic in some

cases. Therefore, SEM is not recommended for linear problems. To illustrate, consider

the results shown in the example below of the SEM solutions of a Laplace equation in

comparison with the FEM solutions.

14.1.4 THREE-DIMENSIONAL PROBLEMS

For three-dimensional problems, the Galerkin integral is expressed in the following

form:

For Corner Nodes∫
�

��R(�U)d� = 0 (14.1.51a)

For Edge Modes∫
�

�(E)
m R(�U)d� = 0 (14.1.51b)

For Face Nodes∫
�

�(F)
mn R(�U)d� = 0 (14.1.51c)

For Interior Nodes∫
�

�(I)
mnpR(�U)d� = 0 (14.1.51d)

Substituting (14.1.16) into (14.1.1) gives

⎡
⎢⎢⎢⎣

A�
�rs + B�
rs A�
�n�rs + B�

�nrs A�
�np�rs + B�

�nprs A�npq�rs + B�npqrs

A�
m
�rs + B�

m
rs A��
mn�rs + C��

mnrs A��
mnp�rs + C��

mnprs A�
mnpq�rs + C�

mnpqrs

A�
mk
�rs + B�

mk
rs A��
mkn�rs + C��

mknrs A��
mknp�rs + D��

mknprs A�
mknpq�rs + D�

mknpqrs

Amku
�rs + Bmku
rs A�
mkun�rs + C�

mkunrs A�
mkunp�rs + D�

mkunprs Amkunpq �rs + Emkunpqrs

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

�U
s

�Û�
ns

�Û�
nps

�Ûnpqs

⎤
⎥⎥⎥⎦

n+1

=

⎡
⎢⎢⎢⎣

W�r

Ŵ�
mr

Ŵ�
mkr

Ŵmkur

⎤
⎥⎥⎥⎦

n

(14.1.52)
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with �, � = 1 → 12; �, � = 1 → 8; m, k, n, p, q, = degrees of freedom from edge, face,

and interior modes; �, 
 = corner node variables; r, s = conservation variable degrees

of freedom.

Note that all matrix entries are identical to the two-dimensional case with the

following exception:

A�npq =
∫

�

���̂npq d� Amku
 =
∫

�

�̂mku�
 d� A�
mnpq =

∫
�

�̂�
m�̂npq d�

A�
mkun =

∫
�

�̂mku�̂
�
n d� A�

mknpq =
∫

�

�̂
�
mk�̂npq d� A�

mkunp =
∫

�

�̂mku�̂
�
np d�

Amkunpq =
∫

�

�̂mku�̂npq d� (14.1.53)

B�npqrs =
∫

�

{
−�t[(s1airs + s3 birs)��,i�̂npq + s3ci jrs��,i�̂npq, j ]

+ �t2

2
(s2di jrs + s4ei jrs)��,i�̂npq, j

}
d�

Bmku
rs =
∫

�

{
−�t [(s1airs + s3 birs)�̂mku,i�
 + s3ci jrs�̂mku,i�
, j ]

+ �t2

2
(s2di jrs + s4ei jrs)�̂mku,i�
, j

}
d�

C�
mkunrs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂mku,i�̂

�
n + s3ci jrs�̂mku,i�̂

�
n, j

]

+ �t2

2
(s2di jrs + s4ei jrs)�̂mku,i�̂

�
n, j

}
d�

C�
mnpqrs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂

�
m,i�̂npq + s3ci jrs�̂

�
m,i�̂npq, j

]

+ �t2

2
(s2di jrs + s4ei jrs)�̂

�
m,i�̂npq, j

}
d�

D�
mknpqrs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂

�
mk,i�̂npq + s3ci jrs�̂

�
mk,i�̂npq, j

]

+ �t2

2
(s2di jrs + s4ei jrs)�̂

�
mk,i�̂npq, j

}
d�

D�
mkunprs =

∫
�

{
−�t

[
(s1airs + s3 birs)�̂mku,i�̂

�
np + s3ci jrs�̂mku,i�̂

�
np, j

]

+ �t2

2
(s2di jrs + s4ei jrs)�̂mku,i�̂

�
np, j

}
d�

Emkunpqrs =
∫

�

{
−�t [(s1airs + s3 birs)�̂mku,i�̂npq + s3ci jrs�̂mku,i�̂npq, j ]

+ �t2

2
(s2di jrs + s4ei jrs)�̂mku,i�̂npq, j

}
d� (14.1.54)
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Ŵ�
mr =

∫
�

{
�t �̂

�
m,i�


(
Fn


ir + Gn

ir

) − �t2

2
(airs + birs)�̂

�
m,i�
, j

(
Fn


 js + Gn

 js

)}
d�

+
∫

�

∗
�̂�

m

{
�t

[ − s1

(
airs�Un+1

s

) − s3

(
birs�Un+1

s + ci jrs�Un+1
s, j

)]

+ �t2

2

[
s2(airt a jts + birt a jts) �Un+1

s, j + s4 (airt bjts + birt bjts)�Un+1
s, j

]}
ni d�

+
∫

�

∗
�̂�

m

{
−�t

(
Fn

ir + Gn
ir

) + �t2

2
(airs + birs)

(
Fn

js, j + Gn
js, j − Bn

s

)}
ni d�

Ŵ�
mkr =

∫
�

{
�t �̂

�
mk,i�


(
Fn


ir + Gn

ir

)− �t2

2
(airs + birs)�̂

�
mk,i�
, j

(
Fn


 js + Gn

 js

)}
d�

+
∫

�

∗
�̂

�
mk

{
�t

[−s1

(
airs�Un+1

s

) − s3

(
birs�Un+1

s + ci jrs�Un+1
s, j

)]

+ �t2

2

[
s2 (airt a jts + birt a jts) �Un+1

s, j + s4 (airt bjts + birt bjts)�Un+1
s, j

]}
ni d�

+
∫

�

∗
�̂

�
mk

{
−�t

(
Fn

ir + Gn
ir

)+ �t2

2
(airs + birs)

(
Fn

js, j + Gn
js, j − Bn

s

)}
ni d�

Ŵmkur =
∫

�

{
�t �̂mku,i�


(
Fn


ir + Gn

ir

)

− �t2

2
(airs + birs)�̂mku,i�
, j

(
Fn


 js + Gn

 js

)}
d� (14.1.55)

As mentioned earlier for the case of two dimensions, the Neumann boundary condi-

tions involved in all spectral degrees of freedom do not exist and are not applied, initially.

However, they may be computed and added after the initial corner node computation.

As in 2-D, we begin with

(A�
�rs + B�
rs) �Un+1

s = Wn

�r (14.1.56)

In this process, the FDV-FEM computations are carried out with h-adaptivity until all

shock waves are resolved. The next step is to resolve turbulent microscales using the

spectral portion of the computations⎡
⎢⎢⎣

A��
mn�rs + C��

mnrs A��
mnp�rs + C��

mnprs A�
mnpq�rs + C�

mnpqrs

A��
mkn�rs + C��

mknrs A��
mknp�rs + D��

mknprs A�
mknpq�rs + D�

mknpqrs

A�
mkun�rs + C�

mkunrs A�
mkunp�rs + D�

mkunprs Amkunpq �rs + Emkunpqrs

⎤
⎥⎥⎦

⎡
⎢⎣

�Û�
ns

�Û�
nps

�Ûnpqs

⎤
⎥⎦

=

⎡
⎢⎣

Ŵ�
mr

Ŵ�
mkr

Ŵmkur

⎤
⎥⎦ −

⎡
⎢⎣

X�
mr

X�
mkr

Xmkur

⎤
⎥⎦ (14.1.57)

where

X�
mr = (

A�
m
�rs + B�

m
rs

)
�U
s

X�
mkr = (

A�
mk
�rs + B�

mk
rs

)
�U
s

Xnpqs = (Amkuu
�rs + Bmku
rs)�U
s
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which act as source terms or coupling effect of the corner nodes upon spectral behavior

through side, face, and interior modes. The final step is to combine (14.1.56) and (14.1.57)

by

(A�
�rs + B�
rs) �Un+1

s = Wn

�r + Y�r (14.1.58)

with

Y�r = (
A�

�n�rs + B�
�
rs

)
�Û�

ns + (
A�

�np�rs + B�
�nprs

)
�Û�

nps

+ (A�npq�rs + B�npqrs)�Ûnpqs

Thus, the convergence toward shock wave turbulent boundary layer interactions can be

achieved through iterations between (14.1.57) and (14.1.58). Note that in this process,

the convection implicitness parameters s1 and s2 are held constant, whereas the diffu-

sion implicitness parameters s3 and s4 are updated through Reynolds numbers. Some

examples are shown in Section 14.4.

14.2 LEAST SQUARES METHODS

The least squares methods (LSM) have been used in FEM by a number of authors

such as Lynn [1974], Bramble and Shatz [1970], Fix and Gunzburger [1978], Carey and

Jiang [1987], among others. In LSM, the inner products of the governing equations are

constructed, which are then differentiated (minimized) with respect to the nodal values

of the variables. The integration by parts which is normally required in the standard

Galerkin method is not involved. As a consequence, higher order derivatives remain,

which will then require higher order trial functions. The basic formulation strategies are

described next.

14.2.1 LSM FORMULATION FOR THE NAVIER-STOKES SYSTEM OF EQUATIONS

To illustrate the procedure, let us consider the Navier-Stokes system of equations,

R = ∂U
∂t

+ ai
∂U
∂xi

+ bi
∂U
∂xi

+ ci j
∂2U

∂xi∂xj
− B (14.2.1)

where

U = ��U� (14.2.2)

The least squares formulation of (14.2.1) leads to

∂

∂U�

1

2
(R,R) = ∂

∂U�

∫
�

1

2
R2d� = 0

This leads to∫
�

W�R d� = 0 (14.2.3)

with the test function W� given by

W� = ∂R
∂U�

(14.2.4)
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or

W� = ∂��

∂t
+ ai

∂��

∂xi
+ bi

∂��

∂xi
+ ci j

∂2��

∂xi∂xj
(14.2.5)

It is seen that the trial function �� is not a function of time and the first term in (14.2.5)

must vanish. To avoid this situation, we rewrite (14.2.1) in the form

R = Un+1 − Un + �t
(

ai
∂U
∂xi

+ bi
∂U
∂xi

+ ci j
∂2U

∂xi∂xj
− B

)
(14.2.6)

This will allow the test function W� to be written as

W� = ∂R
∂Un+1

�

= �� + �t
2

(ai��,i + bi��,i + ci j��,i j ) (14.2.7)

with U = (Un+1 + Un)/2. Thus, (14.2.3) takes the form

K�
Un+1

 = Fn

� (14.2.8)

where the stiffness matrix K�
 is of the form

K�
 =
∫

�

[
�� + �t

2
(ai��,i + bi��,i + ci j��,i j )

]

×
[
�
 + �t

2
(ak�
,k + bk�
,k + ckm�
,km)

]
d�

and

Fn
� =

∫
�

[
�� + �t

2
(ai��,i + bi��,i + ci j��,i j )

]

×
[
�
 − �t

2
(ak�
,k + bk�
,k + ckm�
,km)

]
d�Un




+
∫

�

[
�� + �t

2
(ai��,i + bi��,i + ci j��,i j )

]
Bn d� (14.2.9)

As noted from (14.2.7), the test function arising from the LSM formulation resembles

the GPG methods discussed in Section 13.5. The functions W� are flowfield-dependent

through the Jacobians ai , bi , and ci j . Various simplifications are available [Carey and

Jiang, 1987 and others].

14.2.2 FDV-LSM FORMULATION

It is possible to use the FDV scheme for applications to LSM formulation. The advantage

of FDV-LSM is to contain the time dependent terms for transient analysis. We begin

with the FDV equations of the form (13.6.6):

R = �Un+1 + Ei
∂�Un+1

∂xi
+ Ei j

∂2�Un+1

∂xi∂xj
+ Qn (14.2.10)
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or

R =
(

�� + Ei
∂��

∂xi
+ Ei j

∂2��

∂xi∂xj

)
�Un+1

� + Qn

The test function for the LSM scheme is

W� = ∂R
∂Un+1

�

= �� + Ei��,i + Ei j ��,i j (14.2.11)

Substituting (14.2.10) and (14.2.11) into (14.2.3) leads to (14.2.6)

K�
�Un+1

 = Fn

�

where

K�
 =
∫

�

(���
 + Ek���
,k + Ekm���
,km

+ Ei��,i�
 + Ei Ek��,i�
,k + Ei Ekm��,i�
,km

+ Ei j��,i j�
 + Ei j Ek��,i j�
,k + Ei j Ekm��,i j�
,km) d� (14.2.12)

and

Fn
� =

∫
�

(�� + Ei��,i + Ei j ��,i j ) Qn d� (14.2.13)

Once again, the computational requirements for the FDV-LSM formulation are

significantly greater than those of the FDV Galerkin method.

14.2.3 OPTIMAL CONTROL METHOD

The optimal control method (OCM) was applied to a highly nonlinear integrodifferen-

tial equation such as in combined mode radiative heat transfer problems [Chung and

Kim, 1984; Utreja and Chung, 1989]. It resembles the standard LSM except that penalty

functions are used to provide constraints.

The basic idea is to construct a cost function in the form

J = 1

2

∫
�

(Rn Rn + �(m)SmSm) d� (14.2.14)

where Rn represents the residual of any governing equation and S(i)
m denotes a con-

straint function which will convert a first derivative into a second derivative with �m

being the penalty parameter (see Section 12.1.2). For example, consider a steady-state
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two-dimensional Burgers equation of the form

R1 = u
∂u
∂x

+ v
∂u
∂x

− �

(
∂S1

∂x
+ ∂S2

∂y

)
= 0

R2 = u
∂v

∂x
+ v

∂v

∂x
− �

(
∂S3

∂x
+ ∂S4

∂y

)
= 0

(14.2.15)

with

S1 = S1 − ∂u
∂x

= 0

S2 = S2 − ∂u
∂y

= 0

S3 = S3 − ∂v

∂x
= 0

S4 = S4 − ∂v

∂y
= 0

(14.2.16)

Substituting (14.2.15) and (14.2.16) into (14.2.14) and minimizing the cost function J ,

we obtain

�J = ∂ J
∂u�

�u� + ∂ J
∂v�

�v� + �(m)

∂ J
∂Sm

�Sm = 0 (14.2.17)

Since �u�, �v�, and �Sm are arbitrary, it follows from (14.2.17) that∫
�

(
Rn

∂ Rn

∂u�
+ �m

∂Sm

∂u�

)
d� = 0

∫
�

(
Rn

∂ Rn

∂v�
+ �m

∂Sm

∂v�

)
d� = 0 (n = 1, 2, m, r = 1, 4)

∫
�

(
Rn

∂ Rn

∂Sm�

+ �r
∂Sr

∂Sm�

)
d� = 0

(14.2.18)

For other problems such as in combined mode radiative heat transfer where radiation

source terms are to be separately calculated iteratively, the concept of penalty functions

is particularly useful. Although simultaneous solutions of these equations are costly,

they are quite useful for highly nonlinear problems. Applications of the OCM are

demonstrated in Sections 24.3 and 24.4.

14.3 FINITE POINT METHOD (FPM)

Mesh configurations including local elements and nodal points are required for all

computational methods discussed so far. In recent years, various methods which depend

on finite number of points rather than meshes (meshless methods) have been developed.

The so-called smooth particle hydrodynamics (SPH) [Lucy, 1977; Monaghan, 1988] has

been used for the analysis of exploding stars and dust clouds using finite number of
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points with a functional representation of the variable u(x) as

u(x) =
∫

�

w(x − xi )u(xi ) d� = �i ui (14.3.1)

where w(x − xi ) is the kernel, wavelets, or weight function and �i is the SPH inter-

polation function, with the kernel being approximated by exponential, cubic spline, or

quartic spline.

The concept of SPH can be extended to a meshless approach in terms of element-

free Galerkin method (EFG) [Belytschko et al., 1996] or fixed least squares (FLS) and

moving least square (MLS) procedures [Lancaster and Salkauskas, 1981; Onate et al.,

1996]. In the FLS and MLS methods, we replace the integral (14.3.1) of the variable

u(x) by

u(x) = Pi (x)ai (x) (14.3.2)

where Pi (x) are the monomial basis functions and ai (x) are their coefficients.

Pi = (1, x, x2 . . .) 1D (14.3.3a)

Pi = (1, x, y, x2, xy, y2, . . . .) 2D (14.3.3b)

Expanding (14.3.2) to cover nodal points, we rewrite (14.3.2) as

ui = Pikak (14.3.4)

where

Pik =

⎡
⎢⎢⎢⎣

P1(x1) P2(x1) · · · Pm(x1)

P1(x2) P2(x2) · · · Pm(x2)
...

...
...

...

P1(xn) P2(xn) · · · Pm(xn)

⎤
⎥⎥⎥⎦ (14.3.5)

In order to determine the unknown coefficients ai,, we introduce in (14.3.4) the weighted

least squares operation in the form,

∂ J
∂ai

= 0 (14.3.6)

where J is the weighted least squares function,

J = Wi j (Pikak − ui )(Pjmam − u j ) (14.3.7)

with Wi j being the second order tensor weight functions,

Wi j =

⎡
⎢⎢⎢⎣

W(x − x1) 0 · · · 0

0 W(x − x2) · · · 0
...

...
...

...

0 0 · · · W(x − xn)

⎤
⎥⎥⎥⎦ (14.3.8)

Performing the differentiation in (14.3.6) leads to

ai = (Wnj PnkPjm)−1WkmPir ur (14.3.9)



14.4 EXAMPLE PROBLEMS 493

Substituting (14.3.9) into (14.3.2), we obtain

u(x) = �i ui (14.3.10)

where �i is the finite point interpolation function,

�i = Ps(Wnj PnkPjm)−1WkmPsi (14.3.11)

with

�i (x j ) = �i j (14.3.12)

and the diagonal component of the weighting functions may be chosen as a Gaussian

function

Wi j = exp[−(x/c)2] − exp[−(xm/c)2]

1 − exp[−(xm/c)2]
(14.3.13)

where xm is the half size of the support and c is a parameter determining the geometrical

shape.

Another meshless (finite point) method, known as the partition of unity (PUM) or

h-p cloud method, was advanced by Duarte and Oden [1996] and Melenk and Babuska

[1996], which is suitable for an unstructured adaptive method (Chapter 19). In this

method, the variable u(x) is expressed as

u(x) = �i ui (mnp) (14.3.14)

where �i is the MLS function of (14.3.11) and ui(mnp) is the spectral function consist-

ing of either Lagrange or Legendre polynomials with m, n, p representing orders of

polynomials similarly as in (14.1.16).

The functional representation of SPH, MLS, and PUM is based on the meshless

approach. Lumping them all together, these meshless methods may be called the finite

point methods (FPM), as suggested by Onate et al. [1996]. The advantage of FPM

is obviously the elimination of the need for grid generation, which is itself a major

task.

14.4 EXAMPLE PROBLEMS

In this section, we present some example problems of FDV spectral element methods

using the Legendre polynomials [Yoon and Chung, 1996]. Spectral elements of Legendre

polynomial degree 2 (q2) in space 2 (S2) are applied in the spatially evolving three-

dimensional boundary layers with shock wave boundary layer interactions in a single

and double sharp leading edged fins.

14.4.1 SHARP FIN INDUCED SHOCK WAVE BOUNDARY LAYER INTERACTIONS

To investigate the interaction of a shock wave with a boundary layer in three dimen-

sions, a sharp leading edged fin is adopted as a model problem. Figure 14.4.1.1a shows

the physical domain for a 3-D sharp fin (� = 20◦) with a general flowfield structure
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Figure 14.4.1.1 Computational domain for a 3-D 20◦ fin and flowfield structure with

M∞ = 2.93, P∞ = 20.57 kPa, T∞ = 92.39 K, Re∞ = 7 × 108/m. The inlet boundary

conditions are obtained from the boundary layer analysis. On the solid surface, no-

slip and adiabatic wall boundary conditions are applied. (a) 3-D 20◦ fin. (b) 20◦ fin

interaction flowfield structures. (c) Computational domain.

(Figure 14.4.1.1b) [Settles and Dolling, 1990]. The inlet boundary conditions and the

corresponding flowfield structure are the same as in Knight et al. [Settles and Dolling,

1990]. Here, the freestream Mach number and temperature are M∞ = 2.93 and T∞ =
92.39 K, corresponding to the chamber pressure and temperature of 680 kPa and 251 K,

respectively, with the Reynolds number of 7 × 108/m. The boundary layer thickness �o

at the apex of the fin is 1.4 cm, yielding a Reynolds number Re�o = 9.8 × 105. In order to

match the boundary conditions as used for the experiments [Settles and Dolling, 1990],

the flowfield behind the fin is calculated as a flat plate boundary layer such that the com-

puted boundary layer thickness �o is set equal to the experimental value of 1.4 cm. On

the solid surfaces, no-slip and adiabatic wall boundary conditions are applied. On the

upper, lateral, and downstream exit boundaries, the flow variables are set free. Adaptive

spaced grid points are 33, 41, and 31 in the streamwise, spanwise, and vertical directions,

respectively. Spectral elements of Legendre polynomial degree 2 in space 2 are applied

in the boundary layer.

Figure 14.4.1.2 shows the background flowfield based on the geometric configura-

tions and boundary conditions described in Figure 14.4.1.1, as observed from the front
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Figure 14.4.1.2 Background flowfield as observed from the front (x-z plane and y-z plane).

(x-zand y-z faces). As such, no details of the hidden portion are shown. It is noticed that

the trend is in reasonable agreement with the results of Narayanswami, Hortzman, and

Knight [1993], with density and pressure increasing drastically along the shock waves,

the temperature rise being distributed along the flat plate, and Mach number sharply

decreasing through the shock waves toward the flat plate boundary.

Vorticity variations at different planes are shown in Figures 14.4.1.3a through

14.4.1.3e. The contours of vorticity component in the streamwise planes (y-z planes) in

the x-direction with each plane identified as a, b, c, d, e are shown. The corresponding

velocity vectors are plotted on the right-hand side. Clearly, the vortex stretching oc-

curs toward downstream with the evidence of separation shocks, slip lines, and vortex

centers close to the wall. These physical phenomena become more significant toward

downstream in agreement with the schematics shown in Figure 14.4.1.2.

Figure 14.4.1.4a shows the contours of vorticity component in the spanwise vertical

planes (x cos �-z planes) in the y cos �-direction, with each plane identified as a, b, c, d.

The vortex stretching occurs again toward downstream and moving upward away from

the shock. The growth of vorticity is concentrated within the boundary layer close to

the wall.

In Figure 14.4.1.4b, the spanwise horizontal plane vorticity contours are presented

at various locations (a:2�o, b:2�o, c:20.5�o) where �o is the boundary layer thickness.

It is seen that vorticity increases toward the wall, with its intensity increasing toward

downstream as expected.
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Figure 14.4.1.3 Streamwise vorticity contours and the corresponding velocity vectors (t = 0.3965 ms). The

vortex stretching occurs toward downstream with the evidence of separation shocks, slip lines, and vortex

centers close to the wall.

14.4.2 ASYMMETRIC DOUBLE FIN INDUCED SHOCK WAVE BOUNDARY
LAYER INTERACTION

Complex three-dimensional shock wave boundary layer interactions occur on asym-

metric double fins. Schematic representation of an asymmetric crossing shock wave

turbulent boundary layer interaction is shown in Figure 14.4.2.1a. The dimensions and

freestream conditions employed in the experiment by Knight et al. [1995] are shown

in Figure 14.4.2.1b. The same dimensions and freestream conditions are used in the

present investigation.

Figures 14.4.2.2a and 14.4.2.2b display density and pressure contours, respectively.

Existence of crossing shock waves and expansion waves in the asymmetric double fins

is clearly evident in these figures. Figure 14.4.2.3 shows velocity vectors at different

streamwise planes (y-zplanes) in the x-direction. It is evident that vortices are generated

near the surface toward downstream.

The present result is compared with experimental data [Knight et al., 1995] for

wall pressure. The comparisons on the throat middle line and at streamwise location





Figure 14.4.2.2 Density and pressure distributions. (a) Density contours (min = 0.6 kg /m3, max =
2.3 kg/ m3), existence of crossing shock waves and expansion waves appears. (b) Pressure contours (min =
11 kPa, max-79 kPa).

Figure 14.4.2.3 Velocity vectors at different streamwise

stations. Vortices are generated near the surface toward

downstream.
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Figure 14.4.2.4 Comparison of pressure distributions with experimental data. (a) Comparison between the

present result and experimental data of wall pressure on throat middle line. The present and experimental

surface pressures on throat middle line are in general agreement at upstream, but deviate toward downstream.

(b) Comparison of wall pressure at x = 46 mm for the present result and experimental data. At x = 46 mm,

the present and experimental surface pressure show close agreement.

14.5 SUMMARY

In this chapter, we reviewed various methods that are related to FEM or weighted resid-

ual methods. Although the spectral element methods (SEM) are accurate for simple

geometries and simple boundary conditions, the SEM applications to complex multidi-

mensional problems are not practical. The least squares methods (LSM) can be applied

to complicated geometries, but computations involved are quite time-consuming. The

research in meshless methods or finite point methods (FPM) has begun recently. Active

research in FPM in the future appears to be promising.

As we come to the end of finite element applications, we recall that, in Part Two, the

finite volume methods (FVM) can be formulated using FDM as shown in Chapter 7.

Thus, a similar treatment of FVM using FEM is the subject of the next chapter.
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CHAPTER FIFTEEN

Finite Volume Methods via Finite Element Methods

15.1 GENERAL

The finite volume methods (FVM) via FDM discussed in Chapter 7 may also be formu-

lated using finite element methods (FEM). Schneider and Raw [1987], Masson, Saabas,

and Baliga [1994], and Darbandi and Schneider [1999], among many others, contributed

to the earlier and recent developments of FVM via FEM.

The FVM equations via finite elements are the same as those given in (7.1.4) for the

case of the Navier-Stokes system of equations using finite differences,

∑
CV

(
�U
�t

− B
)

�� +
∑
CS

(Fi + Gi )ni�� = 0 (15.1.1a)

or ∑
CV

(�U − �tB)�� + �t
∑
CS

(Fi + Gi )ni�� = 0 (15.1.1b)

It is seen that quantities to be evaluated are involved in control volumes �� and control

surfaces ��. We shall demonstrate how they are evaluated using finite elements in this

chapter.

Consider the two-dimensional geometry as shown in Figure 15.1.1a. Note that global

node 1 is surrounded by five elements, with each element divided into quadrilateral

isoparametric elements (Figure 15.1.1b). A quadrant of each element is connected

to node 1, forming five subcontrol volumes (CV1-A, CV1-B, CV1-C, CV1-D, and

CV1-E). Each subcontrol volume has two control surfaces with outward normal di-

rections with angles � measured counterclockwise from the global reference cartesian

x-coordinate.

It is reasonable to approximate �U in control volumes with quadratic trial functions

whereas the fluxes (Fi and Gi ) in control surfaces may be approximated by linear trial

functions. Fluxes evaluated for all control volumes along the control surfaces plus the

control volume quantities (�U and B) are to be assembled into each global node (control

volume center), resulting in simultaneous algebraic equations for the entire system.

Note that the fluxes along the control surfaces are equal with opposite signs between

neighboring control surfaces. This process renders all fluxes completely conserved – a

distinctive advantage of FVM.
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Figure 15.1.1 Unstructured grids for finite elements – node-centered control vol-

ume. (a) Subcontrol volumes CV1-A, B, C, D, E surrounding Node 1 with compo-

nents of vectors normal to all control surfaces, subcontrol volume for node 8 (CV

8), subcontrol volumes for node 14 (CV14-A, B). (b) Control surfaces CS1, 2, 3,

4 with integration points along � = 0, � = 0 axes at centers of control surfaces in

isoparametric element with corner nodes 1, 2, 3, 4.

Implementation of the finite element approximations toward FVM for two- and

three-dimensional problems will be presented in the following subsections.

15.2 FORMULATIONS OF FINITE VOLUME EQUATIONS

15.2.1 BURGERS’ EQUATIONS

To compare the formulation and solution procedure of FVM with FEM, let us consider

the two-dimensional Burgers’ equation in the form

∂U
∂t

+ u
∂U
∂x

+ v
∂U
∂y

− �

(
∂2U
∂x2

+ ∂2U
∂y2

)
− F = 0 (15.2.1)
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Figure 15.2.1 Isoparametric elements. (a) Quadratic approximation for control volumes.

(b) Linear approximation for control surface.

where

U =
[

u
v

]
, F =

[
fx

fy

]

fx = − 1

(1 + t)2
+ x2 + 2xy

(1 + t)
+ 3x3 y2 − 2�y

fy = − 1

(1 + t)2
+ y2 + 2xy

(1 + t)
+ 3y3x2 − 2�x

with the exact solution

u = 1

1 + t
+ x2 y, v = 1

1 + t
+ xy2

To illustrate the implementation of both the Dirichlet and Neumann boundary

conditions on inclined surfaces, we consider the discretized geometries as shown in

Figure 15.2.1 on which basic FVM equations will be written in terms of isoparametric

finite elements.

Finite volume equations may be constructed within the framework of a two-step

Taylor-Galerkin formulation. Toward this end, we begin with

Un+1 = Un + �t
∂Un

∂t
+ O(�t2)

This may be split into two steps:

Step 1

Un+ 1
2 = Un + �t

2

∂Un

∂t
(15.2.2a)

Step 2

Un+1 = Un + �t
∂Un+ 1

2

∂t
(15.2.2b)
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with ∂U/∂t being determined from (15.2.1):

∂U
∂t

= −u
∂U
∂x

− v
∂U
∂y

+ �

(
∂2U
∂x2

+ ∂2U
∂y2

)
+ F (15.2.3)

Substituting (15.2.3) into step 1 (15.2.2a) gives

Un+ 1
2 = Un − �t

2

(
u

∂Un

∂x
+ v

∂Un

∂y

)
+ �t

2
�

(
∂2Un

∂x2
+ ∂2Un

∂y2

)
+ �t

2
Fn (15.2.4)

Finite volume formulation using a unit test function becomes∫
�

Un+ 1
2 d� =

∫
�

Und� − �t
2

∫
�

(
u

∂Un

∂x
+ v

∂Un

∂y

)
d�

+ �t
2

�

∫
�

(
∂2Un

∂x2
+ ∂2Un

∂y2

)
d� + �t

2

∫
�

Fnd� (15.2.5)

Integrating by parts, we have∫
�

Un+ 1
2 d� =

∫
�

Und� − �t
2

∫
�

(
un ∂Un

∂x
+ vn ∂Un

∂y

)
d�

+ �t
2

�

∫
�

(
∂Un

∂x
n1 + ∂Un

∂y
n2

)
d� + �t

2

∫
�

Fnd� (15.2.6)

Rewriting the integral as summations,

∑
CV

Un+ 1
2 �� =

∑
CV

[
Un − �t

2

(
un ∂Un

∂x
+ vn ∂Un

∂y

)
+ �t

2
Fn

]
��

+ �t
2

�
∑
CS

(
∂Un

∂x
n1 + ∂Un

∂y
n2

)
�� (15.2.7)

Similarly for step 2 (15.2.2b), we have

∑
CV

Un+1�� =
∑
CV

[
Un − �t

2

(
un+ 1

2
∂Un+ 1

2

∂x
+ vn+ 1

2
∂Un+ 1

2

∂y

)
+ �t

2
Fn+ 1

2

]
��

+ �t
2

�
∑
CS

(
∂Un+ 1

2

∂x
n1 + ∂Un+ 1

2

∂y
n2

)
�� (15.2.8)

Note that in these two-step solutions, (15.2.7) and (15.2.8), derivatives of U(dU/dx
and dU/dy) are involved within the control volumes and along the control surfaces.

Quadratic and linear isoparametric finite element approximations are used, respectively,

for control volumes and control surfaces, as shown in Figure 15.2.2. Derivatives of U
involve the transformation between the isoparametric and cartesian coordinates as

shown in Chapter 9. Derivatives involved in control volumes and control surfaces are

carried out as follows:
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For Control Volumes (quadratic approximation)

∂U
∂xi

=
9∑

N=1

(
∂�

(e)
N

∂xi
UN

)
�=0, �=0

=

⎡
⎢⎢⎣

1

4|J | [(U2 − U8)(y6 − y4) − (U6 − U4)(y2 − y8)]

1

4|J | [(U2 − U8)(x6 − x4) − (U6 − U4)(x2 − x8)]

⎤
⎥⎥⎦ (15.2.9)

with

|J | = 1

4
[(x2 − x8)(y6 − y4) − (x6 − x4)(y2 − y8)] (15.2.10)

For Control Surfaces (linear approximation)∑
CS

(
∂U
∂x

n1 + ∂U
∂y

n2

)
�� =

∑
CS2,3

(
∂U
∂x

n1 + ∂U
∂y

n2

)
��+

∑
CS4,3

(
∂U
∂x

n1 + ∂U
∂y

n2

)
��

+
∑

CS1,4

(
∂U
∂x

n1+∂U
∂y

n2

)
��+

∑
CS1,2

(
∂U
∂x

n1+∂U
∂y

n2

)
��

(15.2.11)

with

∂U
∂x

= 1

|J |
(

∂U
∂�

∂y
∂�

− ∂U
∂�

∂y
∂�

)
(15.2.12a)

∂U
∂y

= 1

|J |
(

−∂U
∂�

∂x
∂�

+ ∂U
∂�

∂x
∂�

)
(15.2.12b)

|J | = ∂x
∂�

∂y
∂�

− ∂y
∂�

∂x
∂�

(15.2.13)

The above quantities are to be evaluated for each of the subcontrol volumes A, B,

C, and D, corresponding to control surfaces (see Figure 15.2.2):

3 6 9 

1 

2 

7 4 

5 8 

D 

A 

C 

B 

(a)  (b)

CS2 

CS1 

CS4 

CS3 

ξ 

η 

Figure 15.2.2 Control surfaces and their contributions to control

volume at node 5 consisting of subcontrol volumes A, B, C, and

D. (a) Control surfaces contributing to control volume. (b) Control

surfaces evaluated at midpoints for each subcontrol volume.
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CS2 and CS3 for A

CS3 and CS4 for B

CS4 and CS1 for C

CS1 and CS2 for D

Subcontrol Volume A

Control Surface CS2 (� = 1/2, � = 0)

∂U
∂�

= 1

4
(−U3 + U6 + U5 − U2)

∂U
∂�

= 1

8
(−U3 − 3U6 + 3U5 + U2)

Control Surface CS3 (� = 0, � = 1/2)

∂U
∂�

= 1

8
(−U3 + U6 + 3U5 − 3U2)

∂U
∂�

= 1

4
(−U3 − U6 + U5 + U2)

Sum the Control Surfaces CS2 and CS3

A∑
CS2,3

(
∂U
∂x

n1 + ∂U
∂y

n2

)
�� =

(
∂U
∂x

cos �2 + ∂U
∂y

sin �2

)
��

+
(

∂U
∂x

cos �3 + ∂U
∂y

sin �3

)
��

with

|J | = 1

32
[(−x3 + x6 + 3x5 − 3x2)(−y3 − y6 + y5 + y2)

− (−y3 + y6 + 3y5 − 3y2)(−x3 − x6 + x5 + x2)]

Subcontrol Volume B

Control Surface CS3 (� = 0, � = 1/2)

∂U
∂�

= 1

8
(−U6 + U9 + 3U8 − 3U5)

∂U
∂�

= 1

4
(−U6 − U9 + U8 + U5)

Control Surface CS4 (� = −1/2, � = 0)

∂U
∂�

= 1

4
(−U6 + U9 + U8 − U5)

∂U
∂�

= 1

8
(−U6 − 3U9 + 3U8 + U5)
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Subcontrol Volume C

Control Surface CS4 (� = −1/2, � = 0)

∂U
∂�

= 1

4
(−U5 + U8 + U7 − U4)

∂U
∂�

= 1

8
(−3U5 − U8 + U7 + 3U4)

Control Surface CS1 (� = 0, � = −1/2)

∂U
∂�

= 1

8
(−3U5 + 3U8 + U7 − U4)

∂U
∂�

= 1

4
(−U5 − U8 + U7 + U4)

Subcontrol Volume D

Control Surface CS1 (� = 0, � = −1/2)

∂U
∂�

= 1

8
(−3U2 + 3U5 + U4 − U1)

∂U
∂�

= 1

4
(−U2 − U5 + U4 + U1)

Control Surface CS2 (� = 1/2, � = 0)

∂U
∂�

= 1

4
(−U2 + U5 + U4 − U1)

∂U
∂�

= 1

8
(−U2 − 3U5 + 3U4 + U1)

Assembly of the entire system is achieved by collecting contributions to an element

from surrounding nodes in the first step and contributions to a node from surrounding

elements in the second step, as shown in Figure 15.2.3.

(a) (b)

1 

2 

3 

4 

5 

6 
9 

8 

7 

Figure 15.2.3 Contributions to an element from surrounding nodes and to a

node from surrounding elements. (a) First step, contributions to an element

from surrounding nodes. (b) Second step, contributions to a node from sur-

rounding elements.





15.2 FORMULATIONS OF FINITE VOLUME EQUATIONS 509

conducive to FVM formulation. In this approach, the predictor corrector steps are

constructed as follows.

Step 1. Predictor. Integrating the momentum equations and writing them in control

volumes and control surfaces,∑
CV

�
(
v∗

j − vn
j

)��

�t
= −

∑
CS

�(vi v j − �v j,i + p�i j )ni�� (15.2.16)

with

v̄i = the old time step value

p = �N pN

v j =
{

WNvNj in convective term

�NvNj otherwise

WN = �N + �N = �N + 	gk�N,k

We may recast (15.2.16) in the form

KNv∗
Nj = Rj (15.2.17)

KN =
∑
CV

�
��

�t
�N +

∑
CS

(�v∗
i WN − ��N,i )ni

Rj =
∑
CV

�
��

�t
v∗

Nj�N −
∑
CS

�Nnj pN

Here we solve v∗
Nj implicitly:

Step 2. (Corrector I). The momentum control volume and the control surface equations

are corrected as∑
CV

�v∗∗
j

��

�t
= −

∑
CS

(�v∗
i v∗

j − �v∗
i, j + p�i j )ni�� +

∑
CV

�vn
j
��

�t
(15.2.18)

To obtain the pressure correction equation, we differentiate spatially the momentum

equation and integrate over the control volume in which we apply v∗∗
i, j = 0. The resulting

control surface equations become∑
CS

p∗
,i ni�� = −

∑
CS

(
�vn

j n j
��

�t
− �v∗

i, j v
∗
j + �v∗

j,i v
∗
j

)
ni�� (15.2.19)

where v∗
j, j i = 0 with linear variation of �
. In this step we compute p∗ from (15.2.19)

and v∗∗
j from (15.2.18) explicitly.

Step 3. (Corrector II). This is exactly the same as step 2 with (*) replaced by (**) and

(**) replaced by (***). We solve for pressure p** using∑
CS

�N,i ni��p∗∗
N = −

∑
CS

(
�vn

i ni
��

�t
− �v∗∗

i, j v
∗∗
j + �v∗∗

j,i v
∗∗
j

)
ni�� (15.2.20)
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and solve for velocity v∗∗∗
j explicitly using

∑
CV

�v∗∗∗
j

��

�t
= −

∑
CS

(�v∗∗
i v∗∗

j − �v∗∗
j,i + p∗∗�i j )ni�� +

∑
CV

�vn
j
��

�t
(15.2.21)

The three steps are to be repeated until convergence is obtained.

15.2.2 INCOMPRESSIBLE AND COMPRESSIBLE FLOWS

(1) FVM with Two-step GTG Scheme

For the Burgers’ equations considered in the previous sections, we evaluated deriva-

tives along the control surfaces. If the Navier-Stokes system of equations is solved from

the FVM equations of the type given by (15.1.1b), then we must evaluate the convection

and diffusion fluxes (Fi and Gi ) directly along the boundary surfaces.

The FEM approximations for U, Fi , and Gi are given by

�U = �
(e)
N �UN

�Fi = �
(e)
N �FNi

�Gi = �
(e)
N �GNi

(15.2.22)

The two-step GTG scheme is the same as in (15.2.3):

Step 1∑
CV

Un+ 1
2 �� =

∑
CV

(Un + Bn)�� − �t
2

∑
CS

(
Fn

i + Gn
i

)
ni�� (15.2.23)

Step 2∑
CV

Un+1�� =
∑
CV

(Un + Bn)�� − �t
2

∑
CS

(
F

n+ 1
2

i + G
n+ 1

2

i

)
ni�� (15.2.24)

The evaluation of Fi , and Gi is carried out along the control surfaces, using

(15.2.23 and 15.2.24) at the midpoints similarly as in the case of Burgers’ equations

presented in Section (15.2.1).

(2) FVM with PISO Approach

The FVM via FEM PISO approach can be extended to compressible flows similarly

as in incompressible flows. This begins with integrating the momentum equations and

writing them in control volumes and control surfaces,

∑
CV

�n(v∗
j − vn

j

)��

�t
= −

∑
CS

[�nvi v j − �(vi, j − v j, j ) + p�i j ]ni�� (15.2.25)

The rest of the formulation follows the steps given in Section 6.3.4 by converting them

into control volumes and control surfaces as shown in Section 15.2.2 for incompressible

flows.
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(3) FVM with Upwind Finite Elements

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= 0

∫
�

∂U
∂t

d� +
∫

�

(
∂Fi

∂xi
+ ∂Gi

∂xi

)
d� =

∫
�

∂U
∂t

d� +
∫

�

(Fi + Gi )ni d� = 0 (15.2.26)

(a) Inviscid Algorithm. Consider a typical flux change on the side r, s,

�Fi = Fir − Fis = ai�U = ai (Ur − Us) with ai = ∂Fi

∂U
(15.2.27)

in which we may use the Roe’s average,

Fi = 1

2
[Fir + Fis − |ai |(Ur − Us)] (15.2.28)

as given by (6.2.67).

Implicit time stepping is constructed as

�Un+1 = �t
��

∑ 1

2

[
Fn

ir + Fn
is − |ai |

(
Un

r − Us
)]

ni�� (15.2.29)

Linearizing, we get(
I + �t

2��

∑
|a∗

i |ni��

)
�Un+1 = �t

2��

∑ [
Fn

ir + F∗
is − |a∗

i |
(
U∗

r − Un
s

)]
ni��

(15.2.30)

Here the linearization is performed with an iterative solution in mind, and the asterisk

indicates that the term is evaluated using the latest available solution in an adjacent

element. Then the iterative procedure may be regarded as a point Gauss-Seidel method

requiring the inversion of a 4 × 4 matrix for each element in the computational grid.

(b) Viscous Contributions. The inviscid equation (15.2.31) may be modified to include

the viscous contributions. Noting that∫
�

Gn+1
i ni d� =

∫
�

(
Gn

i + �Gi
)
ni d�

or ∑
Gn+1

i ni d� =
∑ (

Gn
i + bi�U

)
ni d� (15.2.31)

Substituting (15.2.32) into (15.2.26) through (15.2.31) we obtain[
I + �t

��

∑ (
1

2
|a∗

i | − bi

)
ni��

]
�Un+1

= − �t
��

∑ {
1

2

[
Fn

ir + F∗
is − |a∗

i |
(
U∗

r − Un
s

)] − G∗
i

}
ni�� (15.2.32)
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The Galerkin approximation of (15.2.30 or 15.2.32) with the upwinded finite element

equations in the finite volume formulation leads to

(A
	�rs + B
	rs)�U	s = W
r (15.2.33)

Here the diffusion terms are calculated along the control surfaces similarly as the con-

vection terms.

(4) FVM with FDV

The FDV concept introduced in Sections 6.5 and 13.6 can be used for FVM formu-

lations. To this end, we begin with the FDV governing equations,

R =
(

I + En
i

∂

∂xi
+ En

i j
∂2

∂xi∂xj

)
�Un+1 + Qn (15.2.34)

The FVM integration equation is of the form∫
�

R d� =
∫

�

[(
I + En

i
∂

∂xi
+ En

i j
∂2

∂xi∂xj

)
�Un+1 + Qn

]
d� = 0 (15.2.35)

Integrating (15.2.35) with respect to the spatial coordinates, we obtain∫
�

�Un+1 d� +
∫

�

(
Ei�Un+1 + Ei j�Un+1

, j

)
ni d � = −

∫
�

Qn d� (15.2.36)

or ∑
CV

�Un+1 �� +
∑
CS

(
Ei�Un+1 + Ei j�Un+1

, j

)
ni �� = −

∫
�

Qn d� (15.2.37)

where∫
�

Qn d� =
∫

�

(
Hn

i + Hn
i j, j

)
ni d � =

∑
CS

(
Hn

i + Hn
i j, j

)
ni �� (15.2.38)

with

Hn
i = �t

(
Fn

i + Gn
i

)
, Hn

i j = �t2

2
(ai + bi )

(
Fn

j + Gn
j

)
(15.2.39a,b)

15.2.3 THREE-DIMENSIONAL PROBLEMS

Three-dimensional geometries may be discretized using hexahedral elements or tetrahe-

dral elements. Determination of direction cosines for the subcontrol surfaces, subcontrol

surface areas, and subcontrol volumes follows the same procedures for FVM via FDM.

Formulations and solutions of FVM equations via FEM for three-dimensional prob-

lems are carried out similarly as in the two-dimensional case which has been detailed

in Section 15.2.

Although hexahedral elements are easy for implementation in general, we may use

tetrahedrals with each volume subdivided internally into four volumes corresponding

to each vertexs, as shown in Figure 15.2.5a. Within a single tetrahedral, each node shares

a common face with each of the neighboring nodes within the tetrahedral. The Green-

Gauss theorem is applied to the sub-volume surrounding each vertex to equate the

change in mass, momentum, and energy to the convective and diffusive fluxes passing
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Figure 15.2.5 Tetrahedral element discretization and control volume representation (a) Tetrahedral element

discretization (b) Flux through tetrahedral control volume.

through the control volume faces. Surface normals for each face are obtained via a

cross-product as shown in Figure 15.2.5b. Finite element shape functions are used to

interpolate the convective and diffusive fluxes at the center of each face.

An overall balance is obtained for a given nodal point by summing the contributions

from all of the tetrahedral subvolumes within the mesh that happen to contain the given

nodal point. (The nodal control volume is the sum of all of the subvolumes from the

tetrahedrals that contain the node.) Note that the fluxes between adjacent tetrahedral

volumes cancel since the flux is contained within a single nodal control volume, while

identical fluxes through tetrahedral surfaces exposed on the external boundary do not.

15.3 EXAMPLE PROBLEMS

(1) Two-Dimensional Euler Equations, Scramjet Flame Holder Problem

Given:

∂U
∂t

+ ∂Fi

∂xi
= 0

Inlet Boundary Conditions:

� = 1.4, R = 1716
ft2

s2◦R
= 287

m2

s2◦K

M = 2, � = 0.002378
slugs

ft3
= 1.2215

kg

m3

v = 0, p = 2116
lbf

ft2
= 101314.08 Pa

Outlet Boundary Conditions. Supersonic outflow

Initial Conditions. Use inlet boundary conditions as initial conditions for all nodes.

Required: Use FVM via FEM using two step TGM.
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Figure 15.3.1 Solution of Euler equation by FVM-FEM. (a) Geometry and discretization. (b) Density con-

tours. (c) Pressure. (d) Temperature contours. (e) Mach number contours.

Solution Procedure: The two steps given by (15.2.23) and 15.2.24) will be followed.

Here the diffusion terms are zero and the details of the evaluation of convection terms

along the control surfaces are calculated as follows:

Step 1

Un+ 1
2 = Un − �t

2

(
∂Fn

x

∂x
+ ∂Fn

y

∂y

)

or

U
n+ 1

2
e = Un

e − �t
2

∑
CS

(
Fn

xn1 + Fn
yn2

) ��

��e

= 1

4

(
Un

1 + Un
2 + Un

3 + Un
4

)
− �t

4

{[(
Fn

x1 + Fn
x2

)
n1 + (

Fn
y1 + Fn

y2

)
n2

]
��1

+ [(
Fn

x2 + Fn
x3

)
n1 + (

Fn
y2 + Fn

y3

)
n2

]
��2

+ [(
Fn

x3 + Fn
x4

)
n1 + (

Fn
y3 + Fn

y4

)
n2

]
��3

+ [(
Fn

x4 + Fn
x1

)
n1 + (

Fn
y4 + Fn

y1

)
n2

]
��4

}/
��e

Step 2

Un+1 = Un − �t
2

(
∂F

n+ 1
2

x

∂x
+ ∂F

n+ 1
2

y

∂y

)
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Figure 15.3.2 Free convection in cavity solution by FVM with FEM [Darbandi

and Schneider, 1999]. (a) Geometry. (b) Streamlines in the cavity, grid 80 × 80.

(c) Isotherms in the cavity, grid 80 × 80.

or

Un+1
e = Un

e − �t
2

{[(
F

n+ 1
2

xe1 + Fn
xe2

)
n1 +

(
F

n+ 1
2

ye1 + F
n+ 1

2

ye2

)
n2

]
��1

+
[(

F
n+ 1

2

xe2 + F
n+ 1

2

xe3

)
n1 +

(
F

n+ 1
2

ye2 + F
n+ 1

2

ye3

)
n2

]
��2

+
[(

F
n+ 1

2

xe3 + F
n+ 1

2

xe4

)
n1 +

(
F

n+ 1
2

ye3 + F
n+ 1

2

ye4

)
n2

]
��3

+
[(

F
n+ 1

2

xe4 + F
n+ 1

2

xe1

)
n1 +

(
F

n+ 1
2

ye4 + F
n+ 1

2

ye1

)
n2

]
��4

}/
��e

The above procedure was carried out, using the geometry and discretization (2479

nodes) as shown in Figure 15.3.1a. It is seen that shock waves develop at the compression

corner and expansion waves at the expansion corner as expected. This work is a part of
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Figure 15.3.3 Backward facing step with forced convection, solution by FVM with

FEM [Darbandi and Schneider, 1999.] (a) Schematic illustration of the backward

facing step problem. (b) Stream function contours within the first half of the domain,

grid 80 × 20. (c) Isotherms in the first (top) and second (bottom) halves of the

domain.

the homework assignments in one of the CFD classes at the University of Alabama in

Huntsville.

(2) Free Convection in a Cavity

This example is based on the article by Darbandi and Schneider [1999] in which the

finite volume method with fully implicit FEM scheme is used to solve the Navier-Stokes

system of equations. Here, the source terms with the Rayleigh number for gravity are

also included.

In Figure 15.3.2a, the convecting cavity flow geometry and boundary conditions

are shown. Computations using 80 × 80 grid are carried out for Rayleigh numbers

of Ra = 104, 105, and 106. The corresponding results are shown in Figure 15.3.2b and

15.3.2c for the isotherms and streamlines, respectively. Effects of Rayleigh numbers are

clearly shown, with distorted distributions being more prominent for higher Rayleigh

numbers. Further details are found in Darbandi and Schneider [1999].

(3) Backward Facing Step with Forced Convection

Another example reported by the same authors above is the backward facing step

with forced convection (Figure 15.3.3a). Solutions using 80 × 20 grid show stream func-

tion contours and isotherms in Figures 15.3.3b and 15.3.3c, respectively. The advantages

of using FVM with FEM have been demonstrated in this work with further details found

in Darbandi and Schneider [1999].
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Figure 15.3.4 Density and temperature distributions, supersonic hydrogen-air injection flow analysis

using finite volume tetrahedral elements (nonreacting case) with FVM-FDM-FDV [Schunk and

Chung, 2000]. (a) Analysis by FVM with tetrahedral elements of Figure 15.2.5. (b) Density and

temperature contours for nonreacting flowfield.

(4) Three-Dimensional Supersonic Propulsion Injection Flows

This is an example to demonstrate the use of three-dimensional tetrahedral elements

with FVM-FE-FDV as shown in Figure 15.2.5 [Schunk and Chung, 2000]. Pure hydrogen

is injected into a Mach 1.9 airstream at 1495 K (Figure 15.3.4a). The hydrogen is injected

at Mach 2.0 and 251 K. Hydrogen is preburned in the air stream to produce a flow that

contains 28% water along with 48% hydrogen and 24% oxygen. The static pressure of

both the jet and the airstream is 1 atmosphere.

Steady-state density and temperature contours are shown in Figure 15.3.4b for the

nonreacting flow case. It is shown that expansion waves are formed as the air flow is

turned into and mixes with the hydrogen jet. Downstream, oblique shocks are formed

as the main flow is turned back parallel with the free stream.

15.4 SUMMARY

In this chapter, we have shown that the finite volume methods can be formulated using

FEM. This is the counterpart of Chapter 7 where the FDM was used to formulate
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FVM. Although many practitioners use finite volume methods formulated from FDM

or FEM, critical comparisons between the two methods have not been pursued. As has

been the case from the beginning, the purpose of this text is to encourage the reader to

learn all available approaches. It is hoped that in this manner, our knowledge in CFD

will be enhanced to a greater extent in the future.

Most of the computational methods in CFD using FDM and FEM have been dis-

cussed. Undoubtedly, there are some topics that should have been included. Instead,

our intention is to come to an end at this point, review what we have discussed so far,

and seek comparisons and relationships between FDM and FEM. Moreover, there are

computational methods other than FDM, FEM, and FVM. These and other topics will

be presented in the next chapter.
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CHAPTER SIXTEEN

Relationships Between Finite Differences

and Finite Elements and Other Methods

Our explorations on the methods of finite differences and finite elements have come

to an end. In Chapter 1, it was intended that the reader recognize the analogy between

these two methods in one dimension. In fact, such an analogy exists for linear problems

in all multidimensional geometries as long as the grid configurations are structured. In

structured grids, with adjustments of the temporal parameters in generalized Galerkin

methods and both temporal and convection diffusion parameters in generalized Petrov-

Galerkin methods, the analogy between finite difference methods (FDM) and finite

element methods (FEM) can be shown to exist also.

Traditionally, FEM equations are developed in unstructured grids as well as in struc-

tured grids. The FEM equations written in unstructured grids have global nodes irregu-

larly connected around the entire domain, thus resulting in a large sparse matrix system,

but the data management can be handled efficiently by using the element-by-element

(EBS) assembly as discussed in Sections 10.3.2 and 11.5. FDM equations cannot be

written in unstructured grids unless through FVM formulations. Thus, the FDM equa-

tions written only in structured grids cannot be directly compared with FEM equations

written in general unstructured grids. Thus, the notion of FEM being more compli-

cated, requiring more computer time than FDM, is an unfortunate comparison. For fair

comparisons, FEM equations must be written in structured grids as in FDM.

In unstructured adaptive methods (Chapter 19), our assessments as to the merits

and demerits of FDM versus FEM will be faced with a new challenge. This is because

adaptive methods are instrumental in resolving many problems of numerical difficulties

such as in shock waves and turbulence, making the fair comparison between FDM and

FEM difficult.

Additionally, there are special numerical schemes in which both FDM and FEM

are involved such as in DGM (discontinuous Galerkin methods, Section 13.5), FVM

via FDM (Chapter 7), and FVM via FEM (Chapter 15). The most logical and simple

comparison between FDM and FEM can be made in the flowfield-dependent variation

(FDV) methods in which FDM (Section 6.5) and FEM (Section 13.6) contribute only

through their unique discretization schemes, because all the physics required are already

contained in the FDV equations. Indeed, it was demonstrated in Sections 6.8 and 13.7

that the choice between FDM and FEM is inconsequential if FDV equations are used.

Although the analogy between FDM and FEM is well understood, we must re-

cognize some differences. One of the most significant differences between these two

519
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methodologies is the variational (or weak) formulation employed in FEM, not only

for the governing equations but also for all constraint conditions particularly useful for

solution stability and accuracy. Any number of variational constraint conditions can be

introduced and simply added to the variational forms of the governing equations. This

subject was covered in Chapters 11 through 14.

Thus, in this chapter, we are first concerned with analogies between FDM and FEM,

with finite element equations written only in structured grids. We begin with simple

elliptic, parabolic, and hyperbolic equations, followed by non-linear, multidimensional,

and unstructured grid systems.

Historically, many methods other than FDM, FEM, and FVM have been devel-

oped, which are efficient for certain types of problems in physics and engineering.

They include boundary element methods (BEM), coupled Eulerian-Lagrangian (CEL)

methods, particle-in-cell (PIC) methods, and Monte Carlo methods (MCM), among oth-

ers. For the sake of completeness, these methods will be briefly discussed in this chapter.

16.1 SIMPLE COMPARISONS BETWEEN FDM AND FEM

(1) Elliptic Equations

Consider an elliptic equation of the form

∂2u
∂x2

+ ∂2u
∂y2

= 0 (16.1.1)

Using the four linear triangular elements, arranged in structured grids as shown Figure

16.1.1a, the assembled 5 × 5 finite element equations via SGM (Section 10.1) provide

the global equation at nodes corresponding to (16.1.1) as follows:

u4 − 2u5 + u2

�x2
+ u1 − 2u5 + u3

�y2
= 0 (16.1.2)

This is identical to the five-point FDM equation written for the case of Figure 16.1.1b.

Similarly, it can be shown that the finite element equation for either eight linear

triangular elements or four linear rectangular elements written at node 5 (Figure 16.1.1c)

is identical to the nine-point FDM formula (Figure 16.1.1d) as follows:

u1 + u3 + u7 + u9 − 2(�x2 − 5�y2)

�x2 + �y2
(u4 + u6)

+ 2(5�x2 − �y2)

�x2 + �y2
(u2 − u8) − 20u5 = 0 (16.1.3)

The solution of these equations may be carried out using the procedure of FDM

such as Jacobi iteration method, point Gauss-Seidel iteration, line Gauss-Seidel itera-

tion, point successive over-relaxation, line successive relaxation, or alternating direction

implicit (ADI) method, as discussed in Chapter 4.

(2) Parabolic Equations

A typical parabolic equation is given by

∂u
∂t

− �
∂2u
∂x2

= 0 (16.1.4)



16.1 SIMPLE COMPARISONS BETWEEN FDM AND FEM 521

3 

6 

9 

1 2 

7 

4 
5 

8 

3 

6 

9 

1 2 

7 

4 
5 

8 

Δy 

Δy 

Δx Δx 3 6 9 

1 

2 

7 4 

5 
8 

Δx Δx 

Δy 

Δy 

3 

1 

2 
5 

4 

Δx Δx 

Δy 

Δy 

3 

1 

2 4 

Δx  Δx 

(a) (b)

(c) (d)

5 

Figure 16.1.1 Analogy between FEM and FDM. (a) 4 × 4 finite element equations. (b) 5-point finite

difference equations. (c) 9 × 9 finite element equations. (d) 9-point finite difference equations.

The finite element equations using GGM (Section 10.2) with linear approximations are

of the form

(A�� + ��t K��)un+1
� = [A�� + (1 − �)�t K��] un

�

where the Neumann boundary conditions are assumed to vanish. The local element

stiffness matrix and lumped mass matrix are, respectively,

K(e)
NM = 1

�x

[
1 −1

−1 1

]

A(e)
NM = �x

2

[
1 0

0 1

]

Here, the lumped mass matrix is used instead of the consistent mass matrix in order to

arrive at the results identical to the finite difference equations.

Assembly of two equal elements with three nodes leads to the global finite element

equation for the center node i in terms of the end nodes i − 1 and i + 1, with � = 0:

un+1
i = un

i + d
(
un

i+1 − 2un
i + un

i−1

)
(16.1.5)

This is an explicit scheme known as FTCS finite difference formula.
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The Crank-Nicolson scheme, a well-known implicit scheme is obtained with � = 1/2,

un+1
i = un

i + ��t
2�x2

[(
u

n+ 1
2

i+1 − 2u
n+ 1

2

i + u
n+ 1

2

i−1

)
+ (

un
i+1 − 2un

i + un
i−1

)]
(16.1.6)

It is now obvious that with appropriate choices of �(0 ≤ � ≤ 1) many other FDM

formulas can be derived. Therefore, the solution procedures as used in FDM such as

DuFort-Frankel, Laasonen, �-method, fractional step methods, or ADI methods arise,

which were discussed in Section 4.2.

(3) Hyperbolic Equations

For illustration, let us examine the first order hyperbolic equation of the form

∂u
∂t

+ a
∂u
∂x

= 0 (16.1.7)

Recall that SGM and GGM were used to deal with elliptic equations and parabolic

equations, respectively. For hyperbolic equations, however, we must invoke a convection

test function in addition to the standard test function to cope with possible physical

discontinuities. In this case, we resort to GPG (Section 11.3) and write∫ 1

0

W(�)

[∫
��

(
∂u
∂t

+ a
∂u
∂x

)
dx +

∫
��

(
a

∂u
∂x

)
dx

]
d� = 0 (16.1.8)

or

[A�� + ��t(B�� + C��)]un+1
� = [A�� − (1 − �)�t(B�� + C��)]un

� (16.1.9)

For two elements with three nodes with lumped mass, we obtain⎧⎨
⎩�x

2

⎡
⎣1 0 0

0 2 0

0 0 1

⎤
⎦ + ��ta

2

⎡
⎣−1 1 0

−1 0 1

0 −1 1

⎤
⎦ + ��ta�

⎡
⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤
⎦

⎫⎬
⎭

⎡
⎣ u1

u2

u3

⎤
⎦

n+1

=
⎧⎨
⎩�x

2

⎡
⎣ 1 0 0

0 2 0

0 0 1

⎤
⎦ − (1 − �)

�ta
2

⎡
⎣−1 1 0

−1 0 1

0 −1 1

⎤
⎦

+ (1 − �)�ta�

⎡
⎣ 1 −1 0

−1 2 −1

0 −1 1

⎤
⎦

⎫⎬
⎭

⎡
⎣ u1

u2

u3

⎤
⎦

n

Expanding at node 2 or i in terms of i − 1 and i + 1 nodes, we have

un+1
i + �

�ta
�x

[(
1

2
− �

)
ui+1 + 2�ui −

(
1

2
+ �

)
ui−1

]n+1

= un
i − (1 − �)

�ta
�x

[(
1

2
− �

)
ui+1 + 2�ui −

(
1

2
+ �

)
ui−1

]n

(16.1.10)

With appropriate choices of the temporal parameter �(0 ≤ � ≤ 1) and the convec-

tion parameter �(a ≤ � ≤ b) with a and b satisfying both the stability and accuracy

criteria (11.3.20, 11.3.22), we arrive at various finite difference schemes.
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With � = 0 and � = 1/2 we obtain the FTBS scheme,

un+1
i − un

i

�t
= −a

(
un

i − un
i−1

)
�x

(16.1.11)

To demonstrate that the Lax-Wendroff scheme can be derived, we begin with the Taylor

Series expansion of ( 16.1.7) in the form

un+1
i = un

i − a�t
∂u
∂x

+ (a�t)2

2

∂2u
∂x2

(16.1.12)

or the equivalent partial differential equation,

∂u
∂t

= −a
∂u
∂x

+ a2�t
2

∂2u
∂x2

(16.1.13)

The GPG formulation of (16.1.13) leads to∫
��

(
∂u
∂t

+ a
∂u
∂x

− a2�t
2

∂2u
∂x2

)
dx +

∫
��

(
a

∂u
∂x

)
dx = 0 (16.1.14)

Integrating by parts and rearranging, we obtain

un+1
i + �

�ta
�x

[(
1

2
− �

)
ui+1 + 2�ui −

(
1

2
+ �

)
ui−1

]n+1

− �a2 �t
2�x2

(ui+1 − 2�ui + ui−1)n+1 = un
i − (1 − �)

�ta
�x

[(
1

2
− �

)
ui+1

+ 2�ui −
(

1

2
+ �

)
ui−1

]n

+ a2 �t
2�x2

(ui+1 − 2�ui + ui−1)n (16.1.15)

For � = 0 and � = 0, (16.1.15) becomes

un+1
i = un

i − a�t
2�x

(
un

i+1 − un
i−1

) + (a�t)2

2�x2

(
un

i+1 − 2un
i − un

i−1

)
(16.1.16)

This is identical to the explicit Lax-Wendroff scheme presented in (4.3.15).

Implicit schemes such as Euler FTCS and Crank-Nicolson are generated as follows:

Euler FTCS (� = 1 and � = 0)

un+1
i − un

i

�t
= −a

(
un+1

i+1 − un+1
i−1

)
2�x

(16.1.17)

Crank-Nicolson (� = 1/2 and � = 0)

un+1
i − un

i

�t
= −a

2

[(
un+1

i+1 − un+1
i−1

)
2�x

+
(
un

i+1 − un
i−1

)
2�x

]
(16.1.18)

Obviously, many other difference schemes can be derived using the unlimited rages

of � and � through the GPG formulations. Once the finite element equations are ob-

tained in the form analogous to finite difference equations, then the FDM solution

procedure can be followed as long as structured grid configurations are used.
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16.2 RELATIONSHIPS BETWEEN FDM AND FDV

It was suggested in Section 6.5 that almost all existing FDM schemes can arise from the

FDV scheme. We examine the analogies of FDV to some of the FDM schemes in this

section.

Referring to (6.5.13 or 13.6.2) with the source terms neglected, we write{
I + �t (s1ai + s3bi )

∂

∂xi
+

[
�ts3ci j − �t2

2
s2(ai a j + bi a j )

− �t2

2
s4(ai b j + bi b j )

]
∂2

∂xi∂xj

}
�Un+1 = − �t

2

(
∂Fn

i

∂xi
+ ∂Gn

i

∂xi

)

+ �t2

2
(ai + bi )

∂

∂xi

(
∂Fn

j

∂xj
+ ∂Gn

j

∂xj

)
(16.2.1)

where the Jacobians ai , bi , ci j , are flowfield dependent, but held constant within a dis-

crete numerical integration time and updated for each successive time step. Here,

(16.2.1) is regarded as the most general form which may be reduced to other CFD

schemes in FDM and FEM.

(1) Beam-Warming Scheme

To show that a simplified special case of (16.2.1) resembles one of the most popular

FDM schemes, let us express the Beam-Warming [1978] method using the notation of

FDV,{
I + ��t

1 + �

[
∂

∂xi
(ai + bi ) + ∂2ci j

∂xi∂xj

]}
�Un+1

= �t
1 + �

(
∂Fn

i

∂xi
+ ∂Gn

i

∂xi

)
+ ��t

1 + �

∂Gn
i

∂xi
+ �

1 + �
�Un (16.2.2)

with 0 ≤ (�, �) ≤ 1. It is seen that the analogy of FDV to the Beam-Warming scheme is

readily evident, although the main difference is that the parameters � and � are chosen

arbitrarily instead of being flowfield-dependent.

In general, the FDV scheme can be written in the form (6.5.14 or 13.6.9),(
I + En

i
∂

∂xi
+ En

i j
∂2

∂xi∂xj

)
�Un+1 = −Qn (16.2.3)

The Beam-Warming scheme and other related schemes such as Euler explicit, Euler

implicit, three-point implicit, trapezoidal implicit, and leapfrog explicit schemes are

summarized in Table 16.2.1.

Other schemes of FDM are compared with FDV as follows:

(2) Lax-Wendroff Scheme

The Lax-Wendroff scheme without artificial viscosity takes the form

�Un+1
i = − �t

�x

(
Fi+ 1

2
− Fi− 1

2

) − �t2

2�x2

[
ai+ 1

2
Fi+1 − (

ai+ 1
2
− ai− 1

2

)
Fi + ai− 1

2
Fi−1

]
(16.2.4)
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Table 16.2.1 Comparison of FDV with Beam-Warming and Related Schemes

s1 s3 E I E i j Q n Truncation Error

Beam-Warming [1]
�

1 + �

�

1 + �

��t
1 + �

(ai + bi )
��t

1 + �
ci j

�t
1 + �

Wn + �

1 + �
�Un O

[(
� − 1

2
− �

)
�t2, �t3

]
Euler explicit 0 0 * * * O(�t2)

Euler implicit 1 1 * * * O(�t2)

Three-point implicit 2/3 2/3 * * * O(�t3)

Trapezoidal implicit 1/2 1/2 * * * O(�t3)

Leap frog explicit 0 0 * * * O(�t3)

∗ Not applicable

This scheme arises if we set in FDV,

ai+ 1
2

= ai− 1
2

= a, s1 = 0, s2 = 0, s3 = 0, s4 = 0

(3) Lax-Wendroff Scheme with Viscosity

The Lax-Wendroff scheme with artificial viscosity is given by

�Un+1
i = − �t

�x

(
F

i+ 1
2

− F
i− 1

2

)
(16.2.5)

with

F
i+ 1

2

= Fi+1 + Fi

2
− �t

2�x
ai+ 1

2
(Fi+1 − Fi ) + Di+ 1

2
(Ui+1 − Ui )

F
i− 1

2

= Fi + Fi−1

2
− �t

2�x
ai− 1

2
(Fi − Fi−1) + Di− 1

2
(Ui − Ui−1)

This scheme arises if we set

Di+ 1
2

= Di− 1
2

= as1, s2 = 0, s3 = 0, s4 = 0

This implies that the artificial viscosity is proportional to the FDV parameter s1, but

here it is manually implemented in the Lax-Wendroff scheme.

(4) Explicit MacCormack Scheme

Combining the predictor corrector steps of the MacCormack scheme, we write

�Un+1
i = − �t

�x

(
Fn

i+1 − Fn
i

) − �t
�x

(F∗
i − F∗

i−1) + Di

= − �t
�x

(
Fn

i+1 − Fn
i

) − �t
�x

(
Fi+ 1

2
− Fi− 1

2

)
− �t2

�x2

[
ai+ 1

2
Fi+1 − (

ai+ 1
2
+ ai− 1

2

)
Fi + ai− 1

2
Fi−1

] + Di (16.2.6)
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The FDV becomes identical to this scheme with the following adjustments:

ai+ 1
2

= ai− 1
2

= a

Fn
i − Fn

i−1 = Fn
i+1 − Fn

i + Fi+ 1
2
− Fi− 1

2

s1 = 0, s2 = 0, s3 = 0, s4 = 0

and the s2 term in the FDV method is equivalent to

Di = �

8

(
Un

i+ 1
2

− 4Un
i+1 + 6Un

i − 4Un
i−1 + Un

i−2

)
This again is a manifestation that shows the equivalent of the s2 terms is manually

supplied in the MacCormack method.

(5) First Order Upwind Scheme

This scheme is written as

�Un+1
i = − �t

�x

(
F∗

i+ 1
2

− F∗
i− 1

2

)
= − �t

�x

{[
1

2

(
Fn

i + Fn
i+1

) − 1

2
|a|(Un

i+1 − Un
i

)]

−
[

1

2

(
Fn

i + Fn
i−1

) − 1

2
|a|(Un

i − Un
i−1

)]}
(16.2.7)

The FDM analogy is obtained by setting

Fn
i = 1

2
Fn

i+1, Fn
i−1 = 1

2
Fn

i−1

s2aC
(
�Un+1

i − 2�Un+1
i−1 + �Un+1

i−2

) = |a|(Un
i+1 − Un

i−1

)
where C is the Courant number.

(6) Implicit MacCormack Scheme

With all second order derivatives removed from (16.2.1), we obtain the implicit

MacCormack scheme by setting s1 = 1, s2 = 0, s3 = 0, s4 = 0. However, it is necessary

to divide the process into the predictor and corrector steps. Once again the flowfield-

dependent variation parameters for FDV will allow the computation to be performed

in a single step.

(7) TVD Scheme

Another example is the analogy of FDV-FDM to the FDM-TVD scheme. To see

this, we write (6.5.13) in one dimension using linear trial and test functions with all

Neumann boundary conditions neglected.

1

6�t

(
�Un+1

i+1 + 4�Un+1
i + �Un+1

i−1

) = 1

2�x
(s1a + s3b)

(
�Un+1

i+1 − �Un+1
i−1

)
+ 1

2�x2
{2s3c − �t[s2(a2 + ab) + s4(ba + b2)]}(�Un+1

i+1 − 2�Un+1
i + �Un+1

i−1

)
+ 1

2�x

(
Fn

i+1 − Fn
i−1 + Gn

i+1 − Gn
i−1

) − �t
2�x2

(a + b)

× (
Fn

i+1 − 2Fn
i + Fn

i−1 + Gn
i+1 − 2Gn

i + Gn
i−1

)
(16.2.8)
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Neglecting all diffusion terms, adopting a lumped mass system, and moving one nodal

point upstream, we have

�Un+1
i

�t
= s1a

�x

(
�Un+1

i − �Un+1
i−1

) − s2a2�t
2�x2

(
�Un+1

i − 2�Un+1
i−1 + �Un+1

i−2

)
+ 1

�x

(
Fn

i − Fn
i−1

) − a�t
2�x2

(
Fn

i − 2Fn
i−1 + Fn

i−2

)
(16.2.9)

The FDM-TVD for the 1-D Euler equation is written as

d Ui

dt
= − a+

�x

[
(Ui − Ui−1) + 1

2
�+

i− 1
2

(Ui − Ui−1) − 1

2
�+

i− 3
2

(Ui−1 − Ui−2)

]

− a−

�x

[
(Ui+1 − Ui ) + 1

2
�−

i+ 1
2

(Ui+1 − Ui ) − 1

2
�−

i+ 3
2

(Ui+2 − Ui+1)

]
(16.2.10)

with

a+ = max(0,a) = 1

2
(a + |a|)

a− = min(0,a) = 1

2
(a − |a|)

Introducing variation parameter s for the time derivative on the right-hand side of

(16.2.10) the form

Ui = Un
i + s�Un+1

i (16.2.11)

Substituting (16.2.11) into (16.2.10) and assuming that

a− = 0, a+ = a, �+
i− 1

2

= �+
i− 3

2

= �

we obtain

�Un+1
i

�t
= sa

2�x

(
�Un+1

i − �Un+1
i−1

) − s�a�x
2�x2

(
�Un+1

i − 2�Un+1
i−1 + �Un+1

i−2

)
− 1

�x

(
Fn

i − Fn
i−1

) − ��x
2�x2

(
Fn

i − 2Fn
i−1 + Fn

i−2

)
(16.2.12)

Comparing (16.2.9) and (16.2.12) reveals that, with

s1 = − s
2
, s2 = s�x�

a�t

and −1 for the coefficient of (Fn
i − Fn

i−1) term, we note that the FDV-FDM formulation

and FDM-TVD scheme are analogous; in fact, they are identical under the assumptions

made above. The variation parameters s1 and s2 in the FDV-FEM scheme play the

role of TVD limiters, �. However, the implicitness parameters s3 and s4, beyond the

concept of TVD scheme, together with s1 and s2, are expected to govern complex

physical phenomena such as turbulent boundary layer interactions with shock waves,
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finite rate chemistry [with s5 and s6 (13.6.5a,b)], widely disparate length and time scales,

compressibility effects in high Mach number flows, etc.

(8) PISO and SIMPLE

The basic idea of PISO and SIMPLE is analogous to FDV-FEM in that the pres-

sure correction process is a separate step in PISO or SIMPLE, whereas the concept

of pressure correction is implicitly embedded in FDV-FEM by updating the variation

parameters based on the upstream and downstream Mach numbers and Reynolds num-

bers within an element.

The elliptic nature of the pressure Poisson equation in the pressure correction pro-

cess resembles the terms embedded in the B��rs terms in (13.6.22). Specifically, examine

the s2 terms involving airqa jsq and birqa jsq and s4 term involving airqbjsq. All of these

terms are multiplied by ��,i��, j which provide dissipation against any pressure oscil-

lations. Question: Exactly when is such dissipation action needed? This is where the

importance of FDV variation parameters based on flowfield parameters comes in. As

the Mach number becomes very small (incompressibility effects dominate) the variation

parameters s2 and s4 calculated from the current flowfield will be indicative of pressure

correction required. Notice that a delicate balance between Mach number (s2 is Mach

number dependent) and Reynolds number or Peclet number (s4 is Reynolds number

or Peclet number dependent) is a crucial factor in achieving convergent and stable so-

lutions. Of course, on the other hand, high Mach number flows are also dependent on

these variation parameters. In this case all variation parameters, s1, s2, s3, s4 will play

important roles.

16.3 RELATIONSHIPS BETWEEN FEM AND FDV

(1) Taylor-Galerkin Methods (TGM) with Convection and Diffusion Jacobians

Earlier developments for the solution of Navier-Stokes system of equations were

based on TGM without using the variation parameters. They can be shown to be special

cases of FDV-FEM.

In terms of the both the diffusion Jacobian and the diffusion gradient Jacobian, we

write

∂Gi

∂t
= bi

∂U
∂t

+ ci j
∂V j

∂t

with

bi = ∂Gi

∂U
, ci j = ∂Gi

∂V j
, V j = ∂U

∂xj

Thus, it follows from (13.6.2) with s1 = s3 = s4 = s5 = s6 = 0 and s2 = 1 that

�Un+1 = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

∂

∂t

(
−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n+1

+ O(�t3)

(16.3.1)

Using the definitions of convection, diffusion, and diffusion rate Jacobians discussed

in Section 13.6, the temporal rates of change of the convection and diffusion variables
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may be written as follows:

∂Fn
i

∂t
=

(
ai

∂U
∂t

)n

=
[

ai

(
−∂F j

∂xj
− ∂G j

∂xj
+ B

)]n

∂Fn+1
i

∂t
= ai

[(
−a j

∂

∂xj
(Un+1 − Un) − ∂Fn

j

∂xj
− ∂Gn+1

j

∂xj
+ Bn+1

)]
(16.3.2)

∂Gn+1
i

∂t
=

(
bi

∂U
∂t

)n+1

+
[

ci j
∂

∂t

(
∂U
∂xj

)]n+1

or

∂Gn+1
i

∂t
=

(
bi − ∂ci j

∂xj

)
�U
�t

n+1

+ ∂

∂xj

(
ci j

�U
�t

)n+1

(16.3.3)

Substituting (16.3.2) and (16.3.3) into (16.3.1) yields

�Un+1 = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

{
∂

∂xi

[
−ai

(
−a j

∂�Un+1

∂xj
− ∂Fn

j

∂xj
− ∂Gn+1

j

∂xj
+ Bn+1

)

+
(

ei + ∂ci j

∂xj

)
�U
�t

n+1

+ ∂Bn+1

∂t

]}
(16.3.4)

Assuming that

ei = bi − ∂ci j

∂xj

∼= 0

and neglecting the spatial and temporal derivatives of B, we rewrite (16.3.4) in the form{
1 − �t2

2

∂

∂xi

(
ai a j − ci j

�t

)
∂

∂xj

}
�Un+1 = Hn

(16.3.5)

Hn = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

) n

+ �t2

2

∂

∂xi

(
ai

∂F j

∂xj

)n

Here the second derivatives of Gi are neglected and all Jacobians are assumed to remain
constant within an incremental time step but updated at subsequent time steps.

Applying the Galerkin finite element formulation, we have an implicit scheme,

(A���rs + B��rs) �Un+1
�s = Hn

�r + Nn+1
�r + Nn

�r (16.3.6)

where

B��rs = �t2

2

∫
�

[(
airqa jsq − ci jrs

�t

)
��,i��, j

]
d�

Hn
�r = �t

∫
�

[
��,i��

(
Fn

�ir + Gn
�ir

) + ����Bn
�r − �t

2
airs��,i��, j Fn

� js

]
d�

Nn+1
�r = �t2

2

∫
�

(
airqa jsq − ci jrs

�t

)
∗
� ��Un+1

s, j ni d�

Nn
�r = −

∫
�

[
�t

∗
��

(
Fn

ir + Gn
ir

) − �t2

2
airs

∗
� �Fn

js, j

]
ni d�
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Here we note that the algorithm given by (16.3.6) results from (13.6.20) in FDV by

setting s1 = s3 = s4 = 0, s2 = 1, birqa jsq = ci jrs/�t , and neglecting the terms with bjrs

and derivatives of Gi and B, the form identical to that introduced in Section 13.2.1.

(2) Taylor Galerkin Methods (TGM) with Convection Jacobians

Diffusion Jacobians may be neglected if their influence is negligible. In this case

the Taylor-Galerkin finite element analog may be derived using only the convective

Jacobian from the Taylor series expansion,

Un+1 = Un + �t
∂Un

∂t
+ �t2

2

∂2Un

∂t2
+ O(�t3) (16.3.7)

where

∂U
∂t

= −∂Fi

∂xi
− ∂Gi

∂xi
+ B = −ai

∂U
∂xi

− ∂Gi

∂xi
+ B (16.3.8)

∂2U
∂t2

= − ∂

∂t

(
ai

∂U
∂xi

+ ∂Gi

∂xi
− B

)
or

∂2U
∂t2

= ∂

∂xj

(
ai a j

∂U
∂xi

)
+ ∂

∂xi

(
ai

∂G j

∂xj

)
− ∂

∂xi
(ai B) + ∂B

∂t
(16.3.9)

Substituting (16.3.8) and (16.3.9) into (16.3.7), we obtain

�Un+1 = �t
{
−∂Fi

∂xi
− ∂Gi

∂xi
+ B + �t

2

[
∂

∂xj

(
ai a j

∂U
∂xi

)

+ ∂2(ai G j )

∂xi∂xj
+ ∂

∂xi
(ai B) + ∂B

∂t

]}n

(16.3.10a)

Expanding ∂F j/∂t at (n + 1) time step

∂Fn+1
i

∂t
=

[
ai

(
−∂F j

∂xj
− ∂G j

∂xj
+ B

)]n+1

= an+1
i

[
−a j

∂�Un+1

∂xj
− ∂Fn

j

∂xj
− ∂Gn+1

j

∂xj
+ Bn+1

]

and substituting the above into (16.3.7–16.3.9), we arrive at �Un+1 in a form different

from (16.3.10a):

�Un+1 = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

{
∂

∂xi

(
ai a j

∂�Un+1

∂xj
+ ai

∂Fn
j

∂xj

)

+ ∂2(ai G j )
n+1

∂xi∂xj
+ ∂

∂xi
(ai B)n+1 + ∂Bn+1

∂t

}
(16.3.10b)

Hn =
[

1 − �t2

2

∂

∂xi

(
ai a j − ci j

�t

)
∂

∂xj

]
�Un+1 (16.3.10c)

Hn = �t
(

−∂Fi

∂xi
− ∂Gi

∂xi
+ B

)n

+ �t2

2

∂

∂xi

(
ai

∂F j

∂xj

)n

where second derivatives of Gi are assumed to be negligible and B is constant in space
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and time, arriving at an implicit finite element scheme,

(A���rs + B��rs) �Un+1
�s = Hn

�r + Nn+1
�r + Nn

�r (16.3.11)

where

A�� =
∫

�

����d�

B��rs = �t2

2

∫
�

[(
airqa jsq − ci jrs

�t

)
��,i��, j

]
d�

Hn
�r = �t

∫
�

[
��,i��

(
Fn

�ir + Gn
�ir

) − ����Bn
�r − �t2

2
airs��,i��, j Fn

� js

]
d�

Nn+1
�r = �t2

2

∫
�

(
airqa jsq − ci jrs

�t

)
∗
� ��Un+1

s, j ni d�

Nn
�r = −

∫
�

[
�t

∗
� �

(
Fn

ir + Gn
ir

) − �t2

2
airs

∗
� �Fn

js, j

]
ni d�

It should be noted that the form (16.3.10c) arises from (13.6.20) in FDV with s1 = s3 =
s4 = bj = 0 and s2 = 1, an algorithm similar to TGM introduced in Section 13.2.1.

(3) Generalized Petrov-Galerkin

The Generalized Petrov-Galerkin (GPG) method can be identified in FDV by setting

s1 = s2 = 1, s3 = s4 = 0, bi = ci j = d = 0, Qn = 0, Ei = ai , and Ei j = 1
2
�t2ai a j , so that

(13.6.20) takes the form

�U
�t

+ ai
∂�U
∂xi

− �t
2

ai a j
∂2�U
∂xi∂xj

= 0 (16.3.12)

For the steady-state nonincremental form in 1-D, we write (16.3.12) in the form

a
∂u
∂x

− �t
a2

2

∂2u
∂x2

= 0 (16.3.13)

Taking the Galerkin integral of (16.3.13) leads to∫
�

(e)
N

(
a

∂u
∂x

− �t
a2

2

∂2u
∂x2

)
dx = 0,

∫
W(e)

N a
∂u
∂x

dx = 0 (16.3.14)

for vanishing Neumann boundaries. Here W(e)
N is the Petrov-Galerkin test function,

W(e)
N = �

(e)
N + �h

∂�
(e)
N

∂x
(16.3.15)

with � = C/2 and C = a�t/�x being the Courant number.

For isoparametric coordinates in two dimensions, the Petrov-Galerkin test function

assumes the form

W(e)
N = �

(e)
N + �gi

∂�
(e)
N

∂x
(16.3.16)
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with

� = 1

4
(�� h� + ��h�)

�� = coth

(
R�

2

)
− 2

R�
, �� = coth

(
R�

2

)
− 2

R�

gi = vi√
v j v j

where R� is the Reynolds number or Peclet number in the direction of isoparametric

coordinates (�, �). Note that the GPG process given by (16.3.12)–(16.3.16) leads to the

streamline upwinding Petrov-Galerkin (SUPG) scheme as a special case, thus leading

to the analogy between FDV and GPG.

16.4 OTHER METHODS

We have examined in the previous chapters most of the currently available CFD meth-

ods. Throughout this text, it was intended that the reader be given adequate informa-

tion so that he/she could make a final decision to choose the most suitable method for

the problem at hand. Though biases or preferences in choosing CFD methods are often

common among practitioners, this text may still serve as a guide and possibly toward

re-orientation. It was shown that FVM can be formulated from either FDM or FEM.

The FDV methods discussed in Chapters 6 and 13 as well as other methods are expected

to meet these challenges. In particular, the ability of FDV methods to generate other

prominent CFD schemes has been demonstrated. In the past, numerical methods other

than those presented in the previous chapters have been used also. Among them are

the boundary element methods (BEM), coupled Eulerian-Lagrangian (ECL) methods,

particle-in-cell (PIC) methods, and Monte Carlo methods (MCM). The detailed cov-

erage of these topics is beyond the scope of this book; but, for the sake of historical

perspectives, we shall briefly review them next.

16.4.1 BOUNDARY ELEMENT METHODS

The boundary element methods (BEM) are based on boundary integral equations in

which only the boundaries of a region are used to obtain apparoximate solutions. In-

terpolation functions for the surface behavior are coupled with the solutions to the

governing equations which apply over the domain. The resulting equations are solved

numerically for values on the boundary alone, and values at interior points are calcu-

lated subsequently from the surface data.

It is thus clear that fewer equations are involved in the solution by the BEM. On

the other hand, it is required that the governing equations be linear but this can be

overcome by linearization through Kirchhoff transformation [Brebbia, 1978; Brebbia,

Telles, and Wrobel, 1983].

Green’s Function and Boundary Integral Equation

To illustrate, let us consider the Laplace equation,

∇2	 = 0 (16.4.1)
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Observation
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Figure 16.4.1 Location of source and field points.

Assume a weighting function 
 and the weighted residual integral of (16.4.1) such that∫
�


 ∇2	d� = 0 (16.4.2)

Integrating this by parts twice,∫
�

(
 ∇2	 − 	∇2
 )d� =
∫

�

[
 (n · ∇	) − 	(n · ∇
 )]d� (16.4.3)

It follows from (16.4.1) and (16.4.2) that∫
�

	∇2
 d� =
∫

�

(
	

∂


∂n
− 


∂	

∂n

)
d� = 0 (16.4.4)

which is known as the Green’s identity. Here, the weighting function 
 is denoted as
the Green’s function, G(x′|x), which is assumed to be the solution of

∇2G(x′|x) = �(x′ − x) (16.4.5)

where �(x′ − x) is the Dirac delta function with x and x′ being the source point and the
observation point, respectively, such that (Figure 16.4.1)∫

�

	(x)�(x′ − x)d� = 	(x′) (16.4.6)

For a polar coordinate system (r, �), it can easily be shown that the solution of (16.4.5)
is of the form

G = 1

2�
ln r (16.4.7)

or, for a three-dimensional domain,

G = 1

4�r
(16.4.8)

The fundamental solutions for other types of partial differential equations are as

follows:

Helmholtz Equations

∇2G + k2G = �(x′ − x) (16.4.9)

G = 1

4�

eikr

r
for 3-D
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Diffusion Equations

∂G
∂t

− a∇2	 = �(x′ − x)�(t ′ − t) (16.4.10)

G = 1

(4�a�)d/2
exp

(
− r2

4��

)

where � = t ′ − t and d denotes the spatial dimension. The fundamental solution repre-

sents the effect of the unit point source applied at the observation point x′ on the source

point x in an infinite region.

To illustrate applications, consider the governing equation for an unsteady heat

conduction problem:

∂T
∂t

− aT,i i − Q
c

= 0 (16.4.11)

subject to boundary conditions

T = T1 on �1

−kT,i ni = q2 on �2

−kT,i ni = �(T3 − T′) on �3

Recast (16.4.11) in terms of Green’s identity and integrate with respect to time,

�T =
∫ t ′

0

∫
�

(aT,i ni − aTG,i ni )d�dt +
∫ t ′

0

∫
�

Q
c

Gd�dt +
∫

�

TG

∣∣∣∣
t=0

(16.4.12)

Introducing the interpolation functions in the form,

T = ��T�

q = ��q�

and rewriting (16.4.12) using the above approximations, we obtain

A(n+1)
�� T (n+1)

� = F (n)
� (16.4.13)

where

Fn
� = B(n+1)

�� q (n+1)
� + A(n)

��T(n)
� + B(n)

�� q(n)
� + C(�)

� + C�
�

A(n+1)
�� = 1

2
��� − A∗

�� for smooth boundary

A∗
�� = −

∫ t ′

0

[∫
�2

a(G,i ni )���d� −
∫

�3

a(G,i ni )���d�

]
dt

B�� =
∫ t

0

∫
�1

a(G)���d�

C(�)
� =

∫ t ′

0

[∫
�2

−q�2

c
(G)�d� −

∫
�3

�

c

(
T�3

− T′)d�

]
dt +

∫ t ′

0

∫
�

(G)�
1

c
�� Q�d�dt

C(�)
� =

∫
�

(G)���T�d�|t=0
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Since the algebraic equations given by (16.4.13) are linear, the solution involves a simple

marching in time until desired time is reached.

16.4.2 COUPLED EULERIAN-LAGRANGIAN METHODS

It should be pointed out that all methods introduced in the previous chapters are based

on the Eulerian coordinates in which computational nodes are fixed in space and all

variables are calculated at these fixed nodes. In some instances in reality, however, it is of

interest to compute variables in the Lagrangian coordinates where the mesh points are

allowed to move along with the fluid particles. Furthermore, it is often convenient to have

both Eulerian and Lagrangian coordinates coupled, known as the coupled Eulerian-

Lagrangian (CEL) methods, useful in highly distorted flows or multiphase flows. Precise

mathematical representations and treatments of Eulerian and Lagrangian coordinates

are presented in Chung [1996].

The CEL methods were first developed by Noh [1964]. The basic idea is that the

boundary � of the region � given by

� =
n⋃

i=1

�i

and the curves Di which separate the subregions �i are to be approximated by time-

dependent Lagrangian lines Li (t). A subregion Ri which is approximated by the time-

independent Eulerian mesh E will consequently have its boundary �i prescribed by

the Lagrangian calculations. Thus, the Eulerian calculation reduces to a calculation on

a fixed mesh having a prescribed moving boundary and therefore contributes one of the

central calculations in the CEL methods. The calculations that are made at each time

step are divided into three main parts: Lagrange calculations, Eulerian calculations, and

a calculation that couples the Eulerian and Lagrangian regions by defining that part of

the Eulerian mesh which is active and by determining the pressures from the Eulerian

region which act on the Lagrangian boundaries.

Physically, the local sound speed (and fluid velocity) can vary considerably in dif-

ferent regions of the fluid, and the mesh size in general will also be a function of the

region being approximated. It is therefore to be expected that the different subregions

will have different stability requirements. Thus, it is desirable to allow these different

regions their characteristic time interval in hydrodynamic calculations. Approxima-

tions for difference equations for Eulerian coordinates (Figure 16.4.2a) and Lagrangian

coordinates (Figure 16.4.2b) are given below.

Eulerian Difference Equations

The differential equations for Eulerian coordinates are the same as given in

Chapter 2. To obtain finite difference equations for the above equations, we first

introduce the following definitions:

(i) un+1
k+1,l+1 = 1

2

(
un+1/2

k+1,l + un+1/2
k+1,l+1

)
(16.4.14a)





16.4 OTHER METHODS 537

(x) (∇· f U)n−1
k,l = ( f u�y)

n−1/2
k+1,l + ( f ��x)

n−1/2
k,l+1/2 −( f u�y)

n−1/2
k−1/2,l + ( f ��x)

n−1/2
k/2,l−1/2

(x1 − x4)(y2 − y1)

(16.4.15e)

with p = p + q, q = 1
2
�i �i .

Based on the above definitions, the finite difference equations for inviscid flows are

of the form:

Continuity

n+1
k+1/2,l+1/2 = n

k+1/2,l+1/2 − �t(∇ · U)
n+1/2
k+1/2,l+1/2 (16.4.16)

Momentum

Mn+1/2
k,l = Mn−1/2

k,l − �t
[

(∇ · MU)
n−1/2
k,l +

(
�p
�x

)
n
k,l

]
, M = u (16.4.17a)

Nn+1/2
k,l = Mn−1/2

k,l − �t
[

(∇ · MU)
n−1/2
k,l +

(
�p
�y

)
n
k,l

]
, N = � (16.4.17b)

Energy

εn+1
k+1/2,l+1/2 = εn

k+1/2,l+1/2 − �t
⌊

(∇ · εU)
n+1/2
k+1/2,l+1/2 + (p)

n+1/2
k+1/2,l+1/2

+ qn+1/2
k+1/2,l+1/2(∇ · U)

n+1/2
k+1/2,l+1/2

⌋
(16.4.18)

Lagrangian Difference Equations

The differential equations in Lagrangian coordinates are given by

∂u
∂t

= − 1



∂p
∂x

,
∂�

∂t
= − 1



∂p
∂y

(16.4.19)

u = ∂x
∂t

, � = ∂y
∂t

(16.4.20)

 J = const.,
∂ε
∂t

= p
 2

∂

∂t
, p = p(ε, ) (16.4.21)

with J being the Jacobian between the cartesian and curvilinear coordinates (Figure

16.4.2b).

The Lagrangian difference equations corresponding to (16.4.19–21) are written as

follows.

un+1
k,l = un−1/2

k,l − �t
(p, y)n

k,l

( J )k,l
(16.4.22a)

�n+1
k,l = �

n−1/2
k,l − �t

(p, y)n
k,l

( J )k,l
(16.4.22b)

xn+1
k.l = xn

k.l + �tun+1
k.l (16.4.23a)

yn+1
k.l = yn

k.l + �tun+1
k.l (16.4.23b)
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n+1
k+1.l+1 = n

k+1/2.l+1/2

J n
k+1/2.l+1/2

J n+1/2
k+1/2.l+1/2

(16.4.24)

εn+1
k+1.l+1 = εn

k+1/2.l+1/2 + pn+1/2
k+1/2.l+1/2

(n+1 − n)k+1/2.l+1/2

n+1n
k+1/2.l+1/2

(16.4.25)

The velocity equations (16.4.23a,b) must be modified for the points of the lattice which

define the boundaries of the Lagrangian region, but the remaining equations hold for

all points of the mesh.

Finite elements have been used in CEL methods as applied to multiphase flows.

Surface tension on the interfaces between different fluids can also be taken into account.

These and other topics using CEL are discussed in Chapter 25.

16.4.3 PARTICLE-IN-CELL (PIC) METHOD

This is one of the early methods developed in the Los Alamos Scientific Laboratory

in dealing with highly distorted flows with slippages or colliding interfaces [Evans and

Harlow, 1957; Harlow, 1964]. In this method, Eulerian mesh is used and the cell is filled

with particles of the same kind or a mixture of different kinds. The calculation of changes

in the fluid configuration proceeds through a series of time steps or cycles. Each cell

is characterized by a set of variables describing the mean components of velocity, the

internal energy, the density, and the pressure in the cell. In the Eulerian part of the

calculations, only the cellwise quantities are changed and the fluid is assumed to be

momentarily completely at rest. In order to accomplish the particle motion, it is conve-

nient to prepare as a first step for the possibility of particles moving across cell bound-

aries. For this purpose, the specific quantities in each of the cells are transformed to

cellwise totals.

The results of a calculation applied to the formation of a crater by an explosion

in an atmosphere above a dense material are shown in Figure 16.4.3 [Harlow, 1964].

The initial one for time t = 0 shows cold ground above which is a small and intensely

heated sphere in an otherwise cold atmosphere. The second frame, two time units

later, is shown in order to demonstrate the intense packing of particles in the ini-

tially heated sphere. The third frame shows a strong shock in the ambient atmosphere,

together with considerable depression of the ground. The final frame shows, at time

sixty units, the configuration just before the particles began to fall off the computation

regions.

16.4.4 MONTE CARLO METHODS (MCM)

Monte Carlo methods have been successfully used in many problems in physics and

engineering where stochastic or statistical approaches can describe the physical phe-

nomena more realistically [Hammersley and Handscomb, 1964; Binder, 1984]. They

have been extensively applied to electron distributions, neutron diffusion, radiative

heat transfer, probability density functions for turbulent microscale eddies, etc.
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Figure 16.4.3 Configurations of particles at

four times in the crater formulation prob-

lem; grid lines show every other cell bound-

ary [Harlow, 1964].

In general, the Monte Carlo method is a statistical approach to the solution of

multiple integrals of the type

I(�1, �2, . . . . . . , �k) =
∫ 1

0

∫ 1

0

w(�1, �2, . . . . . . , �k)dP1(�1)dP2(�2) . . . . . . dPk(�k)

(16.4.26)

Monte Carlo becomes indispensable whenever multiple integrals have variables and

can not be evaluated efficiently by standard numerical techniques.

As an example, let us consider the heat conduction equation,

∂2T
∂x2

+ ∂2T
∂y2

= 0

The integral (16.4.26) corresponding to heat conduction may be written as

I(�) =
∫ 1

0

w(�1)dP1(�1) (16.4.27)

In terms of the finite difference discretization, the integral (16.4.27) represents a finite

difference equation written for the temperature at nodes (i, j) as

Ti, j = Px+ Ti+1, j + Py+ Ti, j+1 + Px− Ti−1, j + Py− Ti, j−! (16.4.28)

with

Px+ = Px− = �y/�x
2(�y/�x + �x/�y)

(16.4.29a)

Py+ = Py− = �x/�y
2(�y/�x + �x/�y)

(16.4.29b)
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The procedure described above is often known as the random walk. In this simple

example, the Monte Carlo approximations for heat conduction resembles the four-point

FDM. In conduction, an abstraction using particles or random walks is used to simulate a

solution of a partial differential equation, whereas in radiation a physical phenomenon –

the transfer of photons – is simulated.

16.5 SUMMARY

In this chapter, we have revisited the finite difference methods and finite element meth-

ods. The emphasis has been to show their analogies. In this process, differences between

these two major computational methods have been recognized. The advantage of study-

ing both methods on an equal footing has been stressed. The finite volume methods

based on either FDM or FEM are increasingly popular in applications to many engi-

neering projects. Example problems in Part Five will demonstrate these trends.

Computational methods other than FDM, FEM, and FVM have been briefly re-

viewed, including boundary element methods, coupled Eulerian-Lagrangian methods,

particle-in-cell methods, and Monte Carlo methods. Detailed presentations of these

methods are beyond the scope of this book. In fact, the topics covered in this chapter

alone could have been dealt with in an independent part.

As we look back on the chapters in Part Two and Part Three, our focus has been to

introduce to the reader what has been accomplished in CFD for the past century. It was

not possible to cover all minute details of every method that was introduced. Pertinent

references are provided at the end of each chapter. Obviously, the reader should consult

these references for further guidance.

This chapter marks the end of Parts Two and Three, including FDM, FEM, and

FVM, but we have not discussed other important subjects: automatic grid generation,

adaptive methods, and computing techniques. We shall examine them in the next several

chapters, Part Four.
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PART FOUR

AUTOMATIC GRID GENERATION, ADAPTIVE METHODS,

AND COMPUTING TECHNIQUES

A
utomatic grid generation techniques have contributed significantly toward the

application of computational fluid dynamics in large-scale industrial problems.

Without such techniques the most accurate numerical schemes may fail to

prove their full potential or effectiveness. Automatic grid generation in complicated

geometries such as those of a complete aircraft is now considered a routine exercise

and an important part of CFD projects.

There are two types of grid generation: structured and unstructured. In structured

grids, all grid lines are oriented regularly in either two or three directions so that coordi-

nate transformations of curvilinear lines result in a square or cube for two-dimensional

or three-dimensional problems, respectively. In unstructured grids, however, there are

no such restrictions, but at the expense of more complicated computer programming.

Once the automatic grid generation is completed, a challenging task still remains – an

adaptive mesh in which the most suitable mesh distributions are achieved to obtain the

most accurate solution. This can be made possible by placing finer meshes in regions

where gradients of variables are high. Furthermore, computing techniques including

domain decomposition, multigrid methods, and parallel processing, among others, play

an important role for the success of CFD projects.

We shall examine these and other subjects in Part Four. Structured grid generation

is discussed in Chapter 17, unstructured grids in Chapter 18, adaptive methods for struc-

tured and unstructured grids in Chapter 19, and computing techniques in Chapter 20.





CHAPTER SEVENTEEN

Structured Grid Generation

Structured grids are generated in two- or three-dimensional geometries (with plane or

curved surfaces). In general, two types of structured grid generation are in use: algebraic

methods and partial differential equation (PDE) mapping methods. For more complex

geometries, it is preferable to construct multiblocks initially, with refined grids filled

in for each of the multiblocks subsequently. Detailed procedures are presented in the

following sections.

17.1 ALGEBRAIC METHODS

In algebraic methods, geometric data of the cartesian coordinates in the interior of a

domain are generated from the values specified at boundaries through interpolations

or specific functions of the curvilinear coordinates. Toward this end, we begin first

with the unidirectional interpolations of various functional representations, followed

by multidirectional interpolations.

17.1.1 UNIDIRECTIONAL INTERPOLATION

Unidirectional interpolation refers to the functional representation in only one direc-

tion. Among the most widely used are Lagrange polynomials, Hermite polynomials, and

cubic spline functions. These polynomials, some of which were discussed in Chapter 9,

are briefly reviewed below.

(a) Lagrange Polynomials

The Lagrange polynomials, as used in FEM for interpolations of a variable

(Section 9.2.2), may be used for grid generation in interpolation between cartesian and

curvilinear coordinates (Figure 17.1.1).

x = �N(�)xN, �N(�M) = �NM (17.1.1)

with �N(�) being the Lagrange polynomials

�N =
n∏

M=1 , M�=N

� − �M

�N − �M
, � = x

h
(17.1.2)

543
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or

x = H0
1 x1 + H0

2 x2 + H1
1 �1 + H1

2 �2 (17.1.5b)

with H0
N(�M) = �NM, H1

N(�M) = �NM

Thus

x = �r Qr , (r = 1, 2, 3, 4) (17.1.5c)

with

�1 = H0
1 (�) = 1 − 3�2 + 2�3 (17.1.6a)

�2 = H0
2 (�) = 3�2 − 2�3 (17.1.6b)

�3 = H1
1 (�) = � − 2�2 + �3 (17.1.6c)

�4 = H1
2 (�) = �3 − �2 (17.1.6d)

These functions match the two boundary values x1, and x2 and the first derivatives,

(∂x/∂�)1, and (∂x/∂�)2 at the two boundaries.

The advantage of specifying (∂x/∂�) as well as x can be used to make the grid

orthogonal at the boundary. This will be useful in multidirectional grid generation.

(c) Cubic Spline Functions

One of the difficulties with conventional polynomial interpolations, particularly if

the polynomials are of high order, is the oscillatory character. To remedy this disadvan-

tage, the cubic spline functions can be used to achieve smoother curves.

Consider two arbitrary adjacent points xi and xi+1. We wish to fit a cubic to these

two points and use this cubic as the interpolation function between them.

Fi (x) = a0 + a1x + a2x2 + a3x3, (xi ≤ x ≤ xi+1) (17.1.7)

Note that two constants in (17.1.7) may be determined by end conditions and two

others by the slope (first derivative) and curvature (second derivative). Here the second

derivative of a cubic line is a straight line (Figure 17.1.3) so that

g′′(x) = g′′(xi ) + x − xi

xi+1 − xi
[g′′(xi+1) − g′′(xi )] (17.1.8)

Integrating (17.1.8) twice, we obtain

g(x) = Fi (x) = g′′(xi )

6

[
(xi+1 − x)3

�xi
− �xi (xi+1 − x)

]

+ g′′(xi+1)

6

[
(x − xi )

3

�xi
− �xi (x − xi )

]

+ f (xi )
( xi+1 − x

�xi

)
+ f (xi+1)

( x − xi

�xi

)
(17.1.9)
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 xi−2  xi−1
xi+1 xi+2xi

 x

( )′′g x

Figure 17.1.3 Cubic spline representation.

with �xi = xi+1 − xi , i = 0, 1, . . . n − 1, g(xi ) = f (xi ) and g(xi+1) = f (xi+1). Since the

second derivatives g′′(xi ) (i = 0, 1, . . . n) are still unknown, these must be evaluated

as follows:

F ′
i (xi ) = F ′

i−1 (xi ) (17.1.10a)

F ′′
i (xi ) = F ′′

i−1 (xi ) (17.1.10b)

Evaluation of (17.1.10a) leads to a set of simultaneous linear equations of the form

�xi−1

�xi
g′′(xi−1) + 2(xi+1 − xi−1)

�xi
g′′(xi ) + g′′(xi+1)

= 6

[
f (xi+1) − f (xi )

(�xi )2
− f (xi ) − f (xi−1)

(�xi )(�xi−1)

]
(17.1.11)

This represents n − 1 equations in the n + 1 unknowns g′′(x0), g′′(x1), . . . , g′′(xn). The

two necessary additional equations are

g′′(x0) = 0 (17.1.12a)

g′′(xn) = 0 (17.1.12b)

The resulting g(x) is called a natural cubic spline.

In terms of nondimensional coordinates, (17.1.11) and (17.1.12) are written as

(�i − �i−1)x′′
i−1 + 2(�i+1 − �i−1)x′′

i + (�i+1 − �i )x′′
i+1 = 6

(
xi+1 − xi

�i+1 − �i
− xi − xi−1

�i − �i−1

)
(17.1.13)

with

x′′
1 = 0 (17.1.14a)

x′′
n = 0 (17.1.14b)
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The solution x′′ is substituted into

x = (�i+1 − �)3

6 (�i+1 − �i )
x′′

i + (� − �i )
3

6 (�i+1 − �i )
x′′

i+1 +
[

xi

�i+1 − �i
− �i+1 − �i

6
x′′

i

]
(�i+1 − �)

+
[

xi+1

�i+1 − �i
− �i+1 − �i

6
x′′

i+1

]
(� − �i ) (17.1.15)

It is seen that (17.1.15) may be written in the form similar to (17.1.1) as a linear combi-

nation of interpolation functions and nodal values of the first and second derivatives of

x at nodal points i and i + 1.

Additional interpolation functions useful for surface grid generations are available.

These functions will be discussed in Section 17.3.

17.1.2 MULTIDIRECTIONAL INTERPOLATION

There are two multidirectional interpolation methods available: domain vertex methods

developed from FEM interpolation functions and transfinite interpolation methods

predominantly used in FDM, constructed by means of tensor products of unidirectional

functional representation in multidimensions.

17.1.2.1 Domain Vertex Method

Domain vertex methods utilize tensor products of unidirectional interpolation functions

for two or three dimensions. Let us consider a two-dimensional domain with physical

coordinates (x, y) and transformed computational domain (�, �) as shown in Figure

17.1.4a, related by

xi = �̂N(�)�̂M(�)xi NM, (i = 1, 2, N, M = 1, 2) (17.1.16a)

or

xi = �N(�, �)xi N, (i = 1, 2, N = 1, 2, 3, 4) (17.1.16b)

where i denotes the physical coordinate directions and N and Mrepresent node numbers

in the direction of the coordinate �̂N(�), and �̂M(�) are the unidirectional functions

whereas �N(�, �) indicates the tensor product.

�N(�, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1 = (1 − �)(1 − �) = �̂1(�) �̂1(�)

�2 = �(1 − �) = �̂2(�) �̂1(�)

�3 = �� = �̂2(�) �̂2(�)

�4 = (1 − �)� = �̂1(�) �̂2(�)

(17.1.17)

which are known as “blending functions.”

Similarly for three dimensions (Figure 17.1.4b), we obtain

xi = �̂N(�) �̂M(�) �̂P(�)xi NMP, (i = 1, 2, 3, N, M, P = 1, 2) (17.1.18a)

or

xi = �N(�,�,�)xi N, (i = 1, 2, 3, N = 1, . . . , 8) (17.1.18b)
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Figure 17.1.4 Multidimensional interpolation, all interior lines (as many as desired) are

generated from (17.1.16) with the corner node coordinates and the interior values of �

and �. (a) Two-dimensional domain. (b) Three-dimensional domain.

with

�N(�, �, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 = (1 − �)(1 − �)(1 − �)

�2 = �(1 − �)(1 − �)

�3 = ��(1 − �)

�4 = (1 − �)�(1 − �)

�5 = (1 − �)(1 − �)�

�6 = �(1 − �)�

�7 = ���

�8 = (1 − �)��

(17.1.19)

Extensions of the above processes can be made to accommodate higher order inter-

polations by providing interior nodes along each side (see Figure 17.1.5 for quadratic

mapping). Furthermore, triangular elements and tetrahedral elements can also be con-

structed, following the FEM geometries discussed in Chapter 9.

Example 17.1.1 Trapezoidal Geometry

Given: Four points A(0,0), B(L,0), C(L,H2), and D(0, H1). Generate a mesh corre-

sponding to �,� at 0.2 apart. Assume L = 20, H1 = 5, H2 = 10.
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Figure 17.1.5 Quadratic interpolation by inserting any values of � and �, interior coordinates

are generated from the above functions (as many as desired).

Solution:

x = (1 − �)(1 − �)x1 + �(1 − �)x2 + ��x3 + (1 − �)�x4

= [�(1 − �) + ��] L

= 20 �

with x1 = 0, x2 = L, x3 = L, x4 = 0, L = 20

y = (1 − �)(1 − �)y1 + �(1 − �)y2 + ��y3 + (1 − �)�y4

= ��H2 + (1 − �)�H1

= 10 �� + 5(1 − �)�

with y1 = 0, y2 = 0, y3 = H2 = 10, y4 = H1 = 5

The grid points or lines x, y can now be generated, and the results are shown in

Figure E17.1.1.

Example 17.1.2

Consider a quarter circular disk as shown in Figure E17.1.2a. Using quadratic Lagrange

polynomials develop a program to generate a 7 × 16 mesh:

Solution: The quadratic Lagrange interpolation functions (9 node) are given by

�N(�,�) =
n∏

M=1, N �=M

� − �M

�N − �M

� − �M

�N − �M
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Figure E17.1.1 Physical (trapezoidal) and transformed geometries.
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Figure E17.1.2 Quadratic Lagrange polynomials. (a) Quarter circle disk. (b) Mesh gener-

ated for a quarter circular disk using quadratic Lagrange polynomials.
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Table E17.1.3 Interpolation Function Data

Point (x, y, z) Point (x, y, z) Point (x, y, z) Point (x, y, z)

1 (0, 0, 0) 2 (12, 0, 0) 3 (15, 14, 0) 4 (0, 16, 0)

5 (1, 0, 10) 6 (3, 1, 11) 7 (6, 2, 9) 8 (8, 3, 7)

9 (12, 9, 10) 10 (14, 14, 6) 11 (16, 18, 12) 12 (4, 13, 14)

Physical domain coordinates are given:

a = Length between 5 and 8 =
√

6 +
√

14 + 3

b = Length between 8 and 11 =
√

61 +
√

45 +
√

56

�N(�,�,�) =
n∏

M=1, N �=M

� − �M

�N − �M

� − �M

�N − �M

� − �M

�N − �M

with n = n̂ + 1, n̂ being the total number of inside edge nodes in each direction

(�, �, �).

�1 = (� − �2)

(�1 − �2)

(� − �2)

(�1 − �2)

(� − �2)

(�1 − �2)
= (� − 1)

(0 − 1)

(� − 1)

(0 − 1)

(� − 1)

(0 − 1)

= −(� − 1)(� − 1)(� − 1)

�2 = �(� − 1)(� − 1) �3 = −� �(� − 1) �4 = (� − 1) �(� − 1)

�5 = a2

√
6(

√
6 + √

14)

(
� −

√
6

a

) (
� −

√
6 + √

14

a

)
(� − 1)(� − 1)�

�6 = a3

√
6
√

14(
√

6 − a)
�

(
� −

√
6 + √

14

a

)
(� − 1)(� − 1)�

�7 = −a3

(
√

6 + √
14)

√
14(

√
6 + √

14 − a)
�

(
� −

√
6

a

)
(� − 1)(� − 1)�

�8 =
�(� − 1)(� − 1)�

(
� −

√
6

a

)
(

1 −
√

6

a

)
(

� −
√

6 + √
14

a

)
(

1 −
√

6 + √
14

a

)
(

� −
√

61

b

)
(√

61

b

)

×

(
� −

√
61 + √

45

b

)
(√

61 + √
45

b

)
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�9 = ���(√
61

b

)
(

� −
√

61 + √
45

b

)
(√

61

b
−

√
61 + √

45

b

) (� − 1)(√
61

b
− 1

)

�10 = ���(√
61 + √

45

b

)
(

� −
√

61

b

)
(√

61 + √
45

b
−

√
61

b

) (� − 1)(√
61 + √

45

b
− 1

)

�11 = ���

(
� −

√
61

b

)
(

1 −
√

61

b

)
(

� −
√

61 + √
45

b

)
(

1 −
√

61 + √
45

b

) �12 = −(� − 1)��

Example 17.1.4

Clustering of boundary layers at the wall or interior domain may be achieved

using exponential relations between the physical domain and transformed domain

(Figure E17.1.4).

Figure E17.1.4 Clustering of mesh lines.
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(a) Clustering at the Bottom Wall

x = �

y = H
(� + 1) − (� − 1)

(
� + 1

� − 1

)1−�

(
� + 1

� − 1

)1−�

+ 1

with 1 < � < ∞
(b) Clustering at Top and Bottom Walls

x = �

y = H
(2� + �)

(
� + 1

� − 1

)�−�
1−� + 2� − �

(2� + 1)

⎡
⎣(

� + 1

� − 1

)�−�
1−� + 1

⎤
⎦

with 0 < �, � < ∞
(c) Clustering at Interior Domain

x = �

y = �H
{

1 + sinh �(� − A)

sinh(�A)

}

with 0 < � < ∞, 0 < � < 1, A= 1

2�
ln

1 + (e� − 1)�

1 + (e−� − 1)�

Example 17.1.5

Grid generation over a conical body. Consider a conical body with a typical circular

cross section of radius R and a physical domain with semi-major and semi-minor axes

as shown in Figure E17.1.5.

Grid points y and z are given by

y(k, 1) = −Rcos �

z(k, 1) = Rsin �

Clustering in the vicinity of the body for the viscous boundary layer can be achieved

by

y (k, j) = y (k, 1) − c(k, j) cos �(k)

z(k, j) = z(k, 1) + c(k, j) sin �(k)

where

c (k, j) = �

⎧⎪⎪⎨
⎪⎪⎩1 −

�

[(
� + 1

� − 1

)�

− 1

]
(

� + 1

� − 1

)�

+ 1

⎫⎪⎪⎬
⎪⎪⎭
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Figure E17.1.5 Algebraic grid generation of conical body. (a) Given data.

(b) Transformed cross sections. (c) Finalized mesh.

with

�(k) = r(k) − R(k), r =
[(

sin �

a

)2

+
(

cos �

b

)2]−1/2

The grid generated in Figure E17.1.5(c) will then be repeated in the (x, �) direction

for the entire three-dimensional domain. Here, R = 1, a1 = 2.5, b2 = 4 were chosen in

Figure E17.1.5(c).

17.1.2.2 Transfinite Interpolation Methods (TFI)

An alternative approach to the domain vertex methods is to use the unidirectional inter-

polation functions introduced in Section 17.1.1 and form tensor products in two or three

directions as in the domain vertex methods, but with all sides of the boundaries inter-

polated and matched as well as the corner nodes. To this end, Lagrange polynomials,

Hermite polynomials, or spline functions may be used. A transformed computational

domain mapped into various arbitrary physical domains is shown in Figure 17.1.6.

Consider a region �, [0, 1] × [0, 1] and postulate the existence of a function F
(vector valued) which maps � into � such that F: F → �. Our objective is to con-

struct a univalent (one-to-one) function U: � → � which matches F on the boundary



556 STRUCTURED GRID GENERATION

Ω Γ

Ω

Ω

Γ

Γ

a

b

c

d

a

b

c

d
a

b

c

d

(b)

(a)

Figure 17.1.6 Physical domain and transformed computational domain for transfinite

interpolation. (a) Physical domain. (b) Transformed computational domain.

of �, that is,

U(0, �) = F(0, �), U(�, 0) = F(�, 0) (17.1.20a)

U(1, �) = F(1, �), U(�, 1) = F(�, 1) (17.1.20b)

A function U which interpolates to F at a finite set of points is defined as the trans-

finite interpolant of F. The isoparametric interpolation scheme is a special case of the

transfinite interpolation schemes.

Consider now a linear operator known as a projector ℘, such that U → ℘[F] is a

univalent map of � → � satisfying the desired interpolatory properties [Gordon and

Hall, 1973].

℘(�) [F(�)] = �1(�)F1(0, �) + �2(�)F2(1, �) (17.1.21a)

℘(�)[F(�)] = �1(�)F1(�, 0) + �2(�)F2(�, 1) (17.1.21b)

Then the tensor product projection

℘(�) ℘(�) [F] = �N(�)�M(�)FNM (17.1.22)

interpolates to F at four corners of [0, 1] × [0, 1]. Here FNM matches the function at the

four corners, but it may not match the function on all the boundaries as illustrated in

Figure 17.1.7. Similar effects occur on all other boundaries. These discrepancies can be
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1
2

34

F N (0,η)
NΦ (η)F N

Figure 17.1.7 FNM match the function at the four corners but not

on all boundaries.

removed by subtracting from the sum of (17.1.21a,b) a function formed by interpolating

the discrepancies (17.1.22), which represents the Boolean sum projection [Coons, 1967].

U = [℘(�) ⊕ ℘(�)] [F] = ℘(�) F(�) + ℘(�) F(�) − ℘(�) ℘(�) [F] (17.1.23)

where the symbol ⊕ implies the tensor product and F(�) and F(�) are the parameter-

ization of the sides of the domain and [F] represents the corresponding vertices. This

matches the function not only at the corners but also at all boundaries. Here U is a

transfinite interpolant to F. The functions �N(�) and �M(�) given in (17.1.21) and

(17.1.22) are referred to as blending functions. The most commonly used blending func-

tions are of the Lagrange polynomial type

U = (1 − �)F(0, �) + �F(1, �) + (1 − �)F(�, 0) + �F(�, 1)

− [(1 − �)(1 − �)F(0, 0) + (1 − �) �F(0, 1) + � (1 − �)F(1, 0) + ��F(1, 1)]

(17.1.24)

For a quadratic variation of boundaries, the blending function ℘(�) and ℘(�) can

simply be replaced by the quadratic Lagrange polynomials.

The following rules are applied in choosing the transfinite interpolation functions:

(1) Pick four points on � and identify these as being the images of the four corners

of �.

(2) These four points separate � into four curve segments which we identify as

being the graphs of the four vector valued functions F(0, �), F(1, �), F(�, 0),

and F(�, 1), that is, the four segments of the boundary of � are defined to be

the images of the four sides of �.

(3) Use the formulas of F(0, �), F(1, �), F(�, 0), F(�, 1) in (17.1.24) to define a bilin-

early blended transfinite function U(�, �), and recall that U = F for points (�, �)

on the perimeter of �; that is, U maps the boundary of � onto the boundary of �.

(4) Test to see if the univalency criteria are satisfied, that is, Jacobian is nonsingular.

(5) Higher order transfinite interpolation functions should be used if necessary

(irregular boundaries).

Grid generation for three-dimensional geometries using transfinite interpolation

functions was studied by Coons [1967] and extended by Cook [1974]. The procedure in-

cludes the surface nodal point mesh generator and volume nodal point mesh generator.
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Figure 17.1.8 Surface and volume point mesh generator. (a) Surface nodal point mesh generator.

(b) Volume nodal point mesh generator.

The transfinite interpolation formulas for three-dimensional problems are of the

form

U = [ ℘(�) ⊕ ℘(�) ⊕ ℘(�)] [F]

= ℘(�) [F(�, �)] + ℘(�) [F(�, �)] + ℘(�) [F(�, �)]

− [℘(�)℘(�)[F] + ℘(�)℘(�) [F] + ℘(�)℘(�)[F] + ℘(�) ℘(�)℘(�)[F]]

(17.1.25)

Consider the coordinate system as shown in Figure 17.1.8 in which the following

relations can be established.

Boundary 1: � = 0, x = f1(�), y = g1(�), z = h1(�)

Boundary 2: � = 1, x = f2(�), y = g2(�), z = h2(�)

Boundary 3: � = 0, x = f3(�), y = g3(�), z = h3(�)

Boundary 4: � = 1, x = f4(�), y = g4(�), z = h4(�)

These definitions lead to the surface nodal point coordinates (Figure 17.1.8a):

x(�, �) = (1 − �) f1(�) + �f2(�) + (1 − �) f3(�) + � f4(�)

− x (0, 0) (1 − �)(1 − �) − x (1, 0) �(1 − �)

− x (0, 1) (1 − �)�− x (1, 1) �� (17.1.26)

Similarly for y(�, �) and z(�, �).

For the volume nodal point mesh generator, we utilize the �, �, � coordinates nor-

malized as follows (Figure 17.1.8b):

Boundary edge 1: � = 0, � = 0, x = f1(�), y = g1(�), z = h1(�)

Boundary edge 2: � = 0, � = 1, x = f2(�), y = g2(�), z = h2(�)
...

Boundary edge 12: � = 0, � = 1, x = f12(�), y = g12(�), z = h12(�)

With these boundary edge functions, the linearly blended interpolation functions are

x(�, �, �) = (1 − �)(1 − �) f1(�) + (1 − �)� f2(�) + �� f3(�) + �(1 − �) f4(�)

+ (1 − �)(1 − �) f5(�) + (1 − �)� f6(�) + � � f7(�) + � (1 − �) f8(�)

+ (1 − �)(1 − �) f9(�) + (1 − �)� f10(�) + � � f11(�)

+ � (1 − �) f12(�) + c (�, �, �) (17.1.27)
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where

c (�, �, �) = −3[(1 − �)(1 − �)(1 − �) x (0, 0, 0) + (1 − �)(1 − �)� x (0, 0, 1)

+ (1 − �)�(1 − �) x (0, 1, 0) + (1 − �)�� x (0, 1, 1)

+ �(1 − �)(1 − �) x (1, 0, 0) + � (1 − �)� x (1, 0, 1)

+ � �(1 − �) x (1, 1, 0)+ � �� x (1, 1, 1)] (17.1.28)

Similarly for y(�, �, �) and z(�, �, �).

It is desirable to write (17.1.27) in terms of boundary surfaces:

Boundary surface 1 : � = 0, x = f 1(�, �), y = g 1(�, �), z = h 1(�, �)

2 : � = 1, x = f 2(�, �), y = g 2(�, �), z = h 2(�, �)

3 : � = 0, x = f 3(�, �), y = g 3(�, �), z = h 3(�, �)

4 : � = 1, x = f 4(�, �), y = g 4(�, �), z = h 4(�, �)

5 : � = 0, x = f 5(�, �), y = g 5(�, �), z = h 5(�, �)

6 : � = 1, x = f 6(�, �), y = g 6(�, �), z = h 6(�, �)

Thus, the boundary surface functions may be written in terms of boundary edge

functions:

x(�, �, �) = 1

2
{(1 − �) f 1(�, �) + � f 2(�, �) + (1 − �) f 3(�, �)

+ � f 4(�, �) + (1 − �) f 5(�, �) + � f 6(�, �) + 2c(�, �, �)}
(17.1.29)

where

f 1(�, �) = (1 − �) f1(�) + � f2(�) + (1 − �) f9(�) + � f12(�)

− (1 − �)(1 − �) x (0, 0, 0) − (1 − �)� x (0, 0, 1)

− � (1 − �) x (1, 0, 0) − � � x (1, 0, 1) (17.1.30)

etc.
With these coordinate transformation equations, the interior nodal point may be

calculated if the interior nodal point can be described in terms of the �, �, � coordinate

system and if the boundary surface functions are known [Cook, 1974].

Example 17.1.6

Repeat Example 17.1.2 using the transfinite interpolation functions (Figure E17.1.6).

The quadratic blending functions are

�N(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

(
� − 1

2

)
(� − 1)

−4� (� − 1)

2 �

(
� − 1

2

) , �N(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

(
� − 1

2

)
(� − 1)

−4�(� − 1)

2 �

(
� − 1

2

)
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Figure E17.1.6 Quarter-circle disk with TIF method.

with the projections

℘� [F] =
3∑

N=1

�N(�) F (�N, �)

℘�[F] =
3∑

N=1

�N(�) F (�, �N)

and the product projections

℘� ℘� [F] =
3∑

N=1

3∑
M=1

�N(�) �M(�) F(�N, �M)

Thus, the transfinite interpolation functions are

U(�, �) = ℘� ⊕ ℘�[F] = ℘� [F] + ℘�[F] − ℘� ℘�[F]

=
3∑

N=1

�N(�) F (�N, �) +
3∑

M=1

�M(�) F (�, �M)

−
3∑

N=1

3∑
M=1

�N(�) �M(�) F (�N, �M)

Thus,

[
x (�, �)

y (�, �)

]
=

3∑
N=1

�N(�)

[
x (�N, �)

y (�N, �)

]
+

3∑
M=1

�M(�)

[
x (�, �M)

y (�, �M)

]

−
3∑

N=1

3∑
M=1

�N(�) �M(�)

[
x (�N, �M)

y (�N, �M)

]
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The primitive function F(�, �) is

F (�, �) =
[

x (�, �)

y (�, �)

]
=

⎡
⎢⎣−(2 + 2�) cos

	

2
�

(2 + 2�) sin
	

2
�

⎤
⎥⎦

Thus,

U(�, �) =
[

x (�, �)

y (�, �)

]
=

3∑
N=1

�N(�)

⎡
⎢⎣−(2 + 2�N) cos

	

2
�

(2 + 2�N) sin
	

2
�

⎤
⎥⎦

+
3∑

M=1

�M(�)

⎡
⎢⎣−(2 + 2�) cos

	

2
�M

(2 + 2�) sin
	

2
�M

⎤
⎥⎦

−
3∑

N=1

3∑
M=1

�N(�) �M(�)

⎡
⎢⎣−(2 + 2�N) cos

	

2
�M

(2 + 2�N) sin
	

2
�M

⎤
⎥⎦

The results are identical to those for the domain vertex method in Example 17.1.2.

Additional discussions on algebraic methods will be presented for surface grid gene-

ration in Section 17.3.2. Although algebraic methods are convenient if the geometry can

be represented by simple analytical expressions, severe limitations would occur when

the computational domain is complicated and suitable functional representation of the

geometry is unavailable.

17.2 PDE MAPPING METHODS

Grid generation can be achieved by solving partial differential equations with the de-

pendent and independent variables being the physical domain coordinates and trans-

formed computational domain coordinates, respectively. These PDEs may be of elliptic,

hyperbolic, or parabolic form. In general, PDE mapping methods are more complicated

than algebraic methods, but provide a smoother grid generation [Thompson, Warsi, and

Mastin, 1985].

In the following sections, we shall discuss the basic concepts of elliptic, hyperbolic,

and parabolic grid generators, including their advantages and disadvantages.

17.2.1 ELLIPTIC GRID GENERATOR

17.2.1.1 Derivation of Governing Equations

Let us consider a simply connected physical domain and transformed computational

domain as shown in Figure 17.2.1. The basic idea stems from the fact that the grid

generation in two dimensions is analogous to the solution of Laplace equations for

stream function (
 ) and velocity potential function (�).

∇2
 = 0 (17.2.1a)

∇2� = 0 (17.2.1b)
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with gi being the contravariant tangent vector,

gi = ∂�i

∂xm
im (17.2.5)

Here xm refers to the cartesian spatial coordinates and �i denotes the curvilinear coor-

dinates.

Using the standard tensor analysis, we obtain [Chung, 1988]

∇2r =
(

g j ∂

∂� j
· gi ∂

∂�i

)
r

= g j · gi
, j r,i + g j · gi r,i j

= g j · (gikgk), j r,i + gi j r,i j = 0

= gi j
,i r, j + gi j�k

ki r, j + gi j r,i j (17.2.6a)

or

∇2r = 1√
g

(√
ggi j r, j

)
,i = 0 (17.2.6b)

where the comma denotes partial derivatives with respect to the curvilinear coordinates,

�r
st represents the Christoffel symbol of the second kind, gi j is the contravariant metric

tensor, and g is the determinant of the covariant metric tensor gi j .

Equation (17.2.6) may be recast in the form

∇2r = gi j r,i j + P j r, j = 0 (17.2.7)

where P j is known as the control function

P j = gi j
,i + gi j�k

ki = gi j
,i + 1

g
∂g
∂gi j

�k
ki

= ∂

∂�i

(
∂�i

∂xm

∂� j

∂xm

)
+ ∂�i

∂xm

∂� j

∂xm

∂2xp

∂�i∂�k

∂�k

∂xp
(17.2.8)

with gi j
,i = 0.

Physically, the derivative of the contravariant metric tensor and the product of co-

variant metric tensor and the Christoffel symbol of the second kind represent the de-

formation process between the physical domain and the transformed computational

domain.

In particular, P j represents control functions capable of inducing two lines or two

points to be pulled (attraction, tension) or pushed away (repelled, compression) as ef-

fected by the first derivatives and to be bent or twisted as dictated by second derivatives.

This behavior is analogous to the differential equations corresponding to normal and

shear strains and flexural (bending and torsion) strains in elasticity.

Notice that in this process of “deformation” or geometric transformation, the

Laplace equation (17.2.3) has been changed into a Poisson equation (17.2.7).

For three dimensions, (17.2.7) is expanded as

g11r,11 + g22r,22 + g33r,33 + 2g12r,12 + 2g23r,23 + 2g31r,31

+ P 1r,1 + P2r,2 + P3r,3 = 0 (17.2.9)
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with

gi j = 1

g
∂g
∂gi j

= 1

g
∂

∂gi j

∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣
g11 = 1

g
(g22g33 − g23g32), g22 = 1

g
(g33g11 − g31g13), g33 = 1

g
(g11g22 − g12g21)

g12 = 1

g
(g23g31 − g21g33), g13 = 1

g
(g32g21 − g31g22), g23 = 1

g
(g31g12 − g32g11)

Similarly for two dimensions,

g11r,11 + g22r,22 + 2g12r,12 + P 1r,1 + P2r,2 = 0 (17.2.10a)

or

1

g
(g22r,11 + g11r,22 − 2g12r,12) + P 1r,1 + P2r,2 = 0 (17.2.10b)

with

g = |gi j | =
∣∣∣∣ g11 g12

g21 g22

∣∣∣∣ = J 2

g11 =
(

∂x
∂�

)2

+
(

∂y
∂�

)2

, g22 =
(

∂x
∂�

)2

+
(

∂y
∂�

)2

, g12 = ∂x
∂�

∂x
∂�

+ ∂y
∂�

∂y
∂�

where the Jacobian J is given by

J =

∣∣∣∣∣∣∣∣
∂x
∂�

∂y
∂�

∂x
∂�

∂y
∂�

∣∣∣∣∣∣∣∣
Note that the contravariant component Pi is the same as the physical component Pi

since the control function is a scalar to be prescribed.

Finally, we obtain from (17.2.10b) two equations, using the notation x� = ∂x/∂� , etc:(
x2

� + y2
�

)
x�� + (

x2
� + y2

�

)
x�� − 2(x� x� + y� y�)x�� = −J 2(Px� + Q x�) (17.2.11a)

and(
x2

� + y2
�

)
y�� + (

x2
� + y2

�

)
y�� − 2(x� x� + y� y�)y�� = −J 2(Py� + Q y�) (17.2.11b)

with P1 = P and P2 = Q.

Note that these equations are nonlinear and must be solved iteratively to deter-

mine the grid coordinate values (x, y). Geometries for this purpose are assumed to be

amenable to one-to-one transformation (mapping) between physical domain and com-

putational domain whether simply connected, doubly connected, or multiply connected.

A typical doubly connected domain and a multiply connected domain are shown in

Figure 17.2.3. Note that transformed computational domain is obtained by introducing

the process of unwrapping of the doubly or multiply connected domain. In this way,
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to � may be written as [Steger and Sorenson, 1980],

x��(i, 1) = −7xi,1 + 8xi,2 − xi,3

2��2
− 3x�(i, 1)

��

y��(i, 1) = −7yi,1 + 8yi,2 − yi,3

2��2
− 3y�(i, 1)

��

Solutions of elliptic equations (17.2.11) will proceed with central differences for the

left-hand side terms (second order derivatives). The first order terms on the right-hand

side may be forward-differenced for P > 0 and backward-differenced for Q < 0.

The control functions, P and Q, are to be used for clustering of grids and are discussed

in the following section.

17.2.1.2 Control Functions

In view of the governing equations (17.2.7) or (17.2.11a,b), we may seek to determine

the control functions, P and Q, in the form

[
x� x�

y� y�

] [
P
Q

]
=

[
R
S

]
(17.2.14)

where

R = − 1

J 2

[ (
x2

� + y2
�

)
x�� + (

x2
� + y2

�

)
x�� − 2(x� x� + y� y�)x��

]
S = − 1

J 2

[(
x2

� + y2
�

)
y�� + (

x2
� + y2

�

)
y�� − 2(x� x� + y� y�)y��

]
Solving for the control functions P and Q,

P = 1

J
(y�R − x�S) (17.2.15a)

Q = 1

J
(x� S − y� R) (17.2.15b)

The one-dimensional case of (17.2.15) can be shown to be in the form

P = −∂2x
∂�2

/
∂x
∂�

which physically corresponds to (17.2.8), representing the deformation process between

the physical domain and transformed computational domain, in which the first and

second derivatives imply compression or tension and bending or twisting, respectively.

Thus, the control functions may be assumed to be of the form

P = P̂
[
�(�)e−�(�, �)

]
(17.2.16a)

Q = Q̂
[
�(�)e−�(�, �)

]
(17.2.16b)
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Accordingly, we may adopt a form [Thompson et al., 1985]

P(�, �) = −
n∑

i=1

ai |� − �i | exp[−ci |� − �i |]

−
m∑

i=1

bi |� − �i | exp[−di

√
(� − �i )2 + (� − �i )2]

Q(�, �) = −
n∑

i=1

ai |� − �i | exp[−ci |� − �i |]

−
m∑

i=1

bi |� − �i | exp[−di

√
(� − �i )2 + (� − �i )2]

(17.2.17)

where n and m denote the number of lines of � and � of the grid, respectively, with ai

and bi being the amplification factors, and ci and di being the decay factors.

(1) Amplification factors (ai , bi ):

ai > 0 lines � are attracted to lines, �i

bi > 0 lines � are attracted to points (�i , �i )

Similarly for � coordinates.

(2) Decay factors (ci , di ):

These decay factors are to modulate the amplifications from ai and bi .

For ai < 0 and bi < 0 the attraction is transformed into a repulsion. Obviously

P = Q = 0 removes these effects.

In summary, advantages and disadvantages of the elliptic grid generators are as

follows:

Advantages

(1) Smooth grid point distribution is achieved. Boundary point discontinuities are

smoothed out in the interior domain.

(2) Orthogonality at boundaries can be maintained.

Disadvantages

(1) Computer time is large.

(2) Control functions are often difficult to determine.

Example 17.2.1 Elliptic Grid Generation and Comparison with TFI Method

The results are shown in Figure E17.2.1, with all of them using the 51 × 31 O-type grid.

17.2.2 HYPERBOLIC GRID GENERATOR

In dealing with an open domain, the hyperbolic grid generator is well suited and efficient.

This is because the solution of a hyperbolic differential equation utilizes a marching

scheme, which is computationally efficient. There are two methods commonly used to

develop a hyperbolic grid generator: one is the cell area (Jacobian) method, and the

second is an arc-length method [Steger and Sorenson, 1980].
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Figure E17.2.1 Elliptic grid generation com-

pared with TFI method. (a) Elliptic grid gener-

ation without control function. (b) Elliptic grid

generation with control function. (c) Transfinite

interpolation approach.
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17.2.2.1 Cell Area (Jacobian) Method

In this method, we establish orthogonality of grid lines and a Jacobian relation as follows:

(a) Orthogonality of Grid Lines

g12 = g1 · g2 = ∂xm

∂�1

im · ∂xn

∂�2

in = 0

(x� i1 + y� i2) · (x�i1 + y�i2) = 0

or

x� x� + y� y� = 0 (17.2.18)

(b) Jacobian Relation

x� y� − x�y� = J (�, �) (17.2.19)

Here (17.2.18) and (17.2.19) represent a system of hyperbolic equations. These

equations are nonlinear and may be solved using the standard Newton’s iterative

scheme, with an algebraic grid to estimate the Jacobian.

Initially, we assume that

x� y� = xk+1
� yk

� + xk
� yk+1

� − xk
� yk

� (17.2.20)

Dropping k + 1 for simplicity, the orthogonality and the Jacobian relation may be writ-

ten, respectively, as

x� xk
� + xk

� x� − xk
� xk

� + y� yk
� + yk

� y� − yk
� yk

� = 0 (17.2.21a)

and

x� yk
� + xk

� y� − xk
� yk

� − x�yk
� − xk

�y� + xk
�yk

� = J (17.2.21b)

We note here that

xk
� xk

� + yk
� yk

� = 0 (17.2.22a)

xk
�yk

� − xk
� yk

� = −J k (17.2.22b)

Thus, (17.2.21a,b) can be rewritten as

x� xk
� + xk

� x� + y� yk
� + yk

� y� = 0 (17.2.23a)

x� yk
� + xk

� y� − x�yk
� − xk

�y� = J + J k (17.2.23b)

Let

A=
[

xk
� yk

�

yk
� −xk

�

]
, B =

[
xk

� yk
�

−yk
� xk

�

]
, R =

[
x
y

]
, H =

[
0

J + J k

]
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Then

AR� + BR� = H (17.2.24a)

or

CR� + R� = B−1 H (17.2.24b)

with

C = B−1 A= 1

D

[
xk

� xk
� − yk

� yk
� xk

� yk
� + xk

�yk
�

xk
� yk

� + xk
�yk

� −(
xk

� xk
� − yk

� yk
�

)
]

D = (
xk

�

)2 + (
yk

�

)2

Thus, (17.2.24b) becomes hyperbolic if the eigenvalues of C

 = ±
[(

xk
�

)2 + (
yk

�

)2

D

] 1
2

are real. For real eigenvalues, we must assure that(
xk

�

)2 + (
yk

�

)2 �= 0

Now the solution of (17.2.24a) can be obtained with the use of central differences

for �-derivatives and first order backward differences for �-derivatives. This will result

in a block diagonal system, marching in the �-direction with an initial distribution of

grid points on the surface and boundary lines given. At the boundaries either forward

or backward differences may be employed, with the orthogonality conditions enforced.

Further details are found in Steger and Sorenson [1980].

17.2.2.2 Arc-Length Method

In this method, the Jacobian equation (17.2.19) is replaced by the relation defining the

tangent line

gi · gi = gii = g11 + g22 = F(�, �) (17.2.25a)

or

F(�, �) = (x� i1 + y� i2) · (x� i1 + y� i2) + (x�i1 + y�i2) · (x�i1 + y�i2)

= x2
� + y2

� + x2
� + y2

� (17.2.25b)

This relation may also be obtained by

ds2 = dx2 + dy2 (17.2.26a)

which represents an arc-length

ds2 = (x� d� + x�d�)2 + (y� d� + y�d�)2 (17.2.26b)

Setting �� = �� = 1, we obtain

�s2 = x2
� + y2

� + x2
� + y2

� (17.2.27)

Equating (17.2.25b) and (17.2.27) leads to

F(�, �) = �s2 (17.2.28)
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The arc-length �s may be specified by the user. For a constant �-line, we obtain

�s2 = x2
� + y2

� (17.2.29)

Linearization and finite difference approximations for (17.2.28) and (17.2.29) can be

carried out similarly as in the cell area method.

In summary, it is seen that the hyperbolic grid generation system is less general,

although it is much faster than the elliptic generation system. The specification of the cell

volume distribution avoids the possible grid line overlapping that otherwise can occur

with concave boundaries. Disadvantages include boundary slope discontinuities being

propagated into the field, with shocklike solutions possibly resulting in an unsmooth

grid generation.

17.2.3 PARABOLIC GRID GENERATOR

The parabolic system provides a compromise between the elliptic and hyperbolic

systems:

(a) Diffusiveness: Propagation of boundary discontinuities are prevented similarly

as in the elliptic system.

(b) Marching scheme: Solutions are fast, similar to the hyperbolic systems.

The governing equations are modified from the Poisson equations as [Nakamura, 1991]

x� − Ax�� = Sx (17.2.30a)

y� − Ay�� = Sy (17.2.30b)

where A= constant and Sx, Sy = source terms.

Here, the source terms act as control functions. Implementations of (17.2.30) are

not as convenient as in the case of elliptic and hyperbolic systems, but the solution of a

tridiagonal system for (17.2.30a,b) is much faster than the elliptic grid generator. How-

ever, orthogonality is not achieved as directly as in the hyperbolic system. Implemen-

tation of control functions through the source terms Sx and Sy remains undeveloped.

17.3 SURFACE GRID GENERATION

A surface mesh is a prerequisite for three-dimensional grid generation. Although the

surface grid generation is considered a part of the unstructured three-dimensional mesh

generation, it is often convenient to obtain the surface grid in a structured configuration

using algebraic methods [De Boor, 1972; Bezier, 1986; Farin, 1988] or elliptic PDE

methods [Warsi and Koomullil, 1991; Arina and Casella, 1991; Nakamura et al., 1991].

It is possible to combine the algebraic or elliptic PDE approaches in a structured fashion

close to the surface with unstructured grids elsewhere away from the surface. Such a

scheme is particularly useful in boundary layer flows.

17.3.1 ELLIPTIC PDE METHODS

The elliptic PDE methods for surface grid generation require derivations of governing

equations based on the theory of surfaces or differential geometries. A brief review of
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the theory of differential geometry applicable to surface grid generation is given below

[Chung, 1988, p. 229]:

17.3.1.1 Differential Geometry

Consider a reference surface characterized by a curvilinear coordinate system (�1, �2,

�3 = 0) with an origin located at P by a position vector ro, as shown in Figure 17.3.1a.

Here, the usual practice of writing the curvilinear coordinates in terms of contravariant

component � i with indices placed as superscripts will be followed unlike in the previous

sections. Let �3 be the distance along the normal to the reference surface (�3 = 0) and

n̂3 = n be the unit normal vector. An arbitrary point Q on the �3 coordinate is defined

by a position vector r = xi ii where xi ‘s are the cartesian coordinate (i = 1, 2, 3):

r = xi ii = ro + �3â3 = ro + �3n (17.3.1)

The tangent base vectors along the curvilinear coordinates ��(� = 1, 2) on the reference

surface, often called the middle surface, are represented by the partial derivatives of ro

with respect to ��:

∂ro

∂��
= ro,� = a� (17.3.2)

Here, a� is the covariant surface tangent vector. Likewise, the tangent vectors along ��

on the arbitrary surface at r are

∂r
∂��

= r,� = ro,� + �3n,� = g� (17.3.3)

or

g� = a� + �3n,� (17.3.4a)

and

g3 = a3 = â3 = n (17.3.4b)

a 1  

a 2  

a 1  

a 2  

2ξ  

1ξ  

n 

(b)

r 
p

Q 

i 1  i 2  

i 3  

r 0  

a 2  

a 1  

g 1  

g 2  

1ξ  

2ξ  
1ξ  

2ξ  
3ξ  

n 

1x  

2x  

3x  

(a)

3ξ

Figure 17.3.1 Surface geometry coordinates. (a) Surface geometry. (b) Covariant and contravariant com-

ponents of metric tensors.
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The reciprocal base vector or the contravariant component of the tangent vector ai has

the property (Figure 17.3.1b),

ai · a j = �i
j (17.3.5)

and

a� = a��a�, a� = a��a� (17.3.6)

in which a�� = a� · a�, a�� = a� · a� are the covariant and contravariant components of

the metric tensor, respectively. Note that a� is the contravariant surface tangent vector

normal to the �� surface. It also follows that

a�� = g��(�1, �2, 0), a�� = g��(�1, �2, 0)

a��a�� = ��
�

|a��| = a = g (�1, �2, 0)

|a��| = 1

a

a11 = a22

a
, a22 = a11

a
, a12 = −a12

a
(17.3.7)

An elemental volume bound by the coordinate surface is given by

d� = g1d�1 × g2d�2 · g3d�3 = √
g123 g3 · g3d�1d�2d�3 = √

gd�1d�2d�3 (17.3.8)

The curvatures of a surface are defined through scalar products of the base vectors

and the derivatives of the base vectors through the Christoffel symbols of the first kind

(���� ) and the second kind �
�
��:

���� (�1, �2, 0) = a� · a�,� = ���� (17.3.9a)

�
�
�� (�1, �2, 0) = a� · a�,� = −a� · a�

,� = �
�
�� (17.3.9b)

���� = 1

2
(a��,� + a��,� − a��,� ) (17.3.9c)

���� = a�� �
�
��, �

�
�� = a�� ���� (17.3.9d)

A scalar product of the normal vector n and the derivatives of the tangent base

vectors is known as a curvature tensor:

b�� = n · a�,� = −a� · n,� = ���3(�1, �2, 0) = b�� (17.3.10a)

b�
� = n · a�

,� = −a� · n,� = −��
3�(�1, �2, 0) (17.3.10b)

Note that n · n,� = 0, �3�3 = �3
3� = 0. Combining (17.3.9) and (17.3.10), we obtain

a�,� = �
�
��a� + b��n = ���� a� + b��n (17.3.11a)

a�
,� = −��

�� a� + b�
�n (17.3.11b)

n,� = −b��a� = −b�
�a� (17.3.11c)

In view of (17.3.4) and (17.3.11), it follows that
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g� = a� − �3b�
�a� = a� − �3b��a� (17.3.12)

g�� = a�� − 2�3b�� + (�3)2b�� b�
� (17.3.13a)

g�3 = 0, g33 = 1 (17.3.13b)

The changes in the position vector and the normal vector are given by

d ro = ro,�d �� = a�d �� (17.3.14a)

d n = n,�d �� = −b��a�d �� (17.3.14b)

The scalar products of (17.3.14) are

d ro · d ro = ds2
o = ro,�d �� · ro,�d �� = a��d ��d �� (17.3.15a)

d ro · d n = a�d �� · n,�d �� = −b��d ��d �� (17.3.15b)

d n · d n = n,�d �� · n,�d �� = (−b�
�a�

) · (−b�
� a�

)
d ��d ��

= b�
�b�

� a��d ��d �� = b�
�b�� d ��d �� = c��d ��d �� (17.3.15c)

Here, a��, b��, and c�� are called the first, second, and third fundamental tensors,

respectively.

It can be shown that the second order covariant derivative of any covariant compo-

nent of a first order tensor is of the form

Ai | jk = (
Ai | j

)
,k − �r

ik Ar | j − �r
jk Ai | r

= (
Ai, j − �r

i j Ar
)
,k − �r

ik

(
Ar, j − �s

r j As
) − �r

jk

(
Ai,r − �s

ir As
)

= Ai, jk − (
�r

i j

)
,k Ar − �r

i j Ar,k − �r
ik Ar, j + �r

ik�
s
r j As − �r

jk Ai,r + �r
jk�

s
ir As

(17.3.16a)

Similarly,

Ai | kj = Ai,kj − (
�r

ik

)
, j Ar − �r

ik Ar, j − �r
i j Ar,k + �r

i j�
s
rk As − �r

kj Ai,r + �r
kj�

t
ir At

(17.3.16b)

Subtracting (17.3.16b) from (17.3.16a) yields

Ai | jk − Ai | kj = �r
ik�

s
r j As − (

�r
i j

)
,k Ar − �r

i j�
s
rk As + (

�r
ik

)
, j Ar

= [(
�r

ik

)
, j − (

�r
i j

)
,k + �s

ik�
r
s j − �s

i j�
r
sk

]
Ar

= Rr
i jk Ar (17.3.17)

where Rr
i jk is a mixed tensor of order four, known as the Riemann-Christoffel tensor

of the second kind. Since the left-hand side of (17.3.17) is zero, it follows that

Rr
i jk = 0 (17.3.18)

The associated tensor

Ri jkl = gir Rr
jkl (17.3.19)
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is the Riemann-Christoffel tensor of the first kind, which may be written in the form

Ri jkl = 1

2
(gil, jk + g jk,il − gik, jl − g jl,ik) + gmn(� jkm�iln − � jlm�ikn) (17.3.20)

Ri jkl = −Rjikl = −Ri jlk = Rkli j (17.3.21)

which implies that Ri jkl is skew-symmetric in i j and kl. We also note that there are six

different components of Ri jkl , namely,

R3131, R3232, R1212, R3132, R3212, R3112

The Riemann-Christoffel tensors for the reference surface with �3 = 0 are often of

the form

R
��� = �

��,� − �
��,� + ��

���
�� − �

�
���

�� + �3
���

3� − �3
���

3� (17.3.22)

or

R
��� = R



��� + �3
���

3� − �3
���

3� = 0

R3
��� = �3

��,� − �3
��,� + �m

�,��3
m� − �m

���3
m� = 0

R
��� = �3

���
3� − �3

���
3� = b��

(−b
�

) − b��

(−b
�

)
R��� = a� R

�

��� = b�� b� − b��b�

From the symmetry of �
�
�� and b��, we obtain

R���� = R���� (�, � are not summed)

and

R1212 = R2121 = −R2112 = −R1221

Hence, every nonzero component of R���� is equal to R1212 or to −R1212, and it follows

that

R1212 = |b��| = b11b22 − b2
12 (17.3.23)

We introduce an invariant K, called the Gaussian curvature:

K = R1212

a
= |b��|

|a��| = ∣∣b�
�

∣∣ = b1
1b2

2 − b1
2b2

1 (17.3.24)

Another important invariant, H, called the mean curvature of the surface, is of the

form

H = 1

2
a��b�� = 1

2
b�

� = 1

2

(
b1

1 + b2
2

)
(17.3.25)

Since R3
��� also vanishes, we obtain from (17.3.22) that

R3
��� = �3

��,� − �3
��� + �m

���3
m� + �m

���3
m�

= b��,� − b��,� + �m
�� bmb − �m

��bm�
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Defining b�� | � = b��,� − b��

�� − b��

��, we have

b�� | � = b��| � (17.3.26)

which represents either of two equations, namely,

b11| 2 = b12| 1 or b21| 2 = b22|1 (17.3.27)

These equations, (17.3.27), are called the Codazzi equations of the surface and are useful

in establishing compatibility of deformations.

17.3.1.2 Surface Grid Generation

Returning to (17.3.11a), we write the derivative of the surface tangent base vector as

a�,� = ro,�� = �
�
��ro,� + b��n (17.3.28)

where ro, the position vector to the surface, implies the cartesian coordinate values of

the surface grid. Multiplying (17.3.28) by a��, we obtain

a��ro,�� = a���
�
��ro,� + a��b��n

= P� ro,� + a��b��n (17.3.29)

where

P� = a���
�
�� (17.3.30)

is the control function. Note also that

g��b��|surface = a��b�� = b�
� (17.3.31)

This is known as the principal curvature, which is twice the mean curvature (17.3.26).

It is seen that if the surface is degenerated into a plane, then b�
� = 0 (zero mean

curvature), and (17.3.30) becomes identical to that of a two-dimensional plane geometry

as given in (17.2.7).

The governing equation for the surface grid generation takes the form

a11ro,11 + a22ro,22 + 2a12ro,12 = P 1ro,1 + P2ro,2 + (
b1

1 + b2
2

)
n (17.3.32a)

or

1

a
(a22ro,11 + a 11ro,22 − 2a 12ro,12) − P1ro,1 − P2ro,2 = (

b1
1 + b2

2

)
n (17.3.32b)

with

ro,11 =
⎡
⎣ x��

y��

z��

⎤
⎦ , ro,22 =

⎡
⎣ x��

y��

z��

⎤
⎦ , ro,12 =

⎡
⎣ x��

y��

z��

⎤
⎦ ,

√
a =

∣∣∣∣∣∣
x� x� 0

y� y� 0

z� z� 1

∣∣∣∣∣∣
a11 = x2

� + y2
� + z2

�

a22 = x2
� + y2

� + z2
�

a12 = x� x� + y� y� + z� z�
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Principal curvatures are given by

a��b�� = b�
� = n · a�

,� = −a� · n,� = −��
�3(�1, �2, 0) = −a����3�

= −(
a11�131 + a12�132 + a21�231 + a22�232

)
(17.3.33)

with

a11 = a22

a
, a22 = a11

a
, a12 = −a12

a

��3� = ∂2xm

∂��∂�3

∂xm

∂��
= ∂2x1

∂��∂�3

∂x1

∂��
+ ∂2x2

∂��∂�3

∂x2

∂��
+ ∂2x3

∂��∂�3

∂x3

∂��
(17.3.34)

Example 17.3.1

Consider surface coordinates (x, y, z) given as

z = f (x, y), e.g., z = h sin
	x
A

sin
	y
B

(a) Surface Area

dA=
√

1 + z2
x + z2

ydx dy

(b) Surface Unit Normal Vector

n = ni i i , n = a1 × a2√
a

n1 = −zx√
1 + z2

x + z2
y

, n2 = −zy√
1 + z2

x + z2
y

, n3 = 1√
1 + z2

x + z2
y

(c) Surface Length Element

ds =
√(

1 + z2
x

)
dx2 + 2zxzydxdy + (

1 + z2
y

)
dy2

(d) Principal Curvatures

b�
� =

(
1 + z2

y

)
zxx − 2zxzyzxy + (

1 + z2
x

)
zyy(

1 + z2
x + z2

y

) 3
2

Example 17.3.2

Prolate ellipsoid defined by

x = a cos � , y = b sin � cos � , z= b sin � sin �

From (17.3.33) and (17.3.34) we obtain the curvature tensor as

b�
� = −a[a2 sin2 � + b2(1 + cos2 �)]

b (a2 sin2 � + b2 cos2 �)
3
2
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The governing equations (17.3.32) may be solved using finite differences or finite

elements. Control functions can be selected similarly as discussed in Section 17.2. These

functions are set before the solution algorithm begins, either directly through input or

by calculation from the boundary point distributions.

17.3.2 ALGEBRAIC METHODS

In algebraic methods, we are not concerned with differential equations, but rather

involved in points, curves, elementary surfaces, and the global surface. Earlier works on

this subject include Coons [1967], DeBoor [1972], Bezier [1986], Farin [1987, 1988], and

George [1991], among others.

17.3.2.1 Points and Curves

Control points which are used in defining some higher order entities (curves and sur-

faces), points of the curves and surfaces, and the points created by the mesh generator

are to be addressed in the algebraic methods.

A point is given either explicitly or is the result of a computation (intersection of

two curves). Furthermore, the points given can be present in the surface approximation

or else merely serve as supports for information. In this case, they will not exist in this

approximation but are used to define the set of points to be created on the surface.

The curves are created from points and relatively complex functions to ensure cer-

tain continuity properties (in particular at the junction of two curves). Three types of

construction can be established:

(a) The curve is defined by points and passes through them.

(b) The curve is defined by points but does not necessarily pass through them.

(c) The curve is defined by points and additional constraints such as directional

derivatives.

We are now confronted with the problem of constructing a piecewise polynomial

function of s, of degree n and of class Cri −1 in si with 0 ≤ ri ≤ n, such that

C(s) = SMQ (17.3.35)

where M is the matrix of coefficients of dimension (n + 1) × (n + 1), with S and Qbeing

the basis polynomials of the representation (a line vector) and the control (column)

vector so that

S = [sn, sn−1, . . . , s, 1] (17.3.36a)

Q = [
qo, q1, . . . , qn+1

2
, q̇o, q̇1, . . . , q̇n+1

2

]
(17.3.36b)

To illustrate, we shall examine the Lagrange polynomial, Hermite polynomial, and

Bezier curve.
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(a) Lagrange Polynomial

The Lagrange polynomials in the context of (17.3.35) are written as

C(s) =
n∑

i=0

�i (s)Qi (17.3.37)

with

�i (s) =
n∏

r=0
r �=i

s − sr

si − sr
(17.3.38)

in which n + 1 specified points are involved and

�i (s j ) = �i j

C(si ) = Qi

With these definitions, the recurrence formula for (17.3.37) becomes

Cm
i (s) = si+m − s

si+m − si
Cm−1

i (s) + s − si

si+m − si
Cm−1

i+1 (s) = 0 (17.3.39)

with i = 0, . . . n − m, m = 1, . . . n, which is known as the Aitken’s algorithm.

Notice that (17.3.35) and (17.3.39) are identical. To see this, let us consider n = 1.

Then, (17.3.35) becomes

C(s) = [ s 1 ]

⎡
⎢⎢⎣

1

so − s1

1

s1 − s0

−s1

so − s1

−so

s1 − s0

⎤
⎥⎥⎦

[
Q1

Q2

]
= [ s 1 ]

[−1 1

1 0

][
Q1

Q2

]

= (1 − s)Q1 + s Q2

The same result arises from (17.3.38).

Similarly, for n = 2, we obtain

C(s) = [
s2 s 1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

(so − s1)(so − s2)

1

(s1 − s0)(s1 − s2)

1

(s2 − s0)(s2 − s1)

−s1 − s2

(so − s1)(so − s2)

−so − s2

(s1 − s0)(s1 − s2)

−so − s1

(s2 − s0)(s2 − s1)

s1 s2

(so − s1)(so − s2)

sos2

(s1 − s0)(s1 − s2)

sos1

(s2 − s0)(s2 − s1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ Q1

Q2

Q3

⎤
⎦

or

C(s) = [ s2 s 1 ]

⎡
⎣ 2 −4 2

−3 4 −1

1 0 0

⎤
⎦

⎡
⎣ Q1

Q2

Q3

⎤
⎦

= (2s2 − 3s + 1)Q1 + (−4s2 + 4s)Q2 + (2s2 − s)Q3

It is seen that this is the second order Lagrange polynomial representation.
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(b) Hermite Polynomial

Proceeding similarly as in the Lagrange polynomial, but with derivatives of Q, we

write for n = 3,

S = [ s3 s2 s 1 ], Q = [ qo q1 q̇o q̇1 ], M =

⎡
⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎦

representing the cubic Hermite polynomials.

(c) Bezier Curve

An algebraic form of this approximation uses the Bernstein polynomials of the form

C(s) =
n∑

i=0

cn
i si (1 − s)n−i Qi (17.3.40)

with

cn
i = n!

(n − i)! i!
(17.3.41)

for which the matrix of coefficient takes the form

M =

⎡
⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎦ with S = [ s3 s2 s 1 ], Q = [ qo q1 q2 q3 ]

(17.3.42)

These polynomials can be shown to be identical to the cubic Hermite polynomials

if we consider a third degree polynomial satisfying the following four constraints:

Ci (0) = Qi , Ci (1) = Qi+1

Ċi (0) = Q̇i , Ċi (1) = Q̇i+1

To this end, we set

Ci (s) = ai + bi s + ci s2 + di s3

and obtain

Qi = ai

Qi+1 = ai + bi + ci + di

Q̇i = bi

Q̇i+1 = bi + 2ci + 3di
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This gives

S = [
s3 s2 s 1

]
, Q = [

Qi Qi+1 Q̇i Q̇i+1

]
, M =

⎡
⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎦

(17.3.43)

Here, Ci (s) = SMQ represents the cubic Hermite polynomial.

Another example is given for the case involving four consecutive points. (Qi−1, Qi ,

Qi+1, Qi+2) with a cubic polynomial mapped between [0, 1] and the curve passing

through Qi and Qi+1 and its tangent at these points being fixed to the value Q̇i =
1
2
(Qi+2

− Qi ). These conditions lead to

Qi = ai

Qi+1 = ai + bi + ci + di

Qi+1 − Qi−1 = 2bi

Qi+2 − Qi = 2bi + 4ci + 6di

and

S = [s3 s2 s 1], Q = [
qi−1 qi qi+1 qi+2

]
, M = 1

2

⎡
⎢⎢⎣

−1 3 −3 1

2 −5 4 −1

−1 0 1 0

0 2 0 0

⎤
⎥⎥⎦

(17.3.44)

This is known as the Catmull-Rom form.

A general form of (17.3.44), called the cardinal spline basis, is given as

M =

⎡
⎢⎢⎣

−� 2 − � � − 2 �

2� � − 3 3 − 2� −�

−� 0 � 0

0 1 0 0

⎤
⎥⎥⎦ (17.3.45)

where � = 1 leads to the Catmull-Rom form.

Similarly, the coefficient matrices for B-spline and Beta spline forms are given as

follows:

B-Spline

M = 1

6

⎡
⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 1

⎤
⎥⎥⎦ (17.3.46)

Beta Spline

M = 1

�

⎡
⎢⎢⎢⎢⎣

−2�3
1 2

(
�2 + �3

1 + �2
1 + �1

) −2
(
�2 + �2

1 + �1 + 1
)

2

6�3
1 −3(�2 + 2�3

1 + 2�2
1 ) 3

(
�2 + 2�2

1

)
0

−6�3
1 6

(
�3

1 − �1

)
6�1 0

2�3
1 �2 + 4

(
�2

1 + �1

)
2 0

⎤
⎥⎥⎥⎥⎦ (17.3.47)
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with � = �2 + 2�3
1 + 4�2

1 + 4�1 + 2. For �1 = 1, �2 = 0 the classic B-spline form is found

there, �1 (the bias) and �2 (the tension) are introduced in B-spline form in order to

control the curve by moving it toward the control points.

17.3.2.2 Elementary and Global Surfaces

The different methods to construct a curve can be extended to a surface by using tensor

product in two or three directions.

C(s, u) = SMQ(u) (17.3.48)

with

Q(u) = UMQ(i j) (17.3.49)

where i denotes the dependence with respect to parameter s and j that with respect to

parameter u, U is the equivalent in u to S (i.e., the associated basis polynomial), and

Q(i j), is a (n + 1) × (n + 1) matrix constructed on control points. Substituting (17.3.49)

into (17.3.48) yields

C(s, u) = SMQT
(i j) MTUT (17.3.50a)

or

C(s, u) =
n∑

i=0

m∑
j=0

bi j si u j (17.3.50b)

where bi j depends on the method selected (n and m being arbitrary). In case of the

Bezier form, C(s, u) can be expressed in terms of the Bernstein polynomials:

Bn
i (s) = Cn

i si (1 − s)n−i (17.3.51)

so that

C(s, u) =
n∑

i=0

m∑
j=0

Bn
i (s)Bm

j (s) Q(i j) (17.3.52)

This represents the surface by Bezier patches leading to quadrilateral elements

(Figure 17.3.2a). To produce triangular patches (Figure 17.3.2b), we use the polyno-

mials

Bn
i jk(r, s, t) = n!

i ! j! k !
r i s j tk, i + j + k = n (17.3.53)

(a) (b)

Figure 17.3.2 Quadrilateral and triangu-

lar element patches. (a) Quadrilateral

element. (b) Triangular element.
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Toward this end for each boundary line when considering a patch processed pre-

viously, we now perform discretization, compatible with the previously meshed lines.

The global surface is obtained using, for example, the Catmull-Rom form of the third

degree.

Example 17.3.3

Describe in detail the implementation of a Bezier curve for surface grid generation.

(1) Initial Step

A global surface is obtained from the union of elementary surfaces or patches. For

the Catmull-Rom method, the surface is defined by a coarse grid of patches derived

from user-specified control points. To define a grid on the surface which has n divisions

in the s-direction and m divisions in the u-direction requires (n + 2) × (m + 2) control

points. The extra end points serve to define the shape of the surface at its boundary. Each

Bezier patch is then determined from its four points (the vertices of the quadrilateral

element) and the points in its corresponding neighbors.

(2) Valid Mesh

In order to obtain a valid mesh, we must ensure that any point which is common

to two patches is defined in the same way for each patch that contains it. This implies

that the lines bordering each patch are meshed the same way in all patches containing

them.

(3) Creation of Mesh

When all the lines forming the boundaries of the patches have been discretized, the

mesh of all the patches is created as follows:

(3-1) If the patch is quadrilateral or triangular and if none of its boundary lines

contains intermediary points, then it is considered an element of the mesh.

(3-2) If the patch is quadrilateral or triangular and if all of its boundary lines contain

a given number of intermediary points compatible with a regular partitioning,

then it is meshed by a suitable method. For example, use the Catmull-Rom

method as follows:

Step 1

do for i = 0 and i = N
do for j = 0 to M, do

� Consider the location in R3 of node (i, j) (located on a boundary line previ-

ously meshed)
� Compute values of the associated parameters

end do for j = 0 to M;

end do for i = 0 and i = N
for j = 0 and j = M, do

for i = 0 to N, do
� Consider the location in R3 of node (i, j)
� Compute values of the associated parameters

end do for i = 0 to N
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end do for i = 0 and i = M;

end do for Step 1:

Step 2

Create the mesh in space (t, u) of the unit square [0, 1] × [0, 1] as a function

of its boundary discretazation

end do for Step 2

Step 3

do, for i = 1 to N − 1, do

for j = 1 to M − 1, do
� Definition of Connectivity: the vertices of the element created have the fol-

lowing couples as vertex numbers: (i, j), (i + 1, j), (i + 1, j + 1) and

(i, j + 1), each of which will have a global number associated with it
� Compute Vertex Location: evaluate t and u corresponding to i and j and find

the location using C(t, u) = ∑n
i=0

∑m
j=0 bi j t i u j with Pi j the matrix of control

points

end do for j = 1 to M − 1;

end do for i = 1 to N − 1;

(3-2) Any two-dimensional method can be implemented in (t, u) space, the problem

being to know if the mapping in R3 of mesh points in the space of parameters

is valid, close to the surface, and good quality.

Example 17.3.4

This example is based on the surface grid generation via Bezier curve polynomials

[Warsi, 1992]. Figure E17.3.4a shows a generic forebody surface grid of an aircraft, with

the number of points increased in the canopy region (Figure E17.3.4b). Discontinu-

ities in a surface may be handled easily by selecting appropriate patches so that spline

constructions do not occur at the discontinuities.

Figure E17.3.4c shows a set of curves generated for a generic re-entry vehicle as

an example of curve generation and editing facilities. Since actual surface definition

data are not available, each of the curves shown is generated with the curve segment

generator in the program. The majority of the curves are generated using the Bezier

generator, and the complex curves at the trailing edge of the wing are generated by

appending multiple Bezier curves, elliptical, circular and straight line segments.

Figure E17.3.4d shows the initial surface grid generated for the generic re-entry

vehicle using the previously designed curves shown in Figure E17.3.4c, and the surface

generation facilities of splining cross-sectional data and transfinite interpolation with

specified edge curves. The final surface grid for the generic pre-entry vehicle after using

the surface editing facilities is shown in Figure E17.3.4e. Notice that grid distributions

are now much smoother and point resolution in areas of interest is better, while the

original surface geometry is maintained.

A sample far-field boundary and blocking arrangement for the entry vehicle after

performing a domain decomposition is shown in Figure E17.3.4f, with the mesh on se-

lected block faces around the re-entry vehicle shown in Figure E17.3.4g. Figure E17.3.4h

shows a global view of the surface grids generated for a win/pylon/lead configuration.
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Figure E17.3.4 Surface grid generation via Bezier curve polynomials [Warsi, 1992].

(a) Generic forebody surface grid. (b) Enrichment of grid points in canopy region of

forebody surface. (c) Surface definition curves for generic re-entry vehicle. (d) Initial

surface grid for generic re-entry vehicle.

Figure E17.3.4i shows some details of the surface grids in the wing/pylon interaction

region.

17.4 MULTIBLOCK STRUCTURED GRID GENERATION

An efficient approach to the grid generation in complex domain, particularly in three-

dimensional geometries, is to establish block configurations initially, construct the grid

with increasing details, and make modifications on an existing grid with minimum re-

strictions. Such a sequential procedure is known as multiblock grid generation, which is

conducive to parallel processing to be discussed in Section 20.4. Ecer, Spyropoulos, and

Maul [1985] presented the multiblock structured finite element grid generation. Brief

descriptions of this approach are given below.

A convenient way of generating the finite element multigrid system is to use isopara-

metric elements in 2-D or 3-D. Linear, quadratic, or cubic interpolation functions may

be used to divide the domain roughly by a desired number of blocks, each of which will

then be subdivided into as many elements as required for computation. For geometries

with a pointed nose or leading and trailing edges of an airfoil, it is necessary to use

wedge type elements such as a triangle collapsed from a quadrilateral element for 2-D

(see Example 9.3.5) or the counterpart for 3-D with a tetrahedron collapsed from a

hexahedron.

Consider the modeling of a complete aircraft geometry as an example. The geomet-

ric modeling package provides information in three steps as shown in Figure 17.4.1a





Fi
gu

re
17

.4
.1

M
u

lt
ib

lo
ck

st
ru

ct
u

re
d

g
ri

d
g

e
n

e
ra

ti
o

n
[E

ce
r,

1
9

8
6

].
(a

)P
ro

ce
d

u
re

o
f
d

e
sc

ri
b

in
g

th
e

a
ir

cr
a

ft
g

e
o

m
e

tr
y.

(b
)G

e
o

m
e

tr
ic

d
e

sc
ri

p
ti

o
n

o
f
b

lo
ck

st
ru

ct
u

re
d

a
ro

u
n

d
th

e
a

ir
cr

a
ft

.
(c

)
A

cr
o

ss
se

ct
io

n
o

f
th

e
fi

n
a

l
g

ri
d

fo
r

p
a

rt
o

f
th

e
a

ir
cr

a
ft

g
e

o
m

e
tr

y.

589



590 STRUCTURED GRID GENERATION

17.5 SUMMARY

Algebraic methods and PDE mapping methods constitute the two major schemes used

in the structured grid generation primarily for FDM applications. The algebraic methods

consist of domain vertex methods and transfinite interpolation methods, whereas the

PDE mapping methods require solutions of elliptic, hyperbolic, or parabolic partial

differential equations. We examined the methods of surface grid generation, using both

elliptic PDE methods and algebraic methods.

It was also shown that the use of multiblock structured grid generation is particularly

effective in FEM applications. In some complex geometries, however, unstructured grid

generation is advantageous, particularly in terms of adaptive mesh. This subject will be

presented in the next chapter.
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CHAPTER EIGHTEEN

Unstructured Grid Generation

The structured grid generation presented in Chapter 17 is restricted to those cases

where the physical domain can be transformed into a computational domain through

one-to-one mapping. For irregular geometries, however, such mapping processes may

become either inconvenient or impossible to apply. In these cases, the structured grid

generation methods are abandoned and we turn to unstructured grids where transfor-

mation into the computational domain from the physical domain is not required. Even

for the regular geometries, an unstructured grid generation may be preferred for the

purpose of adaptive meshing in which the structured grids initially constructed become

unstructured as adaptive refinements are carried out.

Finite volume and finite element methods can be applied to unstructured grids. This

is because the governing equations in these methods are written in integral form and

numerical integration can be carried out directly on the unstructured grid domain in

which no coordinate transformation is required. This is contrary to the finite difference

methods in which structured grids must be used.

There are two major unstructured grid generation methods: Delaunay-Voronoi

methods (DVM) and advancing front methods (AFM) for triangles (2-D) and tetrahe-

drals (3-D). Numerous other methods for quadrilaterals (2-D) and hexahedrals (3-D)

are available (tree methods, paving methods, etc.). We shall discuss these and other

topics in this chapter.

18.1 DELAUNAY-VORONOI METHODS

A two-dimensional domain may be triangulated as shown in Figure 18.1.1a (light lines).

Each side line of the triangles can be bisected in a perpendicular direction such that

these three bisectors join a point within the triangle (heavy lines in Figure 18.1.1a),

forming a polygon surrounding the vertex of each triangle, known as the Voronoi

polygon (diagram) [Voronoi, 1908]. A collection of Voronoi polygons is known as the

Dirichlet tessellation [Dirichlet, 1850], and the resulting triangles as Delaunay triangu-

lation [Delaunay, 1934].

Any three points in the plane may be connected by a circle, called the circumcircle

(Figure 18.1.1b). The center of this circle, called circumcenter, may (triangle ABC) or

may not (triangle DEF) remain within the triangles, although perpendicular bisectors

591
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(c) (d)
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Figure 18.1.2 A triangulation must satisfy the in-circle criterion that no point of

the set Pi is interior to the circumcircle of any triangle T(Pi ). (a) Undesirable tri-

angle, maximum-minimum criterion is not satisfied. (b) Desirable triangulation

maximum-minimum criterion is satisfied. (c) Unacceptable because the circum-

circle ABC includes point D interior to the circumcircle. Similarly, if circumcircle

ACD is drawn, then B will be interior to it. (d) Acceptable because no point is

interior to the circumcircles (ABD or BCD).

(2) Introduce a new point.

(3) Conduct a search of all the current triangles to identify those whose circumdisks

contain the new point. For each such disk, the associated triangle is flagged for

removal.

(4) With the union of all such triangles, an insertion polygon is formed. Here no

previously inserted node is contained in the interior of the polygon. Also, each

boundary node of the polygon may be connected to the new node by a straight

line lying entirely within the polygon. These lines form a new triangulation of

the region, which can be shown to be a new Delaunay triangulation.

(5) Repeat Steps 2 through 4 until all nodes have been inserted.

To illustrate the procedure described above, consider triangle 2-4-6 and neighboring

triangles 1-2-6, 2-3-4, and 4-5-6 as shown in Figure 18.1.3a. Introduce a new point inside

the triangle 2-4-6 (denoted by 7). Each triangle has a circumdisk as defined by the

circles containing all three vertices. By default, a new point lies on the circumdisk

of the new triangle upon which it was introduced. Check to see if the new point lies

within the circumdisk of the neighboring triangles by comparing the distance between

the new point and the circumcenter to the radius for each triangle. Point 7 lies within

the circumdisks of neighboring triangles 2-3-4 and 4-5-6, but not triangle 1-2-6 as

shown in Figure 18.1.3b. Flag those triangles for removal that have circumdisks which

contain the new point. In the example, triangles 2-3-4, 4-5-6, and 2-4-6 are flagged for
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Figure 18.1.4 Treatment of undesirable of elements: (a) silver (badly dis-

torted, D being slightly out of the plane of A-B-C) (b) Share a common

vertex at E.

the mesh (overlapping tetrahedra or gaps in the mesh). A solution to this problem

is to slightly perturb the coordinates of a newly entered point whenever that point is

found to lie ambiguously on a circumsphere. At the completion of the triangulation, all

perturbed nodes are restored to their original positions.

A sliver is a thin, badly distorted tetrahedron whose faces are well-proportioned

triangles but whose volume can be made arbitrarily small (Figure 18.1.4a). In practice

these are identified when the ratio

a = radius of inscribed sphere
radius of circumsphere

becomes “small” (less than 0.01). Slivers are removed in one of two ways, depending

on how the tetrahedron fits into the mesh. Consider a tetrahedron ABCD which is

determined to be a sliver (Figure 18.1.4b). First we must determine the four tetrahedra

that neighbor ABCD. If two of these share a common vertex, say node E, the sliver is

removed from the collection of tetrahedra, and elements {ABDE, BCDE} are replaced

by elements {ABCE, ACDE}. When no two of the surrounding tetrahedra share a

common vertex, the node point D is arbitrarily moved to improve the aspect ratio of

the sliver.

Finally, we must post-process the mesh to obtain the final mesh over the given geo-

metry. The above described process leads to a triangulation of the original tetrahedron.

The tetrahedra associated with interior element nodes are distinguished because they

have none of the four initial points as vertex. Of these interior tetrahedra, we remove the

ones that lie outside of the geometry to be meshed. These are the ones whose centroids

lie outside of the boundary surface.

For illustration, let us consider triangulation of a circle. The step-by-step procedure

is described as follows:

(1) First of all, we define the convex hull within which all points will lie. Specify

required points as shown in Figure 18.1.5a.

(2) Introduce a new point. Check to see if the new point lies on the circumdisk and if

the distance from the new point to the circumcenter is less than the circumradius.

Flag those triangles that contain the new point. Find the insertion polygon, the

polygon remaining after the flagged triangles have been removed. First, identify

the flagged triangles. Then, for each side of the triangles, check on the neighbor
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Figure 18.1.6 Delaunay-Voronoi-Watson algorithm

flow chart for airfoil grid generation.

This gives the circumradius

r =
√

(x1 − xcenter)2 + (y1 − ycenter)2

(5) Degenerate case. This occurs when a newly inserted node appears to lie on

the surface of a circumcircle/circumsphere. This can be resolved by slightly

perturbing the coordinates of the newly entered point.

(6) The procedure described above leads to the results shown in Figure 18.1.5d,e.

The computer code flow chart and examples for mesh generation of a circle using

the Delaunay-Voronoi method with Watson algorithm are shown in Figure 18.1.6 and

Figure 18.1.7, respectively.

18.1.2 BOWYER ALGORITHM

In this algorithm, we utilize the forming points (points which define a Delaunay triangle

and Voronoi vertex (vertex of a Voronoi polygon) as shown in Figure 18.1.8.

We recognize that it is possible to completely describe the structure of the Voronoi

diagram and Delaunay triangulation by constructing two lists for each Voronoi vertex.

These are a list of forming points for the vertex, and a list of the neighboring Voronoi

vertices.
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Vertex Forming Point Neighboring 

Vertices 

V1 F1F2F3 V2 0 0 

V2 F2F3F4 V1V3V4 

V3 F2F4F5 V2V6 0 

V4 F3F4F8 V2V5 0 

V5 F4F6F8 V4V6V7 

V6 F4F5F6 V3V5 0 

V7 F6F7F8 V5 0 0  

F3

F1

F2

F5

F6

F7

F8

F4

0

0

0

0

0

0

V4

V2 V7

V6

V5

V3

V1

0

Figure 18.1.8 Forming points (F1-F8) and Voronoi vertices (V1-V7).

Similar to the previously described Watson algorithm, this is a sequential process.

Each new point is introduced into the structure, one at a time, and the structure is

reformulated onto a new Delaunay triangulation. The steps are as follows:

(1) Define a convex hull within which all points will lie. Specify four points with the

associated Voronoi diagram.

(2) Introduce a new point.

(3) Determine all vertices of the Voronoi diagram to be deleted. A vertex to be

deleted is one whose circumcircle (defined by three forming points) contains

the new point. This is similar to step 3 in Watson’s algorithm.

(4) Find the forming points of deleted Voronoi vertices, which are contiguous points

to the new point. This is similar to step 4 of Watson’s algorithm in which the

new point is connected to the insertion polygon by straight lines.

(5) Determine the neighboring Voronoi vertices to the deleted vertices which have

not been themselves deleted. These data provide the necessary information to

enable valid combinations of contiguous points to be constructed.

(6) Determine the forming points of the Voronoi vertices. These must include the

new point together with two other points which are contiguous to the new point,

and form an edge of the neighboring triangle.

(7) Determine the neighboring Voronoi vertices to the new Voronoi vertices. From

step 6, the forming points of all new vertices have been computed. For each

new vertex, conduct a search through the forming points of the neighboring

vertices found in step 5 to identify common pairs of forming points. When a

common combination occurs, then the two associated vertices are neighbors of

the Voronoi diagram.

(8) Reorder the Voronoi diagram data structure overwriting the entries of deleted

vertices.

(9) Return to step 2 until all points have been inserted.

This process will generate regions that are both interior and exterior to the domain.

For grid generation purposes, it is necessary that such triangles which are not within

the domain of interest be removed before the next step of the procedure. To do this,

in the initial generation of the list of points defining the physical domain, the outer

domain boundary points should be listed in a counterclockwise fashion while any and

all interior boundaries be listed in clockwise fashion. With this method, the sign of the

cross-product of the face tangent vector with a vector to the cell centroid can be used

to determine if a triangle lies either to the interior or exterior of the boundary and then
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Figure 18.1.9 Bowyer algorithm for triangulating a circle.

(a) Voronoi polygon. (b) Delaunay triangle.

can be easily removed (by defining the triangle connectivities) if it should lie outside

the desired domain. Once the initial triangulation of the domain has been performed,

all triangles that have a node associated with the initial user-defined superstructure are

removed. Following this process, the Voronoi polygons and the final triangulation are

shown in Figure 18.1.9.

In summary, the Watson and Bowyer algorithms are quite similar. Each algorithm

starts with an initial grid surrounding the geometry to be discretized. New points are

introduced one at a time, and triangles whose circumdisk contain the new point are

deleted. The region is then re-triangularized by connecting points on the deleted trian-

gles to the new point. The basic difference between the Watson and Bowyer algorithms,

however, is in the initial superstructure and the data structures. Note that the Bowyer

algorithm maintains essentially a list of only Voronoi polygons and can then form the

triangle lists from the Voronoi diagram, whereas the Watson algorithm chooses simply

to maintain a list of the triplets of node numbers which represent the completed trian-

gles, in which a running list of circumcircle center and circumradius for each formed

triangle is kept.

18.1.3 AUTOMATIC POINT GENERATION SCHEME

In both the Watson and Bowyer algorithms, “a new point is introduced.” The method

for producing the points, however, has not been addressed. An algorithm for automatic

generation of points can be developed as follows [Weatherill, 1992]:

(1) Compute the point distribution function for each boundary point xi , yi :

dPi = 1

2

[√
(xi+1 − xi )2 + (yi+1 − yi )

2 +
√

(xi − xi−1)2 + (yi − yi−1)2
]

where the points i + 1 and i − 1 are contiguous to i .

(2) Generate the Delaunay triangulation of the boundary points.

(3) For all triangles within the domain:

(a) Define a prospective point to be at the centroid of the triangle.

(b) Derive the point distribution, dPm, for the prospective point by interpolating

the point distribution from the nodes of the triangle.

(c) Compute the distances, dm (m = 1, 2, 3) from the prospective node to each

of the triangles. Then,
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If dm < �dPm, then reject the point and return to step 3a.

If dm > �dPm, then insert the point using the Delaunay triangulation algo-

rithm where the coefficient � is the parameter which controls the grid point

density.

(d) Assign the interpolated value of the point distribution function to the new

node.

(e) Move on to the next triangle.

18.2 ADVANCING FRONT METHODS

In contrast to the Delaunay-Voronoi methods (DVM), the advancing front methods

(AFM) seek to achieve internal nodal formation and triangulation by marching tech-

niques that advance front cell faces from the domain boundary, with or without back-

ground grid configurations. Various schemes of AFM have been reported [Lo, 1985,

1989; Peraire et al., 1987; Lohner, 1988] for both two dimensions (triangular elements)

and three dimensions (tetrahedral elements). The AFM concept may be extended to a

generation of quadrilateral elements [Zhu et al., 1991; Blacker and Stephenson, 1991].

We shall examine these and other topics in this section.

The simplest description of AFM begins with specification of boundaries, as shown

in Figure 18.2.1 where the exterior boundaries move counterclockwise and interior

boundaries (if they exist, i.e., multiply connected domain) move clockwise. For example,

for the case of a simply connected domain (Figure 18.2.2a), exterior boundaries (nodes

1 through 6, Figure 18.2.2b) are used as initial active front faces. Node 7 is created

to form a triangle 1-2-7 and then side 1-2 is deleted so that we now have two new

front faces 1-7 and 2-7 (Figure 18.2.2c). Choose a new interior node 8 (Figure 18.2.2d)

which will then allow side 2-3 to be deleted. The process continues (Figure 18.2.2e

through Figure 18.2.2j) until all front faces are deleted. Deleted sides then represent

the generated mesh.

The unstructured mesh generation by AFM described above may be controlled with

node spacing more favorably maintained (node space control method). This method

begins by constructing a coarse background grid of triangular elements which com-

pletely covers the domain of interest (Figure 18.2.3a). For the elements to be generated

(Figure 18.2.3b), it is convenient to define a node spacing �, the value of a stretching

parameter s, and a direction of stretching �. Then the generated elements will have

typical length s� in the direction parallel to � and a typical length � normal to � as

shown in Figure 18.2.3b.

At each node on the background grid, nodal values of �, s, � must be specified.

During grid generation, local values will be obtained from interpolation of the nodal

values on the background mesh. Note that if � is required to be initially uniform and

Figure 18.2.1 Multiply connected domain, counter-

clockwise advancing for outer boundaries, clockwise

advancing for inner boundaries.
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Figure 18.2.3 AFM procedure. (a) Background mesh. (b) Determination of mesh parameter.

(c) Search for best point. (d) Undesirable element. (e) Finalized mesh. (f) Close-up view.

no stretching is to be specified, then the background grid need be only one triangle

covering the entire domain.

Nodes are placed on the boundaries first, and the exterior boundary nodes are

numbered counterclockwise, while any interior boundaries run clockwise. Thus, as the

boundaries are traversed, the region to be triangulated always lies to the left.

At the start of the process, the front consists of the sequence of straight-line segments

which connect consecutive boundary points. During the generation process, any straight-

line segment that is available to form an element side is termed active, whereas any

segment that is no longer active is removed from the front.

The following steps are involved in the process of generating new triangles in the

mesh.

(1) Set up a background grid to define the spatial variation of the size, the stretching,

and the stretching direction of the element to be generated (Figure 18.2.3b).

(2) Define the boundaries of the domain to be gridded, using the algebraic equations

for each boundary.

(3) Using the information from Step 2, set up the initial front of faces. These faces

are defined as segments between two consecutive points along the boundaries.

(4) Select the next face to be deleted from the front. In order to avoid large

elements crossing over regions of small elements, the face forming the smallest

new element is selected as the next face to be deleted from the list of faces.

(5) The following procedure is used for face deletion:

(a) The “best point” is calculated as shown in Figure 18.2.3c (equilateral).

(b) Determine whether a point exists in the already generated grid that should
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be used in lieu of the new point. This step is accomplished by creating a list

containing the node number of those nodes that fall within a circle centered

at the “best point” and with a radius of nAB (n = 3 ∼ 5). Also, the point

must form a triangle with a positive area to be included in the list as shown

in Figure 18.2.3d.

(c) Determine whether the element formed with the selected point does not

cross any given faces. If it does, select a new point and try again.

(6) Add the new element, point, and faces to their respective lists.

(7) Find the generation parameters for the new faces from the background grid.

(8) Delete the known faces from the list of faces.

(9) If there is any face left in the front, go to step 4. The finalized mesh is shown in

Figure 18.2.3e,f.

Note that the inclusion of stretching is achieved by using a local transformation

that maps the real plane, in which stretching is desired, into a fictitious space, in which

triangles satisfying the stretching conditions will appear to be equilateral. This trans-

formation simply consists of a rotation of the axes to make � coincide with the x1 axis,

and a scaling by a factor s of the x1 axis, and the inverse rotation to take the x1 axis to

the original position.

Recall that in the Delaunay-Voronoi methods, points are inserted in a previously de-

termined manner, and then the entire mesh is re-triangulated. In contrast, the advancing

front methods determine where to put the points directly from the space control scheme.

Mesh Smoothing

Practical implementations of either advancing front or Delaunay-Voronoi grid gen-

erators indicate that in certain regions of the mesh, abrupt variations in element shape

or size may be present. These variations appear even when trying to generate perfectly

uniform grids. The best way to circumvent this problem is to improve the uniformity of

the mesh by smoothing.

The so-called Laplacian smoother or the “spring-analogy” smoother may be used.

In this method, the sides of the element are assumed to represent springs. These springs

are then relaxed in time using explicit time stepping, until an equilibrium of spring

forces has been established [Spradley, 1999].

In each subdomain, the standard Laplacian smoother is employed. Each side of the

element can be visualized to represent a spring. Thus, the force acting on each point is

given by

fi = c
nsi∑
j=1

(xj − xi )

where c denotes the spring constant, xi the coordinates or the point, and the sum

extends over all the points, nsi , surrounding the point i . The spring constant is set in the

computation software, based on tests of the method.

The time advancement for the coordinates is accomplished as follows:

�xi = �t
1

nsi
fi

At the boundary of the subdomain, the points are allowed to “slide” along the bound-

aries, but not to “leave” the boundary.
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Figure 18.2.4 Mesh smoothing process, AFM. (a) Background mesh. (b) Finalized

mesh without mesh smoothing. (c) After mesh smoothing.

The time step is also set in the code based on experience with using it. Usually, 5–10

time steps or passes over the mesh will smooth it sufficiently. The final results using the

advancing front method without mesh smoothing and with mesh smoothing are shown

in Figure 18.2.4. A sample program using C++ is listed in Figure 18.2.5.

//********************************************************************** 

// Module Name: Mesh Smoothing, Advancing Front Method 
//********************************************************************** 
void Mesh_SmoothingMethod::meshSmoothing(int times)  

// the parameter is the times of mesh smoothing, usually 10 is enough. 
{ 
 int i, k; 
 double deltaX, deltaY, deltaXY; 
 int step[10]={10,9,8,7,6,5,4,3,2,1}; 
 
 numPoints=0; 
 numTriangle=1; 
 numEdge=0; 
  
 readMeshFromFile(); // read triangle mesh from file 
 formAllEdgeFromTriangleMesh(); // find all edges of triangle mesh 
 findAllEdgeIndexForPoints(); // find point index for all edges  
 
 for(k=0; k<times; k++) 
 { 
  calculateForceForPoints();  // calculate the force of points 

       // ∑
=

−=
ins

j
iji xxcf

1

)( , X and Y direction 

       // Δ Δx t
ns

fi
i

i= 1
 

  for(i=0; i<numPoints; i++) 
  { 
   if(pointSetData[i].type==SDC_INTERIOR)  

// if the type of point is interior, then deform the position based 
// on the force 

   { 
    deltaX=pointSetData[i].deltaX/step[k]; 
    deltaY=pointSetData[i].deltaY/step[k];; 
    deltaXY=pointSetData[i].deltaXY/step[k];; 
    pointSetData[i].x+=deltaX; 
    pointSetData[i].y+=deltaY; 
   } 
  } 
 } 
} 

Figure 18.2.5 Mesh smoothing computer program using C++ [Z. Q. Hou, UAH].
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Table 18.2.1 Comparison between Advancing Front and Delaunay-Voronoi Methods

Advantages Disadvantages

Advancing Front

Methods

(1) A layer of well-positioned nodes

allowing the front to advance.

(2) Equilateral triangle with the

frontal face and either stretch or

compress it to match better the

spacing requirements of the

background mesh.

(3) Refined process is

straightforward, grids produced

are quite regular.

(4) High node distribution quality.

(1) Large amount of sorting and

searching is needed to determine

internal nodes.

(2) Nodes generated may not be

connected in an optimal way.

(3) Generation process is cellwise,

more costly than pointwise.

Delaunay-Voronoi

Methods

(1) Each node is surrounded by its

Voronoi region that compresses

that part of the plane which is

closer to this node than to any

other node.

(2) A unique triangulation is

obtained by connecting the nodes

whose Voronoi regions share a

common boundary, forming a

triangle with the three nodes that

are closest to each other.

(3) Generation process is pointwise,

less costly than cellwise.

(4) Optimal connectivity.

(1) Refined process is much more

random; grids produced are not as

regular.

(2) Searching for the largest cell for a

skewed cell with the largest

circumcircle for each new node is

very costly.

(3) The skewness criterion is

expensive (three square roots

involved in the circle ratio).

The choice between DVM and AFM depends on the personal preference and the

requirements for a given problem. This decision may be made upon the overall review

of advantages and disadvantages presented in Table 18.2.1.

18.3 COMBINED DVM AND AFM

Having studied both DVM and AFM, it appears to be a logical approach to combine

both methods in order to make use of advantages and discard disadvantages of both

methods [Müller et al, 1993]. In this approach, we use a background grid to interpolate

local mesh size parameters that is taken from the triangulation and create a set of

nodes by means of AFM, and this set is subsequently introduced into the existing mesh,

thus providing an updated DVM triangulation. The procedure is repeated until further

improvements can not be obtained by inserting new nodes.

The results of a grid around a three element airfoil [Müller, Roer, and Deconinck,

1993] are shown in Figure 18.3.1. Here, the high node distribution quality of the AFM

with the optimal connectivity of the DVM triangulation is demonstrated. Precise control

of node spacing is achieved by the use of the initial triangulation of the boundary nodes

as background mesh with no additional effort of the user. The node generation does not
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Figure 18.3.1 Three-element airfoil with combined DVM and

AFM [Muller et al., 1993]. (a) Background grid. (b) After three

rows of nodes inserted. (c) Details of grid around three-element

airfoil. (d) Final grid of three-element airfoil.

require explicit tracking of the front and is independent of the order in which triangles

are listed.

The resulting grids are very smooth and exhibit a high degree of regularity in cell

shape and node distribution. This regularity is retained at singular points like corners or

trailing edges. The use of a background grid that is derived from the initial triangulation

of the boundary nodes results in a smooth variation in cell size of many orders of

magnitude (about 105).

All features of this concept can be extended to three dimensions, where the optimal

operation count and the simplicity of the front tracking and node construction of the

method become even more attractive.

18.4 THREE-DIMENSIONAL APPLICATIONS

The basic concepts used in 2-D grid generations by means of DVM or AFM can be

extended to 3-D geometries. Some of the earlier contributions include Baker [1989]

for DVM and Löhner and Parikh [1988] for AFM. A brief review of these works is

presented below.

18.4.1 DVM IN 3-D

Initially, the boundary surface grid generation using any one of the methods discussed

in Section 18.3 is performed.

(1) The boundary points of the domain are created.
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(2) Calculate the location of eight supplementary points in such a way that the

hexahedron formed by these points contains all the points in the set.

(3) The mesh of this hexahedron using five tetrahedra (To) is created.

(4) Insert, one by one, the points of the set to obtain a mesh including these points

as its element vertices. To this end, define:

Tn = a triangulation including the first n points of a set as vertices.

xn+1 = the next point in the set.

According to step 3, point xn+1 is inside Tn, in which only three cases are possible:

(a) xn+1 is inside an element Ei of Tn.

(b) xn+1 is on the face common to two elements, Ej and Ek of Tn.

(c) xn+1 is on the edge common to several elements of Ei of Tn.

The fourth possibility corresponds to xn+1 being identical to one of the existing mesh

points; but this is rejected as the points given are assumed to be distinct.

Using element(s) Ei , the set S of elements of Tn is created by a tree search, such

that

(i) xn+1 is identical to the circumsphere associated with the elements of S. Trian-

gulation of Tn+1 is constructed in the same way as in (a) above:

(ii) Include the elements of Tn , not included in S, in Tn+1.

(iii) Remove the elements of S and remesh this set by joining point xn+1 to the

external faces of S.

Once all points of the initial set have been introduced, the initial hexahedron is

constructed from these tetrahedra.

18.4.2 AFM IN 3-D

The AFM in 3-D geometries follows basically the same procedure as in AFM for 2-D

except that triangles are replaced by tetrahedra:

(1) Set up a background grid to define the spatial variation of the size, the stretching,

and the stretching direction of the elements to be generated. The background

grid consists of tetrahedra. At the nodes, we define the desired element size,

element stretching, and stretching direction.

(2) Define the boundary surfaces of the domain to be gridded.

(3) Using the information stored on the background grid, set up faces on all these

boundaries. This yields the initial front of triangular faces. At the same time,

find the generation parameters (element size, element stretching, and stretching

direction) for these faces from the background grid.

(4) Select the next face to be deleted from the front. In order to avoid large

elements crossing over regions of small elements, the face forming the smallest

new element is selected as the next face to be deleted from the list of faces.

(5) For the face to be deleted:

(a) Select a “best point” position for the introduction of a new point.
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(b) Determine whether a point exists in the already generated grid that should

be used in lieu of the new point. If there is such a point, set this point as a

new point and continue searching.

(c) Determine whether the element formed with the selected point does not

cross any given faces. If it does, select a new point and try again.

(6) Add the new element, point, and faces to their respective lists.

(7) Find the generation parameters of the new faces from the background grid.

(8) Delete the known faces from the list of faces.

(9) If there are any faces left in the front, go to step 4.

18.4.3 CURVED SURFACE GRID GENERATION

Two approaches for surface grid generation may be considered: (1) Boolean operations

on solids and (2) Boolean operations on surfaces.

(1) Boolean operations on solids – the domain to be gridded from primitives (box,

sphere, cylinder, etc.). The user combines these primitives through Boolean

operations (union, intersection, exclusion, etc.) to define the domain to be grid-

ded. The surface is then obtained in a post-processing operation.

(2) Boolean operations on surfaces – here only the surface of the domain to be

gridded is defined in terms of independent surface patches. The surface patches

are then combined using Boolean operations to yield the final surface of the

domain to be gridded.

Boolean operations include points, lines, and surfaces which are obtained similarly as

in the case of structured grids of Chapter 17.

18.4.4 EXAMPLE PROBLEMS

Examples of unstructured AFM three-dimensional mesh generation using tetrahedral

elements are demonstrated in Figures 18.4.1 through 18.4.3.

Figure 18.4.1 Unstructured tetrahedral AFM mesh for NACA0012 airfoil [Spradley, 1999]. (a) Surface mesh.

(b) Close-up view.
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(a) (b)

Figure 18.4.2 Unstructured AFM mesh for generic hypersonic plane [Spradley, 1999]. (a) Surface mesh.

(b) Bottom view.

(1) NACA0012 Airfoil

Figure 18.4.1a shows the mesh generation of NACA airfoil geometry [Spradley,

1999]. A tetrahedral mesh is generated with the element sizes and clustering kept simple

for illustrating. The surface mesh shown in Figure 18.4.1a is convenient to view the

unstructured mesh. The interior looks very much the same as the surface. A close-up

view near the airfoil is shown in Figure 18.4.1b.

(2) Hypersonic Airplane

Figure 18.4.2 shows two views of the surface mesh of a hypersonic airplane with

a relatively coarse mesh for illustration only [Spradley, 1999]. The three-dimensional

CFD computational domain with tetrahedral mesh is demonstrated in Figure 18.4.3

[Spradley, 1999].

18.5 OTHER APPROACHES

There are many other approaches in generating unstructured grids. Among them are

Zhu et al. [1991] for quadrilateral grids by means of modified AFM, Blacker and

Stephenson [1991] also for quadrilateral grids through paving technique, Yerry and

Shephard [1984] for 2-D and 3-D mesh generations using quadtree and octree meth-

ods, respectively.

Figure 18.4.3 Unstructured AFM mesh for generic hypersonic plane with CFD domain [Spradley,

1999]. (a) CAD geometry for generic aircraft. (b) Unstructured AFM mesh.
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(4) Examine the sides of triangle ABC. A side is flagged as active if it can be used

as a side to form a new triangle. It is flagged as inactive otherwise.

(5) Select an active side which is also a side of triangle ABC as the base to generate

the second triangle. Three possibilities may be encountered:

(a) If no subfront has been formed in the generation of the first triangle ABC,

in other words, node D is a new node being generated, then any side which

is active in triangle ABC can be used to generate the second triangle.

(b) If subfronts SF1 and SF2 are formed in the generation of triangle ABC, but

one of the subfronts is empty, that is, all the sides in the subfront are flagged

as inactive, then any active side in triangle ABC can again be chosen as the

base for the second triangle generation.

(c) Both subfronts SF1 and SF2 contain active sides. In this case one subfront,

say SF1, contains an even number of active sides, the other subfront, say

SF2, contains an odd number of active sides. The active side, which is in

subfront SF2, in triangle ABC will be chosen as the base to generate the

second triangle.

(6) Suppose the chosen active side for the second triangle has nodes A and C.

Then the second triangle, say ACD, is generated by following the node and

triangle generation process of AFM, with the requirement that each of the

possible two new subfronts, formed as a result of the generation of the second

triangle ACD, must contain an even number of active sides. Here steps (5) and

(6) ensure that, after a quadrilateral is generated, every subfront formed in the

element generation process contains a closed loop with an even number of active

sides.

(7) The mesh parameters such as nodal spacing and element orientation for the new

nodes are interpolated from the background mesh.

(8) Form quadrilateral element ABCD (Figure 18.5.1a,b). At this stage of the ele-

ment generation, no consideration is given to the shape of the quadrilateral

being generated. Indeed, there is no restriction on the shape of the quadrilater-

als and any type of combination of two common side sharing triangles is allowed

to form a quadrilateral. Such flexibility makes the generation of quadrilateral

elements almost as easy as the generation of triangular elements. The enhance-

ment of the element shape and therefore the enhancement of the quality of

the mesh is an important part of this method. This can be achieved by means

of (a) node elimination, (b) element elimination, (c) diagonal swapping, and

(d) side elimination.

(9) Update the generation front (subfronts) so that the generation (sub)fronts(s)

always form the boundary of the regions to be gridded. The sides that have been

used to form the new element will be removed from the (sub)front(s), and the

new sides will be included in the (sub)fronts(s).

The quadrilateral element generation proceeds sequentially or in parallel in each

subfront. The generation procedure is complete only when every generation subfront

is empty. The domain of interest is then covered entirely by quadrilateral elements.

In this method, no consideration has been given to the element orientation in the

forming of the quadrilaterals. This is a subject of future research. Some typical results

are shown in Figure 18.5.2 [Zhu et al., 1991].
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Figure 18.5.2 Examples of AFM modified for quadrilaterals [Zhu

et al., 1991].

18.5.2 ITERATIVE PAVING METHOD

The paving technique meshes arbitrary 2-D geometries with quadrilaterals by itera-

tively layering or paving rows of elements to the interior of a region’s boundary(ies) in

a fashion similar to AFM. This technique was first proposed by Blacker and Stephenson

[1991]. Paving allows varying element size distribution on the boundary as well as inte-

rior of a region. Similar to the AFM, the exterior boundary is ordered counterclockwise,

and the interior boundary is ordered clockwise.

During mesh generation, the paving technique operates on boundaries of connected

nodes referred to as paving boundaries. Initially, each paving boundary is identical

to a permanent (fixed) boundary. As with permanent boundaries, paving boundaries

are categorized as either exterior or interior boundaries, with exterior paving done

counterclockwise and interior done clockwise.

The nodes are characterized into three types: (1) A fixed node is on a perma-

nent boundary. (2) A floating node is any node not on a permanent boundary. (3) A

paving node is any node on a paving boundary. Each paving node has an interior angle

Figure 18.5.3 Examples of paving method [Blacker and Stephenson, 1991].
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associated with it. This is the angle between a line connecting the node to the preceding

node, and the line connecting it to the next node on the paving boundary. In order to

generate an all quadrilateral mesh, each paving boundary must always contain an even

number of nodes.

The propagation of the paving boundary involves the eight steps delineated below:

(1) Row choice – The beginning and ending of the next sequence or row of elements

to be added is found.

(2) Closure check – A check is made to make sure that more than six nodes remain in

the paving boundary. Specific closure techniques are used to conclude meshing

for paving boundaries of six or fewer nodes.

(3) Row generation – The next row of elements identified in the row choice step is

incrementally added to the boundary.

(4) Smooth – Floating nodes are adjusted to improve mesh quality and boundary

smoothness.

(5) Seam – Small interior angles in the paving boundary are seamed or closed by

connecting opposing elements.

(6) Row adjustment – The new row is adjusted by placing tucks or wedges into the

row to correct for elements becoming too large or too small.

(7) Intersection – The paving boundary is checked for intersections with itself or

with other paving boundaries. Intersections are connected to form new, often

separate, paving boundaries.

(8) Cleanup – The completed mesh is adjusted where element deletion and/or ad-

dition improves the overall quality.

Some typical results using this technique are shown in Figure 18.5.3. Extension of

the paving technique to 3-D geometries (hexahedral grid) can also be made.

18.5.3 QUADTREE AND OCTREE METHOD

Quadtree and octree methods were developed from the concept of superposition-

deformation [Yerry and Shephard, 1984]. These methods construct a mesh of the domain

under consideration, essentially from the data of points on its contour. A regular grid,

or a grid based on a quadtree construction in three dimensions, is defined in such a way

as to contain the domain. It is composed of squares and cubic boxes for quadtree and

octree grids, respectively. This partitioning may then be deformed to resemble the real

geometry. This process is shown in Figure 18.5.4 for a 2-D domain.

Figure 18.5.4 Quadtree method. (a) Initial domain. (b) Initial grid. (c) Removal of exterior

grids. (d) Final mesh.
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Figure 18.5.5 Quadtree data structure. (a) Recursive subdivid-

ing. (b) Parent-son-grandson relation.

Let us consider the quadtree shown in Figure 18.5.5a in which the mesh is refined

in four levels. The parent is split into sons and grandsons as depicted in Figure 18.5.5b.

For 3-D geometries, the method begins with a cube which is recursively split into sons

and grandsons, that represents an octree structure. Thus, the final graded mesh can be

constructed using this process.

18.6 SUMMARY

It was shown in this chapter that the two most popular methods of unstructured mesh

generation are the Delaunay-Voronoi methods (DVM) and the advancing front

methods (AFM). We examined the Watson and Bowyer algorithms for DVM, followed

by AFM. Mesh smoothing in AFM was also discussed.

We presented the merits and demerits of DVM and AFM and showed that it is

possible to combine both DVM and AFM taking advantage of the merits of both meth-

ods. We further examined three-dimensional applications for both DVM and AFM,

followed by the surface grid generation. Other approaches such as AFM with quadri-

laterals, iterative paving methods, and quadtree/octree methods were also examined.

Unstructured grid generation is particularly useful in applications to adaptive methods.

These and other subjects will be discussed in the next chapter.
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CHAPTER NINETEEN

Adaptive Methods

The ultimate goal in computational fluid dynamics is to obtain desired solutions as accu-

rately as possible while minimizing the requirement for computational resources. Thus,

we ask: how do we achieve both “accuracy” and “efficiency” at the same time? Often

we exercise a compromise where we may choose to sacrifice some accuracy for the sake

of expediting a solution, or vice versa. Does an acceptable compromise exist? These

are the types of questions that typically enter the minds of the CFD practitioner before

undertaking a major project.

Given a fixed computational method and limited computer resources, one is con-

fronted with a decision as to which direction to follow. The most feasible approach under

these restricted circumstances will be to seek the best computational grid arrangement

which will lend itself to the best possible accuracy and maximum efficiency. Adaptive

methods are designed to achieve both accuracy and efficiency, with mesh refinements

provided selectively only where needed.

The basic concept for adaptive methods consists of providing mesh refinements for

efficiency (cost reduction) as dictated by predetermined criteria. The criteria for mesh

refinements and unrefinements (coarsening) are determined by error indicators. The

error indicators are usually represented by gradients of a suitable variable – the larger

the gradient, the finer the mesh required.

In line with the two different grid generation schemes, structured and unstructured,

two different adaptive methods are available, one for structured grids and another for

unstructured grids. The structured adaptive methods are presented in Section 19.1, with

the unstructured adaptive methods in Section 19.2.

19.1 STRUCTURED ADAPTIVE METHODS

Structured adaptive meshes may be constructed either by a control function approach

or by a variational function approach. We shall discuss both of these methods next.

19.1.1 CONTROL FUNCTION METHODS

19.1.1.1 Basic Theory

In this method, grid points are moved in accordance with weights or control functions

reflecting the gradients of the variables, the process known as redistribution. Adaptive

617
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redistribution of the points is based on the principle of equal distribution of error by

which a point distribution is set so as to make the product of the spacing and a weight

function W constant over the points. This idea is represented by

Wdx = constant (19.1.1)

With the point distribution defined by a function x(�), where � varies by a unit

increment between points, the equal distribution principle can be expressed as

Wx� d� = Wx� = constant, d� = 1 (19.1.2)

This one-dimensional equation can be applied in each direction in an alternating fash-

ion (in the spirit of ADI). However, a direct extension to multiple dimensions can be

made in either of two ways: control function approach, or variational approach. In the

control function methods, we combine the elliptic grid generation system with the equal

distribution principle given by (19.1.2).

gi j r,i j + Pi r,i = 0 (19.1.3)

where gi j are the elements of the contravariant metric tensor [Chung, 1996]:

gi j = ∂�i

∂xm

∂� j

∂xm
(19.1.4)

These elements are more conveniently expressed computationally in terms of the ele-

ments of the covariant metric tensor gi j :

gi j = ∂xm

∂�i

∂xm

∂� j
(19.1.5)

which can be calculated directly. Thus

gi j = 1

g
∂g
∂gi j

(19.1.6)

where

g = |gi j | (19.1.7a)

or

g =
∣∣∣∣∂xm

∂�i

∂xm

∂� j

∣∣∣∣ (19.1.7b)

with r being the cartesian coordinates and �i the curvilinear coordinates. The Pi = Pi

denotes the control function which controls the spacing and orientation of the grid lines

in the field.

The one-dimensional form of this system is

∂2x
∂�2

+ P
∂x
∂�

= 0 (19.1.8)

Differentiation of (19.1.2) yields

W
∂2x
∂�2

+ ∂W
∂�

∂x
∂�

= 0 (19.1.9)
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It follows from (19.1.8) and (19.1.9) that

−P = ∂2x/∂�2

∂x/∂�
= −∂W/∂�

W
(19.1.10)

from which the control function P can be taken as

P = 1

W
∂W
∂�

(19.1.11)

This may be extended to three-dimensional geometries as

Pi = 1

W
∂W
∂�i

(i = 1, 2, 3) (19.1.12a)

or

Pi = 1

W(i)

gi j

g(i i)

∂W(i)

∂� j
(19.1.12b)

where the latter version (19.1.12b) requires the weight functions to be specified in all

three directions [Eiseman, 1987].

19.1.1.2 Weight Functions in One Dimension

As seen in (19.1.12), the effect of the weight function W is to reduce the point spacing

function x� if W is large. Therefore, the weight function should be set as some measure

of the solution error or the solution variation. The simplest choice in one-dimensional

problems is the solution gradient, that is,

W = ux (19.1.13)

Substituting (19.1.13) into (19.1.2) yields

uxx� = constant

or

u� = constant

With the solution gradient used as a weight function, the point distribution can be

adjusted in such a manner that the same change in the solution occurs over each grid,

as illustrated in Figure 19.1.1a. This choice for the weight function has the disadvantage

of making the spacing infinitely large when the solution is constant.

In contrast, consider the solution gradient in the form

W =
√

1 + u2
x (19.1.14)

An increment of arc length, ds, on the solution curve u(x) is given by

ds2 = dx2 + du2 = (
1 + u2

x

)
dx2

so that this form of the weight function may be written as

W = sx
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x

u 

u (x) 

Δu 
Δu 

(a)

x

u 

u (x) 

Δs 

(b)

Δs 

Figure 19.1.1 Relation between grid spacing and weight

functions. (a) Constant solution gradient with w = ux .

(b) Constant solution gradient with w = (1 + u2
x)

1
2 .

which gives

sxx� = constant (19.1.15a)

or

s� = constant (19.1.15b)

Thus, with the weight function defined by (19.1.14), the grid point distribution is

such that the same increment in arc length on the solution curve occurs over each grid

interval (Figure 19.1.1b).

Unlike the previous choice, this weight function gives uniform spacing when the

solution is constant. The concentration of points in the high-gradient region, however,

is not as great.

In order to maintain desirable concentration of nodes at high gradient regions and

peak solutions, the following weight function has been suggested [Eiseman, 1985]:

W = (
1 + �2u2

x

) 1
2 (1 + �2|k|) (19.1.16)

where � and � are user specified parameters and k is the curvature defined as

k = uxx(
1 + u2

x

) 3
2

(19.1.17)
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Figure 19.1.2 Effect of inclusion of curvature as well as gradient [Eiseman, 1985].

Here, large values of � and � contribute to closer nodal spacing, respectively, near the

high solution gradient regions and solution extrema regions.

An alternative to (19.1.16) is to use

W = 1 + � |ux| + � |uxx| (19.1.18)

where � and � are non-negative parameters to be specified. An example based on

(19.1.16) is shown in Figure 19.1.2a for low values of � and � and in Figure 19.1.2b for

high values of � and �.

19.1.1.3 Weight Function in Multidimensions

The one-dimensional weight factors (19.1.13) based on the arc length on the solution

curve can be generated to higher dimensions. Consider the position vector characterized

by both the geometrical space r and solution space u such that

R = r + ue = xi ii + ue (19.1.19)

The covariant metric tensor is then given by

Gi j = ∂R
∂�i

· ∂R
∂� j

= (
r�i + u�i e

) · (
r� j + u� j e

)
or

Gi j = gi j + u�i u� j (19.1.20a)

where gi j is the metric tensor in the physical space. Since

u �i = ∇u · r�i

we obtain

Gi j = gi j + (
∇u · r�i

) (
∇u · r� j

)
(19.1.20b)

and

|Gi j | = (1 + |∇u|2)|gi j | (19.1.21)
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In one dimension this reduces to the expression for arc length on the solution curve,

that is,
√

G = x�

√
1 + u2

x (19.1.22)

In two dimensions, we have√|Gi j | = √
g(1 + |∇u|2)

1
2 (19.1.23)

Thus, the extension of the one-dimensional weight function based on arc length on the

solution curve to multidimensions is that based on area (2-D) or volume (3-D) on the

solution curve,

W = (1 + |∇u|2)
1
2 (19.1.24)

The weight functions as defined above can then be applied to the expressions for

the control function given in (19.1.12a,b).

In multiple dimensions, adaptation should, in general, occur in all directions in a

mutually dependent manner. If the solution varies only in one direction (say x) pre-

dominantly, then the adaptation may be carried out in that direction alone, using the

one-dimensional weight function, with x replaced by the arc length along this line.

Examples of applications of the above schemes include Dwyer, Smook, and Kee

[1982], Gnoffo [1980], and Nakamura [1982], among others.

19.1.2 VARIATIONAL METHODS

The classical theory of calculus of variations can be applied to problems requiring

optimization or achieving the maximum degree of equal distribution of error [Brackbill

and Saltzman, 1982]. With this in mind, we will examine the basic theory associated

with equal distribution by means of variational methods.

19.1.2.1 Variational Formulation

The computational error can be reduced by distributing the grid points in such a way

that the same positive weight function, W(x), is equally distributed over the field as

shown in Section 19.1.1. The nonuniform point distribution can be considered to be a

transformation, x(�), from a uniform grid in �-space, with the coordinate � serving to

identify the grid points.

Let us now invoke a spring analogy so that, if the weight function W(�) is a spring

constant and x� is the extension of the spring at � , then the energy stored in the spring

is of the form

I = 1

2

∫ 1

0

W(�) x2
� d � (19.1.25)

It follows from the theory of calculus of variations that the integrand in (19.1.25) con-

stitutes the “variational functional,” F ,

F(�, x, x� ) = 1

2
W(�) x2

� (19.1.26)

and the energy stored in the spring, I, is known as the “variational principle.”
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There are two ways to obtain an optimum grid spacing:

(1) Minimization of the variational principle given by (19.1.25).

(2) Solving the differential equation(s) resulting from the so-called Euler-Lagrange

equation,

∂

∂�

[
∂ F

∂(∂x/∂�)

]
− ∂ F

∂x
= 0 (19.1.27)

Substituting (19.1.26) into (19.1.27) yields

∂W
∂�

∂x
∂�

+ W
∂2x
∂�2

= 0 (19.1.28)

It is interesting to note that (19.1.28) is identical to (19.1.9), which originated from the

general elliptic PDE representation (19.1.3).

The above process confirms the standard variational approach in which, given the

differential equation [in this case the Poisson equation (19.1.28)], the corresponding

variational functional (19.1.26) when substituted into the corresponding Euler-Lagrange

equation (19.1.27) recovers the original differential equation (19.1.28).

This argument implies that, instead of using the PDE of the form (19.1.3), the

variational approach suggests that, if there are means of obtaining many different

forms of the variational functional, there will be a host of differential equations aris-

ing from this process, other than those of the standard form such as (19.1.3). The

differential equations obtained in this manner are characterized by a variety of weight

functions and subsequently the control functions leading to desired forms of adaptive

procedures.

19.1.2.2 Smoothness Orthogonality and Concentration

To achieve adaptation with a maximum degree of smoothness, orthogonality, and de-

sired concentration, our focus is to construct desirable forms of variational functionals

[Brackbill and Saltzmann, 1982]. Toward this end, the following forms of variational

principles are suggested:

(1) Smoothness

Is =
∫

gii dx (19.1.29a)

Is =
∫

1√
g

(gii g j j − gi j gi j )d� (19.1.29b)

(1) Orthogonality

Io =
∫

g
3
2 gi j gi j dx (19.1.30a)

Io =
∫

(gi j gik − gii g jk)(gmj gmk − gmng jk)d� (19.1.30b)
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(1) Concentration

IW =
∫

W2(x)
√

gdx (19.1.31a)

IW =
∫

W2(x) g d� (19.1.31b)

The above formulation may be generalized using the directional control as follows

[Brackbill, 1982]:

I(�) =
∫

x
F (�) dx (19.1.32)

with

F(�) = 1

2
gi j (x)g��(�)

∂��

∂xi

∂��

∂xj
(19.1.33)

The Euler-Lagrange equation in general curvilinear coordinates takes the form[
gi j ∂ F

∂(∂��/∂xj )

]
| i

− (g�� F) |� = 0 (19.1.34)

where the stroke “ | ” denotes the covariant derivative. Performing the covariant dif-

ferentiation on (19.1.34) leads to

1√
g

∂

∂xi

(
gi j ∂��

∂xj

√
g
)

+ gi j��
��

∂��

∂xi

∂��

∂xj
= 0 (19.1.35)

where

��
�� = 1

2
g�� [g��,� + g��,� − g��,� ]

It can be shown that the second term in (19.1.35) vanishes. Taking a variational derivative

of (19.1.35) gives

�I =
∫

x

[
1√
g

∂

∂xi

(
gi j ∂��

∂xj

√
g
)]

�� dx = 0 (19.1.36)

Integrating (19.1.36) by parts,

�I =
∫

�

gi j ∂��

∂xj
ni ��� d� −

∫
x

gi j ∂��

∂xj
���,i dx = 0

or

�I = �

(∫
x

1

2
gi j ∂��

∂xj

∂��

∂xi
dx −

∫
�

gi j ∂��

∂xj
ni ��� d�

)
= 0 (19.1.37)

This provides the variational principle to be given in the form

I =
∫

x

1

2
gi j ∂��

∂xj

∂��

∂xi
dx (19.1.38)
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with the Neumann boundary condition

S� = ∂��

∂xi
ni (19.1.39)

Thus, it follows that

I =
∫

x

1

W
∇�i · ∇�i dx

∇ ·
(

1

W
∇�i

)
= 0

∇2�i = 1

W
∂W
∂� j

∂� j

∂xk

∂�i

∂xk
= 1

W
∂W
∂� j

gi j

∇2�k = −gi j r,i j · ∇�k = 1

W
gik ∂W

∂�i

∇� i · r, j = �i j

and

gi j ∂

∂�i

(
W

∂r
∂� j

)
· ∇�k = 0

Finally,

gi j ∂

∂�i

(
W

∂r
∂� j

)
= 0 (19.1.40)

An adaptive grid with directional control can be constructed and the mesh alignment

control variational principle takes the form

Id =
∫

x

1

W
[(A × ∇�1)2 + (B × ∇�2)2 + (C × ∇�3)2] dx (19.1.41)

where

(A × ∇�1)2 = (A × ∇�1) · (A × ∇�1), etc.

Let

W = |∇U|
|U| (19.1.42)

where U is the variable under consideration and choose A, B, C to be mutually orthog-

onal. This implies that

B × C

∥∥∥∥ ∂r
∂�1

, C × A

∥∥∥∥ ∂r
∂�2

, A × B

∥∥∥∥ ∂r
∂�3

Using the vector identity

√
ggi j = 1

W
(VkVk�i j − Vi V j )
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There are many different ways in which unstructured adaptive methods can be

developed:

(1) mesh refinement methods (h-methods)

(2) mesh movement methods (r -methods)

(3) mesh enrichment methods (p-methods)

(4) combined mesh refinements and movements (hr -methods)

(5) combined mesh refinements and enrichments (hp-methods)

These methods will be elaborated in the next section.

19.2.1 MESH REFINEMENT METHODS (h-METHODS)

The basic concept of mesh refinement methods is to refine the element in which a

posteriori error indicator (measure of error based on solution gradients) is larger than

the preset criterion. This procedure is ideally applied to the finite element methods.

19.2.1.1 Error Indicators

In general, the solution error is not available a priori. Even after the solution has been

completed “a posteriori error” must be evaluated from the so-called error indicator as

the exact solution is not available. The a posteriori error indicator may be predicted

from the solution gradients of variables: density, velocity, pressure, or temperature. For

inviscid flows with shock waves, we may consider density gradients to be a best measure

of error, whereas velocity gradients may play a key role in the case of compressible

viscous flows. Pressure or temperature gradients can also be considered an important

factor in determining the error indicator.

Let û and u be the exact solution and approximate solution, respectively. We then

specify an error e in elliptic problems as

‖e‖E = ‖û − u‖E ≤ � (19.2.1)

where ‖e‖E represents the energy norm and � denotes a specific tolerance. We may

rewrite (19.2.1) in the form

‖e‖E ≤ Csh (19.2.2)

where C is a constant independent of mesh parameter h with s = 1, 2, . . . , n such that

(s − 1)h ≤ x ≤ sh (19.2.3)

The estimate given by (19.2.2) is known as a priori estimate based on some general

information about the exact solution. A priori estimates indicate how fast the error

changes as the h-refinements are changed. Estimates based on the approximate finite

element solution are called a posteriori error estimates. To this end we write (19.2.1) in

an alternate form.

‖e‖E ≤ k
Np

(19.2.4)

where k and p are constants and N represents the number of degrees of freedom.
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If p is the degree of polynomials for interpolations and (19.2.4) is extended to the

h-adaptivity, then we have

‖e‖E ≤ k
exp(�N� )

(19.2.5)

where k, �, and � are positive constants. Taking a logarithm in (19.2.5) yields

log ‖e‖E ≤ log k − �N� log e (19.2.6)

This represents the rate of convergence to be exponential [Babuska and Suri, 1990;

Oden, Wu, and Legat, 1995]. If there are singular points in the domain, then the rate of

convergence is algebraic.

To achieve the error estimate described above, the h-adaptivity proceeds with an

error indicator, a dimensionless quantity, given in terms of ratios of gradients or rates of

changes of gradients of appropriate variables. These variables may be density, velocity,

pressure, or temperature. For example, density and velocity are usually chosen for the

shock wave turbulent boundary layer flows.

The nondimensional error indicator is defined as

� = f (h, Hm), m = 0, 1, 2 (19.2.7)

where h is the mesh parameter and Hm is the Hilbert space (Section 8.3). For density

and velocity as governing variables for determining the error indicator, we define, in

terms of various semi-norms.

for density:

� = h |	 |H1/|	 |H0 , � = h|	 |H2/|	 |H1 (19.2.8a)

for velocity:

� = h|vi |H1/|vi |H0 , � = h|vi |H2/|vi |H1 (19.2.8b)

with

|	 |H0 =
[∫

�e

	 2 d�

] 1
2

, |	 |H1 =
[∫

�e

∂	

∂xi

∂	

∂xi
d�

] 1
2

,

|	 |H2 =
[∫

�e

∂2	

∂xi∂xj

∂2	

∂xi∂xj
d�

] 1
2

(19.2.9a)

|vi |H0 =
[∫

�e

vi vi d�

] 1
2

, |vi |H1 =
[∫

�e

∂vi

∂xj

∂vi

∂xj
d�

] 1
2

,

|vi |H2 =
[∫

�e

∂2vi

∂xj∂xj

∂2vi

∂xk∂xk
d�

] 1
2

(19.2.9b)

Here the mesh parameter h is determined for one-, two-, and three-dimensional ele-

ments as follows:

h = length of 1-D element

h = diameter of the circumcircle containing a 2-D element

h = diameter of the circumsphere containing a 3-D element

The order of the Hilbert space mmay be increased to four if the fourth order biharmonic

equations are to be solved.
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It is often useful to rearrange the error indicator in terms of the energy norm E for

any variable 
,

� =
[

h2|∇2
|
h |∇
| + ε |
|

]
E

(19.2.10)

where ε is the computational noise control parameter [Löhner and Baum, 1990]. This

criterion is particularly effective in shock wave discontinuities.

The FDV parameters discussed in Sections 6.5 and 13.6 can be used as the error

indicator. Since the FDV parameters are calculated by changes in Mach number,

Reynolds number, Peclet number, and Damköhler number, they represent more precise

variations of the gradients of whichever variable(s) are dominant. Comparisons of the

h refinements by various error indicators are shown in the following subsections.

19.2.1.2 Two-Dimensional Quadrilateral Element

In Figure 19.2.1a, a simple example for two-level adaptation (refinements) is shown.

Note that irregular nodes or hanging nodes arise in the process of refinements. For con-

venience, we shall permit only one irregular node along the side of unrefined element

(nodes c and d, Figure 19.2.1b). For discretizations as shown in Figure 19.2.1c, how-

ever, the unrefined element D and B are subdivided even if not required by the error

indicator.

In order that elements D and B remain linear in Figure 19.2.1b, we must eliminate

nodes c and d as follows:

uc = 1

2
(uQ + uR), ud = 1

2
(uR + uS) (19.2.11)

For the transition element, T1 we have

u(T1) = �1u1 + �2u2 + �3u3 + �4u4

= �1

(u4 + uR

2

)
+ �2u2 + �3u3 + �4u4

= [�1 �2 �3 �4]

⎡
⎢⎢⎢⎢⎣

1

2
0 0

1

2

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

uR

u2

u3

u4

⎤
⎥⎥⎦

A B 

C D 

(a)

T-1 

T-2 T-3 

Q 

R 
S 

(b)

a 

b 

c 

d 

(c)

Figure 19.2.1 Simple example for mesh refinements. (a) Inital mesh. (b) One-level

refinements. (c) Two-level refinements.
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or

u(T1) = �N H(T1)
NM u(T1)

M = �
(T1)
M u(T1)

M (19.2.12)

with �
(T1)
M = �N H(T1)

NM and H(T1)
NM being the interpolations and auxiliary matrix for the

irregular element, respectively,

H(T1)
NM =

⎡
⎢⎢⎢⎢⎣

1

2
0 0

1

2
0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , �

(T1)
M = [�1/2 �2 �3 �1/2 + �4],

u(T1)
M = [uR u2 u3 u4]T

Similarly,

u(T2) = �N H(T2)
NM u(T2)

M = �
(T2)
M u(T2)

M (19.2.13)

u(T3) = �N H(T3)
NM u(T3)

M = �
(T3)
M u(T3)

M (19.2.14)

with

H (T2)
NM =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1

2

1

2
0 0

0 0 1 0
1

2
0 0

1

2

⎤
⎥⎥⎥⎥⎥⎥⎦

, u(T2)
M = [u1 uS u3 uQ]T

H (T3)
NM =

⎡
⎢⎢⎢⎢⎣

1

2

1

2
0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , u(T3)

M = [uR u2 u3 u4]T

In this manner the irregular nodes c and d in the first level refinements

(Figure 19.2.1b) are eliminated and replaced by the global nodes Q, R, and S. Note that

for two or higher level refinements, no new types of auxiliary matrix arise. This is because

only one hanging node (irregular node) is to be allowed for any refinement process.

The procedure for h-refinement is as follows:

Step 1

A coarse finite element mesh is constructed, which contains only a small number of

elements, sufficient to model basic geometrical features and flow characteristics. Obtain

the preliminary flow solution on this initial mesh.

Step 2
Compute the error indicator for each element.

Step 3

If � ≥ �E, refine by subdividing the quadrilateral through midpoints. If � ≤ �E,

unrefine by reversing the refining process. Typically set � = 0.2 and � = 0.5 with

E being the user-specified tolerance.
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Subroutine h adaptive

First refinement

Error indicator

Check constrained nodes

Mesh unrefinement

Mesh refinement

Check constrained nodes

Renumber connectivity

Determine interpolation function

Recover the constrained node

Exclude constrained nodes

Return to main

no
yes

Figure 19.2.2 Flow diagram for mesh refinements.

The overall flow diagram is shown in Figure 19.2.2. Some applications to two-

dimensional problems with triangular elements and quadrilateral elements using the

error indicator (19.2.10) are shown in Figure 19.2.3 and Figure 19.2.4, respectively [Yoon

and Chung, 1991].

Instead of using the primitive variable error indicators, we may take advantage of the

FDV parameters as discussed in Section 13.6. To this end, we examine a compression

Figure 19.2.3 Mesh refinements (h-method), triangular elements. (a) Adapted

mesh configuration (5004 elements, 2600 nodes, t = 0.059 sec). (b) Velocity

field (Inlet vel. = 1506 m/sec). (c) Density contours (Max = 1.648, Min = 0.418,

� = 0.123 kg/m3. (d) Temperature contours (Max = 1588, Min = 863, � = 73K.

(e) Pressure contours (Max = 0.725, Min = 0.115, � = 0.061 MPa. (f) Mach number

contours (Max = 2.603, Min = 1.152, � = 0.145.
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Figure 19.2.4 Mesh refinements (h-method), quadrilateral elements. (a) Adaptive mesh at t = 12 sec (2078

elements, 2317 nodes). (b) Mach number contours at t = 12 sec (max = 2.9, min = 1.4, � = 0.15). (c) Adaptive

mesh at t = 16 sec (1847 elements, 2078 nodes). (d) Mach number contours at t = 16 sec (max = 2.9, min = 1.3,

� = 0.16).

corner supersonic flow as shown in Figure 19.2.5a with initial grid of 4,600 elements

(Figure 19.2.5b) [Heard and Chung, 2000]. Adaptative refinement is made for s1 or s3

greater than 0.45. Unrefinement is to be applied if the FDV parameters are less than

0.2. The contours of the first order FDV parameters (s1, s3) are shown in Figure 19.2.6.

As demonstrated elsewhere (Section 6.6), these FDV parameters resemble closely the

flowfield itself. Two level adaptation refinements have been carried out as shown in

Figure 19.2.7. For the purpose of comparison, the results of computations based on

the standard primitive variable error indicators are displayed. It is shown that the FDV

results provide lesser number of adapted elements for both adaptative refinement levels.

In addition, the refined regions are narrower for the FDV calculations. This is influenced

by the FDV parameters being sensitive to the current flowfield physics dictating the

decision for either refinement or unrefinement. These trends result in lesser computer

time for the FDV-based error indicator. An additional advantage for the FDV approach

is that the FDV parameters are already available in the formulation. The Mach number

contours using the FDV error indicators and the primitive variable error indicators as

shown in Figure 19.2.8 are practically identical.

Figure 19.2.5 Geometries for adaptive mesh calculations for a compression corner supersonic flow using the

flow field-dependent variation (FDV) parameters as error indicators. (a) Geometry and boundary conditions

of compression corner. (b) Initial grid (4600 elements).
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X
0 0.5 1 1.5 2

X
0 0.5 1 1.5 2

(a) (b)

Figure 19.2.6 Contour plots of FDV parameters, resembling the flowfield for the compression corner flow of

Figure 19.2.5. (a) First order convection FDV parameter (s1). (b) First order diffusion FDV parameter (s3).

19.2.1.3 Three-Dimensional Hexahedral Element

The refinement of three-dimensional hexahedral elements results in each hexahedral

being divided into eight hexahedral elements, as shown in Figure 19.2.9a. During this

refinement process, irregular, or hanging, nodes arise, similar to those produced during

the refinement of two-dimensional quadrilateral elements. As demonstrated in the two-

dimensional refinement process, only one irregular node is permitted along the side of

an unrefined element. During this refinement process, elements may contain three, five,

or six irregular nodes. The elimination process for these irregular nodes is demonstrated

below.

Three Irregular Nodes

Figure 19.2.9b shows the results of a simple one-level refinement of a hexahedral

element. In the refinement process, three irregular or hanging nodes arise (nodes 1, 5,

and 8). In order for the element I to remain linear, nodes 1, 5, and 8 must be eliminated

as follows:

u1 = 1

2
(u4 + uA), u5 = 1

4
(uA + u4 + uB + uC), u8 = 1

2
(u4 + uB)

Then, any flow property, u, is calculated from

u = �1u1 + �2u2 + �3u3 + �4u4 + �5u5 + �6u6 + �7u7 + �8u8

= �1

(u4 + uA

2

)
+ �2u2 + �3u3 + �4u4 + �5

(uA + u4 + uB + uC

4

)
+ �6u6 + �7u7 + �8

(u4 + uB

2

)

= [�1 �2 �3 �4 �5 �6 �7 �8]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
0 0

1

2
0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
1

4
0 0

1

4

1

4
0 0

1

4
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0
1

2
0 0 0

1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uA

u2

u3

u4

uC

u6

u7

uB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 19.2.9 Mesh refinement of hexahedral element with hanging nodes. (a) Hexahedral elements. (b) Three

hanging nodes. (c) Five hanging nodes. (d) Six hanging nodes.

or

u(T) = �N H(T)
NMu(T)

M

with �
(T)
M = �N H(T)

NM and H(T)
NM being the interpolation and auxiliarymatrix for the ir-

regular node, respectively.

H(T)
NM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2
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4
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4
�6 �7

�5

4
+ �8
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It can be shown that similar auxiliary matrices are derived for the refined elements

in locations R-1 through R-3 on element I, as well as for refined elements on the six

other faces of element I, for a total of twenty-four auxiliary matrices.

Five Hanging Nodes

The refined element shown in Figure 19.2.9c contains five irregular nodes (nodes

1, 2, 3, 5, and 8). The auxiliary matrix for the irregular element can be derived similar

to the procedure demonstrated above for three irregular nodes as shown below.

H(T)
NM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
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2
0 0 0 0

1

4

1

4

1

4

1

4
0 0 0 0

0 0
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1

2
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4
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1

4

1

4
0 0

1

4

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0
1

2
0 0 0

1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(T)
M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uA

uB

uC

u4

uE

u6

u7

uD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Additional auxiliary matrices are derived, in accordance with the refined elements’

location on the faces of the unrefined element. As in the case of three irregular nodes,

the irregular elements can occupy four locations on each of six faces, for a total of

twenty-four auxiliary matrices.

Six Hanging Nodes

Similarly, the refined element in Figure 19.2.9d contains six irregular, or hanging,

nodes (nodes 1, 2, 3, 5, 7, and 8). The auxiliary transition matrix for the irregular element

shown in Figure 19.2.9 is

H(T)
NM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(T)
M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uA

uB

uC

u4

uF

u6

uD

uE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There are also twenty-four possible auxiliary matrices for elements with six irregular

nodes. However, in practice, it is not necessary to store all possible auxiliary matrices in
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Figure 19.2.10 Illustration of refinement/unrefine-

ment process. (a) Initial mesh. (b) Adapted refined

mesh.

computer memory. Note that the rows of the auxiliary matrix for an irregular element

can be determined simply by noting the number of nodes required for interpolation at

the irregular node, and the node numbers used for interpolation. The nonzero entries

are placed in the columns corresponding to the node numbers used for interpolation.

Those nonzero entries are either 1/2 or 1/4, depending on whether the value is interpolated

between two or four nodes.

Mesh Unrefinement

For time dependent problems, in which a discontinuity may be migrating over the

grid during a given time interval, an unrefinement procedure is needed, as well as a

refinement procedure. In a similar way as elements are refined if the error is greater

than a specified number, elements are unrefined if the error is less than a specified

number. One method of unrefinement is to require that only groups of elements that

were refined before can be unrefined.

To ensure that the unrefinement occurs in the same way as the refinement, an array

is added to the data structure to reflect the refinement history of the mesh [Devloo,

Oden, and Pattani, 1988]. Toward this end, we introduce an array, NELGRP, in which

NELGRP(I,IGR) is the Ith element of group IGR. If NELGRP(I,IGR) > 0, it refers

to an element; if NELGRP(I,IGR) < 0, it refers to a group.

Using this array, we build a data structure of groups that contain elements or groups.

When an element is refined, it is transformed into a group which contains four (or eight,

for 3-D hexahedral elements) new subelements. All references to the original element

are changed to the new group. For example, consider the simple grid of four elements

in Figure 19.2.10a. If element 4 is refined as shown in Figure 19.2.10b, the NELGRP

array for group 4 becomes:

NELGRP(1,4) = 4, NELGRP(2,4) = 5, NELGRP(3,4) = 6, and

NELGRP(4,4) = 7

If element 5 were further refined, then NELGRP(2,4) would be changed to −5, referring

to group 5, and the entries for NELGRP(,5) would be filled in with the new element

numbers. Using this data structure, it becomes a simple matter of unrefining a group to

recover the previous elements, when the error indicates unrefinement is needed.

19.2.2 MESH MOVEMENT METHODS (r-METHODS)

Instead of refining elements, grid points can be moved around (mesh redistribution) to

provide clustering in certain regions by means of error indicators, known as the position
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(a) (b)

Figure 19.2.12 Example of r -methods. (a) Initial mesh. (b) Mesh

after r -adaptivity.

with AFM or DVM mesh generators. There are two types of approaches in hr-methods:

(1) mesh stretching and (2) local remeshing, described below.

Mesh Stretching

In this method, the measure of the error of each element is expressed in one dimen-

sion as

h2
e

∣∣∣∣d2	

dx2

∣∣∣∣
e
= const (19.2.16a)

With the second derivative of density evaluated at each node P or the current mesh,

the new mesh may be generated with local spacing �P such that (Figure 19.2.14):

�2
P

∣∣∣∣d2	

dx2

∣∣∣∣
P

= const (19.2.16b)

For two dimensions with the local principal direction x1 (major) and x2 (minor),

�2
(1)P

∣∣∣∣d2	

dx2
1

∣∣∣∣
P

= �2
(2)P

∣∣∣∣d2	

dx2
2

∣∣∣∣
P

= �2
min

∣∣∣∣d2	

dx2
1

∣∣∣∣ = const (19.2.17)

with ∂2	/∂x2
1 > ∂2	/∂x2

2 and �(1)P and �(2)P denoting node spacings in the x1 and x2

directions, respectively. Here |∂2	/∂x2
1 |max is the maximum value of |∂2	/∂x2

1 |P over

each node in the current mesh and �min is a user-specified minimum value for � in the

new mesh. Thus, the local stretching parameter SP is defined as

SP =
√∣∣∣∣d2	

dx2
1

∣∣∣∣
P

/∣∣∣∣d2	

dx2
2

∣∣∣∣
P

(19.2.18)

Figure 19.2.13 Example of an r -method for NACA 0012 airfoil in supersonic wind tunnel. (a) Mesh

redistributions (10 applications). (b) Density contours.
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Figure 19.2.14 Example of mesh stretching scheme of h-method.

If �P computed from (19.2.17) is larger than the user-specified value �max, then we

set �P = �max. Similarly, the node spacing will be controlled such that �P = �max (user-

specified maximum allowable spacing). It is thus expected from (19.2.18) that high

stretching occurs only in the vicinity of one-dimensional flow features with low

curvature.

In this manner, the mesh is regenerated in accordance with computed distribution

of the mesh parameters and the solution of the problem recomputed on the new mesh.

Obviously, the �min chosen governs the number of elements in the new mesh. This

process continues until an acceptable quality of solution is achieved.

An example of a regular shock reflection at a wall with the sequence of remeshing

is shown in Figure 19.2.15 [Peraire et al., 1987]. This method is prone to an excessive

stretching, which is often an undesirable consequence.

Local Remeshing

To circumvent the excessive stretching, local remeshing may be employed. In this

approach [Probert et al., 1991], a block element having large errors is removed and

remeshed with fine mesh. Here the initial mesh is marked for deletion, new boundary

points are generated, and triangulation is processed with the current front in conjunction

with AFM.

Some applications for a shock tube and indentation flowfields are shown in Fig-

ure 19.2.16a and Figure 19.2.16b, respectively [Probert et al., 1991].
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Figure 19.2.15 Local remeshing process for regular shock reflection at a wall and corresponding

flowfields [Peraire et al., 1987].

Figure 19.2.16 Local remeshing with AFM [Probert et al., 1991]. (a) Propagation of a

planar shock. (b) Computation of the flow field produced by a strong shock passing

over an indentation showing the mesh and corresponding density contours at four

different times.
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19.2.4 MESH ENRICHMENT METHODS (p-METHODS)

This is the fundamental concept employed in finite element methods. Given a fixed

mesh, improved solutions are expected to be achieved with an increase in the degree of

the polynomials, or higher order approximations.

In this section, we are concerned with hierarchical interpolation function or the

so-called p-version finite element approximation functions. The use of hierarchical in-

terpolations was the focus of discussion in the spectral element methods in Section 14.1.

Our attention here, however, is to seek adaptivity as required by the error indicator,

resulting in various degrees of polynomials for different elements.

A need for increasing the degree of an approximation while keeping mesh sizes

fixed is particularly important when boundary layers or singularities are encountered.

One approach is to construct a hierarchical interpolation system in the form

U = ��U� + �(E)
r Ûr + �(F)

rs Ûrs + �
(I)
rst Ûrst (19.2.19)

for 3-D domain, similarly as in (14.1.16) with each function representing the tensor

products of chosen polynomials (Chebyshev, Legendre, Lagrange, etc.). The degree

p will be raised as required when the user-specified error indicator tolerance is exceeded.

The hierarchical interpolation system (19.2.19) was detailed in Section 14.1.2 for the

spectral element methods.

Recall that no side or interior nodes are installed physically (Figure 14.1.1), but

higher order modes corresponding to the sides and interior are combined with the

corner nodes. By means of static condensation, all side and interior mode variables are

squeezed out of the final algebraic equations. This process allows the side and interior

mode variables acting as the source terms, which are explicitly calculated.

In order to treat adjacent elements in which degrees of approximations are different

as a result of adaptivity, special procedures are developed between the constrained

and unconstrained nodes in the approach of Oden and co-workers [1989]. In such a

procedure, the so-called constrained matrices are derived so that compatibility between

two elements with differing degrees of approximations can be ensured. It is obvious

that this is not necessary in the method of spectral elements as shown in Section 14.1.

This is because whatever the Legendre polynomial orders of approximations, the final

form of the element matrix is transformed into a linear isoparametric interpolation

in terms of only the corner nodes. In this process, no side, edge, surface, of interior

nodes are required. The higher order spectral approximations are represented only

through summation of nodes, not associated with any physically assigned non-corner

nodes.

Implementation of the p-method is seen to be identical to that of the spectral element

methods, except that varying degrees of spectral orders can be employed for each

element as dictated by error indicators. If any element fails to pass the predetermined

(user-specified) tolerance requirement as judged from the calculated error indicator, the

spectral order for this element must be raised. Then, along the boundaries (sides, edges,

faces) of adjacent elements, there exist differences in degrees of freedom. In this case,

we set the higher order element to dictate the degrees of freedom along the adjoining

boundary. Other than the adaptive procedure, details of formulations for p-methods

are identical to the SEM of Section 14.1.
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19.2.5 COMBINED MESH REFINEMENT AND MESH ENRICHMENT METHODS
(hp-METHODS)

If shock waves are interacting with (turbulent) boundary layers, the p-method alone

is not adequate. Shock wave discontinuities can best be resolved through mesh refine-

ments, and it is thus necessary that mesh enrichments which are efficient for boundary

layers be combined with mesh refinements.

The simplest approach in this case is that the h-method is applied with only corner

nodes of isoparametric elements until the shock waves are captured. Then we employ

the p-version process with Legendre polynomials for boundary layer resolutions. This

combined operation is to continue until all error indicator criteria are satisfied, with

density and velocity gradients, respectively, being used for the h-version (shock waves)

and p-version (boundary layers).The hp methods have been studied extensively by

Babuska and his co-workers [1986–1998] and Oden and his co-workers [1986–1998].

In the process of adaptation, as dictated by the error indicator, a decision has to

be made at any stage, whether h-refinements or p-enrichments are to be performed.

One approach is to begin with low order polynomials and continue until h-refinements

reach a certain level (for example, shock discontinuities have been resolved), followed

by p-enrichments which are designed for resolving turbulence microscales such as in wall

boundary layers or free shear layers. Another option is to rely on an optimization process

in which an automatic decision is made as to whether h-refinements or p-enrichments

are more desirable at any given stage of adaptation.

In the hp adaptivity, the error estimates and error indicators discussed in the

h-version and p-version are combined. For a particular mesh and p-distribution, how-

ever, it is not possible to predict the accuracy a priori. Thus, we must rely on a posteriori

error estimates using the finite element solutions.

To this end, we consider any function u ∈ Hr (k) and a sequence of interpolations

whp such that for any 0 ≤ s ≤ r , and polynomial of degree ≤ Pk

‖u − whp‖s,k ≤ c h �−s
k

P r−s
k

‖u‖ r,k, Pk = 1, 2, . . . (19.2.20)

with

� = min(Pk + 1 , r) (19.2.21)

This is the error estimate applicable for the hp process [Babuska and Suri, 1990; Oden

et al., 1995], with the error indicator given by

� = hk

Pk
|u|k, r = 2 < P + 1 (19.2.22)

In practice the error indicator can be determined using the element residual tech-

nique. The fine mesh is obtained by raising the order of approximation by one for each

node uniformly throughout the mesh. Then for each element k, the added shape function

is interpolated in the sense of hp interpolation using the old shape functions. By subtract-

ing the interpolates from each of the added shape functions, we effectively construct

a basis for the element space of bubble function (Legendre polynomials, Chebyshev

polynomials, Lagrange polynomials, etc.). The constrained approximation is fully taken
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into account. Next, the local problems are formulated and solved and the element error

indicators are calculated using the gradients of variables as shown in (19.2.1) through

(19.2.9).

A typical adaptive hp-method based on the error estimate proceeds as follows:

(1) Input initial data, global tolerance EG, and local tolerance EL < EG.

(2) Solve the problem on the current finite element mesh.

(3) For each element k in the mesh, calculate the error indicator �k, if �k > EL, then

refine the element.

(4) Calculate the global estimate

�G =
√∑

k

�2
k (19.2.23)

If �G > EG then decrease the local tolerance EL = 90% EG, go to (2).

In order to estimate the local quality of an error estimate, we introduce the local

effectivity index �k:

�k = �k

‖e‖k
(19.2.24)

Introducing a discrete measure (weight) wk

wk = ‖e‖ 2
k

‖e‖ 2
(19.2.25)

we obtain

� 2 =
∑

k

� 2
k wk (19.2.26)

Thus, the global effectivity index (squared) can be interpreted as the average of the

local indices (square) weighted with respect to the discrete measure; more emphasis

is placed upon elements with large errors and less on elements for which the error is

small.

We may utilize the notion of standard deviation � as a quantity estimating the

discrepancy of the local effectivity indices.

�2 =
∑

k

(
� 2

k − � 2
)2

wk (19.2.27)

This can be normalized to

�2 =
∑

k

(
� 2

k − 1
)2

wk (19.2.28)

with

�k = �k

‖e‖� − 1
(19.2.29)

Equation (19.2.28) may be used as a criterion to compare the quality of various error

estimates.
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Our objective in the hp-method is to optimize the distribution of mesh size h and

polynomial degree p over a finite element. For given h-refinements, the p-distributions

may vary from element to element, as shown in Figure 14.1.2. Notice that boundaries

between the higher and lower p’s are dictated by the higher degrees polynomial with

irregular nodes and elements treated as discussed in Section 19.2.1.

Toward this end, we examine the global error indicator �k for element k which

depends on hk and pk,

�k =
∫

�

�k(h, p) d� (19.2.30)

where �k(h, p) is the local error density. Thus, the total error indicator is expressed as

� =
∑

k

�k (19.2.31)

Similarly, the total number of degrees of freedom is

N =
∑

k

Nk =
∫

�

nk(h, p) d � (19.2.32)

where nk(h, p) denotes a degree of freedom density. Assume that the optimal mesh

arises at n = n0. Thus, the optimality condition can be achieved by constructing the

Lagrange multiplier constraint

�(n − no) = 0 (19.2.33)

so that the functional

f = �(h, p) − �(n − no) (19.2.34)

achieves an optimality at

�f = ∂ f
∂h

�h + ∂ f
∂p

�p = 0 (19.2.35)

Since �h and �p are arbitrary, we must have

∂ f
∂h

= ∂�

∂h
− �

∂n
∂h

= 0 (19.2.36)

∂ f
∂p

= ∂�

∂p
− �

∂n
∂p

= 0 (19.2.37)

These conditions lead to the optimal hp distribution,

∂�

∂n

∣∣∣∣
p=constant

= �|p (19.2.38)

∂�

∂n

∣∣∣∣
h=constant

= �|h (19.2.39)

The derivatives in (19.2.38) and (19.2.39) may be approximated by ��/�n, with ��

denoting the change in error due to a change in number of degrees of freedom �n. The

process to reduce the error as much as possible would make the change in error per
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change in number of degrees of freedom as large as possible. Thus, the larger of the two

quantities,

�|p = ��

�n

∣∣∣∣
p

= constant (19.2.40)

or

�|h = ��

�n

∣∣∣∣
h

= constant (19.2.41)

should be used as the result of optimization.

Notice that to modify a trial mesh, one refines those elements with |�+�k| below

� and unrefines those for which |�+�k| is above �. For optimality, we refine elements

for which the anticipated decrease of the error per unit new degrees of freedom is the

largest.

For two-dimensional problems, refinements are not restricted in one element. This is

because the approximation inside two neighboring elements is affected by the

p-enrichment and h-refinement causing subdivision of neighboring elements. How-

ever, it is possible to extrapolate the one dimensional strategy to perform refinements

for which the anticipated decreases of the error per new degree of freedom are as large

as possible.

It may be argued that raising p gives a larger decrease in error than subdividing the

element for some problems, but the mesh is achieved when geometrically well graded

toward singularity with low p. The general procedure for the hp process is as follows:

(1) Compute the anticipated degrees of errors for all elements in an initial mesh.

(2) Evaluate ��
�n |p and ��

�n |h for every element.

(3) Identify ( ��
�n )max = A.

(4) Identify those elements for which ��
�n ≥ �A where � is a predetermined number

for refinement.

(5) Perform refinements based on Steps (2) and (4) and solve the problem on the

new mesh.

(6) Calculate the global error � = ∑
k �k. If � ≤ � where � is a predetermined

error tolerance, then stop; otherwise go to (1).

In the process of hp refinements, it is frequently required that adjacent elements

have larger or smaller degrees of polynomial approximations than the element under

consideration. This will result in irregular elements with irregular nodes. In this case, the

adjoining boundaries are dictated by the higher order approximations of either element.

Oden et al. [1995] reports numerical results for the incompressible flow Navier-

Stokes solution using the three-step hp methods in which the following three steps are

implemented:

(1) Estimate the error indicator (19.2.2) on the initial mesh

(2) Compute nk in (19.2.32) to construct a second mesh

(3) Calculate the distribution of polynomial degrees pk to construct a third mesh.

An application of the above procedure to a back-step channel problem [Oden et al.,

1995] is presented in Figure 19.2.17 and Table 19.2.1. The geometry features of the
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Figure 19.2.17 Analysis of a backstep channel problem with hp adaptive

method (Rc = 300) [Oden et al., 1995]. (a) Geometry for the backstep prob-

lem. (b) Close-up view of the three adaptive meshes. (c) Equilibrated esti-

mated error.



650 ADAPTIVE METHODS

Table 19.2.1 CPU Time and Reattachment Length, Backstep Problem

of Figure 19.2.17

(a) CPU Time

CPU for the Error Estimates

Mesh (equilibriated) (0.5)

CPU for the Solution

(number of iterations)

1 12246(21) 1283 866

2 3333(4) 2073 1171

3 9264(5) 3845 2787

Total 24843 7201 4824

100% 28% 19%

(b) Comparison of Reattachment Lengths with Ghia et al. [1989]*

Reattachment Lengths Reference Results* Present Results

L1 4.96 4.95

L2 4.05 4.13

L3 7.55 7.32

Sources: [Oden et al., 1995]

problem are defined in Figure 19.2.17a. An initial mesh of 877 scalar degrees of free-

dom and a quadratic interpolation are used. Close-up views of the three meshes and

error index evolution and equilibrated estimated error are shown in Figures 19.2.17b,c.

The elements are h-refined near the singularity and orders of p = 4 and p = 3 are as-

signed near this point. However, the adaptive strategy also leads to refinements and

enrichments in other areas. In order to illustrate the cost of the adaptive strategy, Table

19.2.1a shows the CPU time used for each part of the calculation. The total number of

iterations to reach the solution on each mesh (relative variation 10−9) is also provided.

Table 19.2.1b presents results in good agreement with the literature [Ghia et al., 1989].

Oden et al. [1998] further presented examples of hp methods applied to diffusion

problems using a discontinuous Galerkin formulation. Here, arbitrary spectral approxi-

mations are constructed with different orders p in each element. The results of numerical

experiments on h and p-convergence rates for representative two-dimensional prob-

lems suggest that the method is robust and capable of delivering exponential rates of

convergence.

19.2.6 UNSTRUCTURED FINITE DIFFERENCE MESH REFINEMENTS

The control function methods and variational methods presented in Section 19.1 are

suitable for structured grids only. After the adaptive process, the entire mesh still re-

mains structured. In the mesh refinement methods, it is desirable that such restriction

be removed even for the FDM formulation. We examine this possibility for FDM.

The simplest case of mesh refinement may be illustrated for finite difference formu-

lations as demonstrated by Altas and Stephenson [1991]. Consider a square S given by
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i, j+1 i+ 2, j+11 i+1, j+1

i+1, ji,j i+ 2, j1

i,j+ 21 i+1, j+ 21
i+ 2, j+11 2

Figure 19.2.18 Comparison of errors between a square and

subsquares.

(i , j), (i + 1, j), (i + 1, j + 1), and (i , j + 1) and its subsquares, as shown in Figure

19.2.18. The computational error between the square and subsquares may be char-

acterized as

e =
∣∣∣∣
[∫ ∫

u(x, y)ds − e1

]
−

[∫ ∫
u(x, y)ds − e2

] ∣∣∣∣ (19.2.42)

where

e1 = 1

4
(xi+1 − xi )(yi+1 − yi )[u(xi , yj ) + u(xi+1, yj ) + u(xi , yj+1) + u(xi+1, yj+1)]

e2 = 1

16
(xi+1 − xi )(yi+1 − yi )

{
u(xi , yj ) + u(xi , yj+1) + u(xi+1, yj+1) + 2

[
u
(
xi+ 1

2
, yj

)
+ u

(
xi+1, yj+ 1

2

)+ u
(
xi+ 1

2
, yj+1

) + u
(
xi , yj+ 1

2

)] + 4u
(
xi+ 1

2
, yj+ 1

2

)}
e = |e1 − e2|

= 1

16
(xi+1 − xi )(yi+1 − yi )

∣∣{3[u(xi , yj ) + u(xi+1, yj ) + u(xi , yj+1)

+ u(xi+1, yj+1)] − 2
[
u
(
xi+ 1

2
, yj

) + u
(
xi+1, yj+ 1

2

) + u
(
xi+ 1

2
, yj+1

)
+ u

(
xi , yj+ 1

2

)] − 4u
(
xi+ 1

2
, yj+ 1

2

)}∣∣ (19.2.43)

It can be shown using Taylor series expansions of the functions about the center point

(xi+ 1
2
, yj+ 1

2
) of S that

e = 1

16
(xi+1 − xi )(yi+1 − yi )

∣∣ 2(xi+1 − xi )
2uxx

(
xi+ 1

2
, yj+ 1

2

)
+ 2

(
yi+1 − yi

)2
uyy

(
xi+ 1

2
, yj+ 1

2

) + R
∣∣ (19.2.44)

where R denote the remainder terms in Taylor expansions.

Here u is known only at vertices (Figure 19.2.18). Thus we construct a linear inter-

polation for side nodes and interior nodes. An adaptive mesh is created for all squares

for which

e ≥ E

where E is the user-defined tolerance.

(1) Start by using the subregions with a uniform mesh.

(2) Evaluate E using (19.2.44) on each subregion.
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(3) Subdivide the regions with the quantity E larger than a given tolerance ∈ into

four equal subregions.

(4) On the new mesh points, either obtain a new approximate solution to the prob-

lem or use interpolated values of the previously obtained solution.

(5) Continue steps 2 through 4 until the largest value of E is less than ∈.

(6) Solve the problem on the final mesh.

Some example problems using unstructured adaptive finite difference mesh refinements

can be found in Altas and Stephenson [1991].

19.3 SUMMARY

Adaptive mesh methods were developed in structured grids using control functions and

variational functions for FDM formulations. Obviously, in geometrical configurations

not suitable for structured grids, control functions or variational functions are difficult

to apply.

Unstructured adaptive methods have been extensively developed for FEM applica-

tions. Mesh refinement methods (h-methods) with error estimates and error indicators,

mesh movement methods (r -methods), combined mesh refinement and mesh movement

methods (hr -methods), mesh enrichment methods (p-methods), and combined mesh

refinement and mesh enrichment methods (hpmethods) were introduced in this chapter.

It is shown in Section 19.2.6 that adaptive unstructured mesh refinements can be

performed by finite differences, although severely limited in utility and flexibility. Much

greater efficiency can be provided with finite elements. For the last two decades, Oden

and his co-workers and Babska and his co-workers have made significant contributions

in FEM adaptive mesh methods. Developments of adaptive mesh methods in unstruc-

tured grids constitute one of the great achievements in the FEM research.
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CHAPTER TWENTY

Computing Techniques

In Part Two and Part Three, various numerical schemes in CFD including FDM, FEM,

and FVM have been discussed. We have presented methods of grid generation and

adaptive meshing in both structured and unstructured grids in Part Four. Equation

solvers for both linear and nonlinear algebraic equations resulting from FDM, FEM,

and FVM have also been discussed in appropriate chapters. We are now at the stage

of embarking on extensive CFD calculations in large-scale industrial problems, which

will be presented in Part Five. To this end, it is informative to examine computational

aspects associated with supercomputer applications and multi-processors. Among them

are the domain decomposition methods (DDM), multigrid methods (MGM), and par-

allel processing. In DDM the domain of study is partitioned into substructures to make

solvers perform more efficiently with reduction of storage requirements, whereas in

MGM the solution convergence is accelerated with low-frequency errors being re-

moved through coarse mesh configurations and with high-frequency errors removed

through fine mesh configurations. These two methods lend themselves to parallel pro-

cessing to speed up and reduce computer time. Development of parallel programs and

both static and dynamic load balancing will be presented. The topics in this chapter

are designed toward more robust computational strategies in dealing with geometri-

cally complicated, large-scale CFD problems. Some selected example problems are also

included.

20.1 DOMAIN DECOMPOSITION METHODS

In dealing with geometrically large, complicated systems, it is natural to seek an ap-

proach to split the domain into small pieces, known as domain decomposition methods

(DDM). This is one of many possible applications to parallel processing to be discussed

in Section 20.3. The basic idea of DDM was originated from the concept of linear

algebra in solving the partial differential equations iteratively in subdomains, known

as the Schwarz method [Schwarz, 1869]; and subsequently implemented in applications

[Lions, 1988; Glowinski and Wheeler, 1988, among others]. The main advantages of

DDM include efficiency of solvers, savings in computational storage conducive to par-

allel processing, and applications of different differential equations in different sub-

domains (representing viscous flow in one subdomain and inviscid flow in another

subdomain, for example).

654
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There are two approaches in the Schwarz method: (1) Multiplicative procedure

which resembles the block Gauss-Seidel iteration, and (2) Additive procedure analo-

gous to a block Jacobi iteration. We elaborate these procedures in the following sections.

20.1.1 MULTIPLICATIVE SCHWARZ PROCEDURE

In a typical domain decomposition approach, we divide the domain � into subdomains

�i such that

� =
n⋃

i=1

�i (20.1.1)

an example of which is shown in Figure 20.1.1 In this example, there are three in-

terior domains, �1(1 − 12), �2(13 − 21), �3(22 − 27), and three boundary interfaces,

�1,2, �1,3, �2,3(28 − 36). Here, for simplicity, boundary interface nodes are labeled last.

Let us consider the Poisson equation and the resulting matrix equations from FDM,

FEM, or FVM formulations for this geometry in the form,⎡
⎣ K

27×27
aa K

27×9
ab

K
9×27

ba K
9×9

bb

⎤
⎦

⎡
⎣ U

27×1
a

U
9×1

b

⎤
⎦ =

⎡
⎣ F

27×1
a

F
9×1

b

⎤
⎦ (20.1.2)

where the subscripts a, b denote the interior subdomains and interfaces, respectively, as

related to the global stiffness matrix Kaa (27 × 27) with the subdomain stiffness matri-

ces, K1(12 × 12), K2(9 × 9), K3(6 × 6) for �1, �2, �3, respectively, and the boundary

interface stiffness matrix, Kbb(9 × 9) together with the interface-subdomain interac-

tion stiffness matrices Kab(27 × 9) and Kba(9 × 27) as shown in Figure 20.1.2. From the

subdomain equations, we obtain

Ua = K−1
aa (Fa − KabUb) (20.1.3)

1  2 28 13 14 15 
  

      Γ1,2 
    

3  4 29 16 

    Ω2 

17 18 

5 

Ω1 
6 30 19 

    Γ2,3 

20 21 

7  8 31 
Γ1,3 

34 

    Ω3 

35 36 

9  10 
 

32 22 23 24 

11  12 33 25 26 27 
Figure 20.1.1 Decomposed domain (subdomains): Interior nodes (1–27), subdo-

main �1 (1–12), subdomain �2 (13–21), subdomain �3 (22–27), Interfaces �12,

�13, �23 (28–36).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Figure 20.1.2 Global stiffness matrix, Kaa(27 × 27) for Figure 20.1.1 with the subdomain stiffness

matrices K1(12 × 12), K2(9 × 9), K3(6 × 6), for �1, �2, �3, respectively, and the boundary

interface stiffness matrix, Kbb(9 × 9) together with the interface-subdomain interaction stiffness

matrices Kab(27 × 9) and Kba(9 × 27).

Substituting (20.1.3) into the interface equations leads to

SbbUb = Fb − Kba K−1
aa Fa (20.1.4)

with

Sbb = Kbb − Kba K−1
aa Kab (20.1.5)

which is known as the Schur complement matrix. Note that determination of the un-

knowns Ua, Ub requires the matrix inversion, K−1
aa . To avoid this inversion operation, we

employ the block Gaussian elimination approach as follows: First we return to (20.1.3)

and write in the form

Ua = F∗
a − K∗

abUb (20.1.6)

with

F∗
a = K−1

aa Fa (20.1.7)

K∗
ab = K−1

aa Kab (20.1.8)



20.1 DOMAIN DECOMPOSITION METHODS 657

Premultiplying F∗
a by Kaa, and K∗

ab by Kaa , we obtain, respectively,

Kaa F∗
a = Kaa K−1

aa Fa = Fa (20.1.9)

Kaa K∗
ab = Kaa K−1

aa Kab = Kab (20.1.10)

Now, any standard equation solver may be used to solve F∗
a and K∗

ab from (20.1.9) and

(20.1.10), respectively. We then compute

F∗
b = Fb − Kba F∗

a (20.1.11)

and the Schur complement matrix in the form

Sbb = Kbb − Kba K∗
ab (20.1.12)

Finally, we solve the interface unknowns Ub using (20.1.11) and (20.1.12) from

SbbUb = F∗
b (20.1.13)

and the interior subdomain unknowns using (20.1.9) and (20.1.10) from (20.1.3)

Ua = F∗
a − K∗

abUb (20.1.14)

It is well known that any system of equations may be altered in such a manner that

conditioning of the equations (eigenvalues) can be improved in order to assure accuracy.

To this end, let us examine the global equation of the form

K
n×n

U
n×1

= F
n×1

(20.1.15)

The preconditioned system of (20.1.15) may be written as

M−1 KU = M−1 F (20.1.16)

where M is the preconditioning matrix and M−1 is the preconditioning operator. This

is called the multiplicative Schwarz procedure which is equivalent to a block Gauss-

Seidel iteration. In order to derive this preconditioning operator, we seek the restriction

operator Ri and the prolongation operator (transpose of the restriction operator) with

the subscript i denoting the number of subdomains such that

Ki
(ni ×ni )

= Ri
(ni ×n)

K
(n×n)

RT
i

(n×ni )

(20.1.17)

or

K−1 = RT
i K−1

i Ri (20.1.18)

where the ni refers to the total number of nodes for each subdomain and its boundary

interface. Note that the subscript i here is not a tensorial index. For example, for the

geometry represented by Figure 20.1.1, we have n = 36 and ni for �1, �2, �3 are 18, 16,

12, respectively, leading to the global stiffness matrix K shown in Figure 20.1.2. Here,

the restriction matrices Ri consist of ones at associated nodes and zeros elsewhere

(Figure 20.1.3), resulting in subdomain stiffness matrices as shown in Figure 20.1.4.

Let us assume that at each iterative solution step there is an error given by the error

vector d,

d = U∗ − U (20.1.19)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

R1 ( 18 × 36 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

R2 ( 16 × 36 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

R3 ( 12 × 36 )
Figure 20.1.3 Restriction operators for subdomains given in Figure 20.1.1.

where U∗ is the solution at the current step with U being the previous step. Then, we

have

F − KU = Kd = K(U∗ − U) (20.1.20)

It follows from the above relations that

d = K−1(F − KU) (20.1.21)

U∗ = U + RT
i K−1

i Ri (F − KU) (20.1.22)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 K1,1 K1,2 K1,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 K2,1 K2,2 0 K2,4 0 0 0 0 0 0 0 0 K2,28 0 0 0 0 0
3 K3,1 0 K3,3 K3,4 K3,5 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 K4,2 K4,3 K4,4 0 K4,6 0 0 0 0 0 0 0 K4,29 0 0 0 0
5 0 0 K5,3 0 K5,5 K5,6 K5,7 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 K6,4 K6,5 K6,6 0 K6,8 0 0 0 0 0 0 K6,30 0 0 0
7 0 0 0 0 K7,5 0 K7,7 K7,8 K7,9 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 K8,6 K8,7 K8,8 0 K8,10 0 0 0 0 0 K8,31 0 0
9 0 0 0 0 0 0 K9,7 0 K9,9 K9,10 K9,11 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 K10,8 K10,9 K10,10 0 K10,12 0 0 0 0 K10,32 0
11 0 0 0 0 0 0 0 0 k11,9 0 k11,11 k11,12 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 k12,10 k12,11 k12,12 0 0 0 0 0 k12,33

13 0 k13,2 0 0 0 0 0 0 0 0 0 0 k13,28 K13,29 0 0 0 0
14 0 0 0 k14,4 0 0 0 0 0 0 0 0 k14,28 K14,29 k14,30 0 0 0
15 0 0 0 0 0 k15,6 0 0 0 0 0 0 0 K15,29 k15,30 k15,31 0 0
16 0 0 0 0 0 0 0 k16,8 0 0 0 0 0 0 k16,30 k16,31 k16,32 0
17 0 0 0 0 0 0 0 0 0 k17,10 0 0 0 0 0 k17,31 k17,32 k17,33

18 0 0 0 0 0 0 0 0 0 0 0 k18,12 0 0 0 0 k18,32 k18,33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 K1,13 K1,14 0 K1,16 0 0 0 0 0 K1,28 0 0 0 0 0 0
2 K2,13 K2,14 K2,15 0 K2,17 0 0 0 0 0 0 0 0 0 0 0
3 0 K3,14 K3,15 0 0 K3,18 0 0 0 0 0 0 0 0 0 0
4 K4,13 0 0 K4,16 K4,17 0 K4,19 0 0 0 K4,29 0 0 0 0 0
5 0 K5,14 0 K5,16 K5,17 K5,18 0 K5,20 0 0 0 0 0 0 0 0
6 0 0 K6,15 0 K6,17 K6,18 0 0 K6,21 0 0 0 0 0 0 0
7 0 0 0 K7,16 0 0 K7,19 K7,20 0 0 0 K7,30 0 K7,34 0 0
8 0 0 0 0 K8,17 0 K8,19 K8,20 K8,21 0 0 0 0 0 K8,35 0
9 0 0 0 0 0 K9,18 0 K9,20 K9,21 0 0 0 0 0 0 K9,36

10 K10,13 0 0 0 0 0 0 0 0 K10,28 K10,29 0 0 0 0 0
11 0 0 0 k11,16 0 0 0 0 0 k11,28 k11,29 k11,30 0 0 0 0
12 0 0 0 0 0 0 k12,19 0 0 0 k12,29 k12,30 k12,31 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 k13,30 k13,31 k13,34 0 0
14 0 0 0 0 0 0 k14,19 0 0 0 0 0 k14,31 k14,34 k14,35 0
15 0 0 0 0 0 0 0 k15,20 0 0 0 0 0 k15,34 k15,35 k15,36

16 0 0 0 0 0 0 0 0 k16,21 0 0 0 0 0 k16,35 k16,36

1 2 3 4 5 6 7 8 9 10 11 12
1 K1,22 K1,23 0 K1,25 0 0 0 K1,32 0 K1,34 0 0
2 K2,22 K2,23 K2,24 0 K2,26 0 0 0 0 0 K2,35 0
3 0 K3,23 K3,24 0 0 K3,27 0 0 0 0 0 K3,36

4 K4,22 0 0 K4,25 K4,26 0 0 0 K4,33 0 0 0
5 0 K5,23 0 K5,25 K5,26 K5,27 0 0 0 0 0 0
6 0 0 K6,24 0 K6,26 K6,27 0 0 0 0 0 0
7 0 0 0 0 0 0 K7,31 K7,32 0 K7,34 0 0
8 K8,22 0 0 0 0 0 K8,31 K8,32 K8,33 0 0 0
9 0 0 0 K9,25 0 0 0 K9,32 K9,33 0 0 0

10 K10,22 0 0 0 0 0 K10,31 0 0 K10,34 K10,35 0
11 0 k11,23 0 0 0 0 0 0 0 K11,34 k11,35 k11,36

12 0 0 k12,24 0 0 0 0 0 0 0 k12,35 k12,36

Figure 20.1.4 Final forms of stiffness matrices.

Define the error e∗ to be the difference between the right-hand side and the left-hand

side of (20.1.22),

e∗ = e − RT
i K−1

i Ri K(U∗ − U) (20.1.23)

which may be rewritten for subiteration steps i and i − 1 as

ei = ei−1 − RT
i K−1

i Ri Kei−1 (20.1.24)



660 COMPUTING TECHNIQUES

with i = 1, . . . s, s being the total number of subdomains. This gives

ei = (I − Pi )ei−1 (20.1.25)

where Pi is known as the projector,

Pi = RT
i K−1

i Ri K (20.1.26)

For the error at step s, we have

es = (I − Ps)(I − Ps−1) . . . (I − P1)e0 (20.1.27)

or

es = Qse0 (20.1.28)

with

Qs = (I − Ps)(I − Ps−1) . . . (I − P1)

The multiplicative Schwarz procedure described above may be extended to over-

lapping subdomains, which will be elaborated in Section 20.4.1 together with parallel

processing.

20.1.2 ADDITIVE SCHWARZ PROCEDURE

In contrast to the multiplicative Schwarz procedure, which is similar to the block

Gauss-Seidel iteration, the additive Schwarz procedure consists of updating all the new

block components from the same residual, analogous to a block Jacobi iteration, and

thus the components in each subdomain are not updated until a whole cycle of updates

through all domains is completed.

It follows from (20.1.22) and (20.1.26) that

U∗ =
(

I −
s∑

i=1

Pi

)
U +

s∑
i=1

Ti F (20.1.29)

with

Ti = Pi K−1 = RT
i K−1

i Ri (20.1.30)

Note that, upon convergence, U∗ = U, the solution (20.1.29) becomes

s∑
i=1

PiU =
s∑

i=1

Ti F (20.1.31)

Comparing (20.1.16) and (20.1.31), we find that

s∑
i=1

Pi = M−1 K

s∑
i=1

Ti =
s∑

i=1

Pi K−1 = M−1

(20.1.32)

which identifies the preconditioning as given by (20.1.16),

M−1 KU = M−1 F
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It is seen that the preconditioned iterative solution (20.1.29) has multiple benefits.

Here, only the restricted and prolongated subdomain matrices are involved, the solu-

tion is more accurate due to preconditioning, convergence is faster, and computational

storage requirements are less with domain decomposition.

The domain decomposition may be carried out in unstructured grids. The basic alge-

bra for the structured grids presented above can be applied equally well to the unstruc-

tured grids. Furthermore, the domain decomposition lends itself to parallel processing

which will be presented in Section 20.3. Examples of both overlapping and nonoverlap-

ping subdomains together with parallel processing will be presented in Section 20.3.4.

20.2 MULTIGRID METHODS

20.2.1 GENERAL

The basic idea of multigrid methods (MGM), as originally pioneered by Brandt [1972,

1977, 1992], is to accelerate the convergence of iterative solvers. The low-frequency or

large wavelength components of error on a fine mesh become high frequency or small

wavelength components on a coarser mesh. Thus, it is preferable to use coarse grids

to remove low-frequency errors, with accuracy ensured by means of fine grids. Two or

more levels of solutions from fine to coarse grids (restriction process) and from coarse

to fine grids (prolongation process) may be repeated until convergence is reached. In

general, MGM is regarded as the most efficient technique to accelerate convergence

among the iterative methods in solving the linear and nonlinear algebraic equations.

In multigrid operations, asymptotic behavior of the error (or of the residual) is dom-

inated by the eigenvalues of the amplification matrix close to one in absolute value. The

error components situated in the low-frequency range of the spectrum of the space-

discretization are the slowest to be damped in the iterative process. The higher frequen-

cies are the first to be reduced and a large part of the high-frequency error components

will be damped, thus acting as a smoother of the error.

The simplest case of a multigrid procedure consists of nested structured grid in which

a fine grid is coarsened by eliminating every other node in all directions so that all nodes

in the coarse mesh appear in the fine mesh. In contrast, unstructured grids are in general

unnested. We present the general procedure of nested structured multigrid methods in

Section 20.2.2, followed by unnested unstructured multigrid methods in Section 20.2.3.

20.2.2 MULTIGRID SOLUTION PROCEDURE ON STRUCTURED GRIDS

For structured grid FDM computations, we may begin with the finest grid and coarsen

the mesh by eliminating every other node, resulting in nested grids. An example for

the three-level nested multigrid system is shown in Figure 20.2.1. In practice, several

levels of multigrid discretization are desirable. The simplest descriptions of multigrid

methods may be given as follows:

Restriction Process

Do n iterations (two or three relaxation sweeps) on the fine grid using any iterative

solution method such as the Gauss-Seidel scheme. Interpolate the residual R onto the
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coarse grid. Thus, the multigrid methods are intended for exploiting the high-frequency

smoothing of the relaxation (iteration) procedure.

The coarse grid equation (20.2.1) for Um
� is prolongated onto the next finer grid

(20.2.2). After a few steps of this iterative process, the high-frequency components of

the residual Em+1 are obtained

Em+1
� = F m+1

� − Km+1,m+1
�� U m+1

� (20.2.3)

The residual can then be reduced and adequately resolved on the coarse grid:

Km,m
�� U

m
� = Km,m+1

�� Em+1
� = F

m
� (20.2.4)

where U
m
� is the correction on the coarse grid and Km,m+1

�� is the nonsquare matrix,

known as the restriction operator. For nonlinear problems we may replace (20.2.3) by

Km,m
��

(
Km,m+1

�� U m+1
� + U

m
�

) = F
m
� + Km,m

�� Km,m+1
�� U m+1

� (20.2.5)

or

Km,m
�� U

m
� = F

m
� (20.2.6)

The solution of either (20.2.4) for linear problems or (20.2.6) for nonlinear problems

enables U m+1
� to be updated by adding to it the prolongation of U

m
� onto the finer grid

so that U m+1
� as calculated from (20.1.2) is updated to U

m+1

� as

U
m+1

� = U m+1
� + Km+1,m

��

(
U m

� − Km,m+1
�� U m+1

�

)
(20.2.7)

where Km+1,m
�� is the nonsquare matrix, known as the prolongation operator. The pro-

cedure described above will be repeated until the converged solution of (20.2.2) is

obtained.

If FDM discretizations are employed, the restriction and prolongation operators

can be replaced by appropriate finite difference formulas. To identify these operators,

let us begin with the FDM formulations using the FEM notations.

Km+1
�� �U m+1

� = F m+1
� − Km+1

�� U m
� = Em+1

� (20.2.8)

with

U m+1
� = U m

� + �U m+1
� (20.2.9)

The residual Em
� upon a few relaxation steps on the (m + 1)th grid to smooth the high-

frequency components is of the form

E
m
� = Em

� − Km
�� �U

m
� (20.2.10)

where �U
m
� is obtained through a few relaxation steps.

The residual Em−1
� on the mth grid is obtained from E

m
� as

Em−1
� = Im−1

r Em
�r (20.2.11)

which represents the transfer from the fine to the coarse grid with Im−1
r being the

restriction operator similar to Km,m+1
�� in (20.2.4). This operator shows how the mesh

values on the coarse grid are derived from the surrounding fine mesh values. This is a
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coarse nodes 1, 2, 3, 4. An efficient strategy such as tree search algorithm may be

employed to locate the coarse grid cell enclosing a particular fine grid node. In

this algorithm, it requires information about the neighbors of each node or cell

and a series of tests are carried out to determine if the coarse grid cell encloses

the fine grid node.

As was indicated in Section 20.1 for domain decomposition, the parallel processing

can be applied to multigrid methods also to obtain speedup in computer time. We shall

discuss the subject of parallel processing in Section 20.3.

20.3 PARALLEL PROCESSING

20.3.1 GENERAL

Computational procedures in CFD in general as well as the adaptive mesh (Chapter 19),

domain decomposition (Section 20.1), and multigrid methods (Section 20.2) discussed

earlier will benefit from parallel processing, in which significant computational efficiency

can be achieved. There are different forms of parallelism: multiple functional units,

pipelining, vector processing, multiple vector pipelines, multiprocessing, and distributed

computing.

In multiple functional units, we multiply the number of functional units such as

adders and multipliers together. Here, the control units and the registers are shared by

the functional units.

The concept of pipelining resembles an automobile assembly line. Let us assume

that n number of operations takes s stages to complete in time t . The speedup factor

S in this case can be given by the ratio, S = nst/[(n + s − 1)t]. It is seen that for a large

number of operations, the speedup factor is approximately equal to the number of

stages.

Vector computers are equipped with vector pipelines such as a pipeline floating

point adder or multiplier. Also, vector pipe lines can be duplicated to take advantage

of any fine grain parallelism available in loops.

A multiprocessor system is a set of several computers with several processing ele-

ments, each consisting of a CPU, a memory, an I/O subsystem, etc. These processing

elements are connected to one another with some communication medium, either a bus

or some multistage network. In a tightly coupled system, processors cooperate closely

on the solution to a problem. A loosely coupled system consists of a number of inde-

pendent and not necessarily identical processors that communicate with each other via

a communication network. The multiprocessor computer architecture may be classified

in terms of the sequence of instructions performed by the machine and the sequence of

data manipulated by the instruction stream as follows:

(1) The single instruction-single data stream (SISD) architecture allows instructions

to be executed sequentially but they may be overlapped in their execution stages

(pipelining). Instructions are fetched from the memory in serial fashion and

executed in a single processor.

(2) In single instruction-multiple data stream (SIMD) architecture multiple pro-

cessing elements are all supervised by the same control unit. All processors
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receive the same instructions broadcast from the control unit, but operate on

different data sets from distinct data streams.

(3) With multiple instruction-multiple data stream (MIMD), each processor has

its own control unit and the processors execute independently. The processors

interact with each other either through shared memory or by using message

passing to execute an application.

Distributed computing is a more general form of multiprocessing, linked by some

local area network such as the parallel virtual machine (PVM) and the message pass-

ing interface (MPI). This system is cost effective for large applications with high vol-

ume of computation performed before more data is to be exchanged. In distributed

multiprocessors, each processor has a private or local memory but there is no global

shared memory in the system. The processors are connected using an interconnection

network, and they communicate with each other only by passing messages over the

network.

Multiprocessors rely on distributed memory in which processing nodes have access

only to their local memory, and access to remote data is accomplished by request and

reply messages. Numerous designs on how to interconnect the processing nodes and

memory modules include Intel Paragon, N-Cube, and IBM’s SP systems. As compared

to shared memory systems, distributed (or message passing) systems can accommodate

a larger number of computing nodes.

Although parallel processing systems, particularly those based on the message pass-

ing (or distributed memory) model, have led to several large-scale computing systems

and specialized supercomputers, their use has been limited for very specialized appli-

cations. This is because message passing is difficult when a sequential version of the

program as well as the message passing version is to be maintained. Thus, the new trend

is that the programmers approach the two versions completely independently and that

programming on a shared memory multiprocessor system (SMP) is considered easier.

In shared memory paradigm, all processors or threads of computation share the same

logical address space and access directly any part of the data structure in a parallel

computation. A single address space enhances the programmability of a parallel ma-

chine by reducing the problems of data partitioning, migration, and local balancing. The

shared memory also improves the ability of parallelizing compilers, standard operating

systems, resource management, and incremental performance.

In the following sections, we discuss the development of parallel algorithms, parallel

solution of linear systems on SIMD and MIMD machines, and applications of para-

llel processing in domain decomposition and multigrid methods, new trends in parallel

processing, and some selected CFD problems.

20.3.2 DEVELOPMENT OF PARALLEL ALGORITHMS

SIMD and MIMD Structures

In numerical methods such as CFD, the basis for development of parallel algorithms

is the evaluation of arithmetic expressions. The evaluation can be represented by graphs

or trees. To this end, let us consider the problem of mapping a given arithmetic expres-

sion E into an equivalent expression Ẽ that can be performed parallel on SIMD or

MIMD computers by means of commutative, distributive, or associative laws of linear
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a2a1 a3 a4 a2a1 a3 a4

Step 1

Step 2

Step 0

Step 3

Serial (G) Parallel (G)
~

Figure 20.3.1 SIMD structure.

algebra. For example, two additions can be made parallel as follows:

E = a4 + [a3 + (a2 + a1)] (20.3.1)

This can be transformed by the associativity of addition into

Ẽ = (a4 + a3) + (a2 + a1) (20.3.2)

A typical SIMD structure is characterized by

E = a1 + a2 + a3 + a4 (20.3.3)

By using the associative property of addition, we obtain

Ẽ = (a1 + a2) + (a3 + a4) (20.3.4)

as schematically shown in Figure 20.3.1 in which G and G̃ denote the serial tree and

parallel tree, respectively.

In MIMD structure, if we wish to compute

E = a1 + a2 × a3 + a4 (20.3.5)

it should be noted that the serial tree G is not a unique tree, and no tree height reduction

can be obtained by applying the associative law. Instead, we apply the commutative

property of addition with E being transformed into

Ẽ = (a1 + a4) + a2a3 (20.3.6)

with the tree height reduced by one step as shown in Figure 20.3.2.

The speedup of a parallel algorithm is given by

Sp = T1/T p (20.3.7)

where T p is the execution time using p processors. The efficiency is defined by

Ep = Sp/p (20.3.8)

Thus, for the case shown in Figure 20.3.2, we obtain T2 = 2, S2 = T1/T2 = 3/2, E2 =
S2/2 = 3/4. In parallel processing, we must determine how many tree height reductions
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Figure 20.3.2 MIMD structure.

can be achieved for a given arithmetic expression and how many processors are needed

for optimality.

Matrix-by-Vector Products in Parallel Processing

Matrix-by-vector multiplications are easy to implement on high-performance com-

puters. Consider the matrix-by-vector product y = Ax. One of the most general schemes

for storing matrices is the compressed sparse row (CSR) format. Here, the data struc-

ture consists of three arrays: a real array A(1 : nnz) to store the column positions of

the elements row-wise, an integer array JA(1 : nnz) to store the column positions of the

elements in the real array A, and finally, a pointer array IA(1 : n + 1), the ith entry of

which points to the beginning of the ith row in the arrays A and JA. Here, we note that

each component of the resulting vector y can be computed independently as the dot

product of the ith row of the matrix with the vector x. The algorithm for CSR format-dot

product form may be given as follows:

1. Do i = 1, n
2. k1 = ia(i)
3. k2 = ia(i + 1) − 1

4. y(i) = dot product(a(k1 : k2), x( ja(k1 : k2)))

5. EndDo

Note that the outer loop can be performed in parallel on any parallel platform. On

some shared memory machines, the synchronization of this outer loop is inexpensive

and the performance of the above program can be effective. On distributed memory

machines, the outer loop can be split in a number of steps to be executed on each proces-

sor. It is possible to assign a certain number of rows (often contiguous) to each processor

and to also assign the component of each of the vectors similarly. When performing a

matrix-by-vector product, interprocessor communication will be necessary to get the

needed components of the vector x that do not reside in a given processor.

The indirect addressing involved in the second vector in the dot product is called

a gather operation. The vector x( ja(k1 : k2)) is first “gathered” from memory into a

vector of contiguous elements. The dot product is then carried out as standard dot-

product operation between two dense vectors, as illustrated in Figure 20.3.3.
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compilers are not capable of deciding whether this is the case, a compiler directive from

the user is necessary for the scatter to be invoked.

20.3.3 PARALLEL PROCESSING WITH DOMAIN DECOMPOSITION
AND MULTIGRID METHODS

Although it is difficult to characterize multiprocessors in a simple manner, we may as-

sume that they are individual processors and memory modules that are interconnected

in some way. This interconnection can occur in a number of ways, but in general, pro-

cessor memory modules communicate with one another directly or through a common

shared memory. The processing unit in the model can be a simple bit processor, a scalar

processor, or a vector processor. The memory unit in the module can be a few registers

or a cache memory. Because of nonlinearity in fluid mechanics, it is important that the

interaction between the computer modules in a multiprocessing system be controlled

by a single operating system.

There are two forms of multiprocessors: the loosely coupled or distributed memory

multiprocessors and the tightly coupled or shared memory multiprocessors. In a loosely

coupled system, each computer module has a relatively large local memory where it

accesses most of the instructions and data. Because there is no shared memory, pro-

cesses executing on different computer modules communicate by exchanging messages

through an interconnection network. In fact, the communication topology of this inter-

connection network is the crucial factor of these systems. Thus, loosely coupled systems

are usually efficient when the interaction between computational tasks is minimal.

Tightly coupled multiprocessor systems communicate through a globally shared

memory. Hence, the rate at which data can communicate from one computer module

to the other is of the order of the bandwidth of the memory. Because of the complete

connectivity between the computer modules and memory, the performance may tend

to degrade due to memory contentions.

Ideal numerical models for multiprocessors are those that can be broken down into

algebraic tasks, each of which can be executed independently on a computer module

without ever having to obtain or pass data between the modules during the course of

the execution. This framework allows a mechanism for analyzing the movement of data

within a multiprocessing system. The basic idea is to regard the computational tasks be-

ing performed by the individual computer modules as numerical solutions of individual

boundary value problems. In this way numerical data being obtained or transmitted be-

tween computer modules are the initial and boundary data of the differential equations.

The solution of the overall mathematical model is then provided by “piecing” together

each of the subproblems.

For the domain decomposition methods presented in Section 20.1, the domain �(t)
is expressed as a union of subdomains (such as in Figure 20.1.1)

�(t) =
k(t)⋃
j=1

� j (t) (20.3.9)

Each processor then assumes the task of solving one or more of the partial differential

equations over a prescribed time interval �t . At the end of this time interval, a new
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substructuring of the domain is performed:

�(t + �t) =
k(t+�t)⋃

j=1

� j (t, �t) (20.3.10)

and the process is repeated. The numerical mathematical relationship between the

computed subdomain solutions and the solution of the global problem is delicate and

is a function of the partial differential equation being solved. However, it is precisely

this relationship that determines the efficiency of the computation on a multiprocessing

system.

New Trends in Parallel Processing

It appears that the use of small clusters of SMP systems, often interconnected to

address the needs of complex problems requiring the use of large numbers of processing

nodes, is gaining popularity [Kavi, 1999]. Even when working with networked resources,

programmers are relying on messaging standards such as MPI and PVM or relying on

systems software to automatically generate message passing code from user-defined

shared memory programs. The reliance on software support to provide a shared memory

programming model (i.e., distributed shared memory systems) can be viewed as a logical

evolution in parallel processing. Distributed shared memory (DSM) systems aim to

unify parallel processing systems that rely on message passing with the shared memory

systems. The use of distributed memory systems as shared memory systems addresses

the major limitation of SMPs, namely scalability.

The growing interest in multithreading programming and the availability of systems

supporting multithreading (Pthreads, NT-threads, Linux threads, Java) further empha-

sizes the trend toward shared memory programming model [Nichol, Buttlar, and Farrell,

1996]. The so-called OpenMP Fortran is designed for the development of portable paral-

lel programs on shared memory parallel computer systems. One effect of the OpenMP

standard will be to increase the shift of complex scientific and engineering software

development from the supercomputer world to high-end desktop workstations.

Distributed shared memory systems (DSM) attempt to unify the message passing

and shared memory programming models. Since DSMs span both physically shared

and physically distributed memory systems, DSMs are also concerned with the inter-

connection networks that provide the data to the requesting processor in an efficient

and timely fashion. Both the bandwidth (amount of data that can be supplied in a

unit time) and latency (the time it takes to receive the first piece of requested data

from the time the request is issued) are important to the design of DSM. It should be

noted that because of the generally longer latencies encountered in large-scale DSMs,

multithreading has received considerable attention in order to tolerate (or mask) mem-

ory latencies.

The management of large logical memory space involves moving data dynamically

across the memory layers of a distributed system. This includes the mapping of the user

data to the various memory modules. The data may be uniquely mapped to a physical

address as done in cache coherent systems, or replicating the data to several physical

addresses as done in reflective memory systems and, to some extent, in cache-only

systems. Even in uniquely mapped systems, data may be replicated in lower levels of
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multiple concurrent activities. Multitasking or other concurrent programming methods

utilize the multiple processing units. Multithreaded programs can be executed either

on a single processor system or on an SMP with minimum changes. This is in contrast

to traditional (old) parallel programming which requires careful and tedious changes

to the program structure to utilize the multiple-processing unit. As each workstation

is becoming more powerful and cheaper, the trend has been to use a network of such

systems instead of supercomputers or massively parallel systems.

20.3.4 LOAD BALANCING

An important consideration in CFD is the problem of distributing the mesh across the

memory of the machine at runtime so that the calculated load is evenly balanced and

the amount of interprocessor communication is minimized. Load balancing is difficult

in large distributed systems. Algorithms must minimize both load balance and commu-

nication overhead of the application. These algorithms should balance the load with as

little overhead as possible, and they should be scalable.

We consider a parallel system as with P processors as a graph H = (U, F) with nodes

U = {0, . . . , P − 1} and edges F ⊆ U × U. Similarly, a parallel application is modeled

as graph G = (V, E, � , �) with nodes V = {0, . . . , N − 1}, edges E ⊆ V × V, node

weights � : V → R̃, and edge weights � : E → R̃.

We may view the load balancing as a graph embedding problem. Our task is to find a

mapping M : G →H of the application graph to the processor graph minimizing a cost

function. The processor graph H is usually static (constant during the runtime), whereas

the parallel application graph G may be static or dynamic, that is, the computational

load of the application may or may not change during runtime.

The Static Load Balancing

In the static load balancing, neither the structure nor the weights of the application

graph G change during runtime. It is assumed that G is completely known prior to

the start of the application such as in nonadaptive methods for numerical simulation.

The static load balancing problem calculates a good mapping of the application graph

G= (V, E ) onto the processor graph H = (U, F ).

Cost functions determining the quality of a mapping are its load, dilation, and con-
gestion. The load of a mapping M is the maximum number of nodes from G assigned

to any single node of H. The dilation is the maximum distance of any route of a single

edge from G in H. The congestion is the maximum number of edges from G that must

be routed via any single edge in H. The load determines the balancing quality of the

mapping. It should be kept as low as possible to avoid idle times of the processor. The

dilation of and edge of G determine the slowdown of a communication on this edge due

to routing latency in H. The goal is to find a mapping function M which minimizes all

three measures – load, dilation, and congestion [Leighton, 1992].

A graph is split into as many as there are numbers of processors such that as few

as possible edges are external. This can be done by recursively bisecting the graph

into two pieces. There are efficient solution heuristics which approximate the best

value in terms of numbers of external edges. Some of the examples are (1) global

methods partitioning the nodes into two subsets of equal size [Jones and Plassmann,
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1994; Kaddoura, Ou, and Ranka, 1995]; (2) local methods where local heuristics deter-

mine equally sized sets of nodes which can be exchanged between parts such that the

size of the cut decreases [Kerninghan and Lin, 1970; Fiduccia and Mattheyses, 1982;

Hendrickson and Leland, 1993]; (3) multilevel hybrid methods in which a large graph

is shrunk to a smaller one with similar characteristics, efficiently partitioned, and ex-

trapolated to the original graph [Karypis and Kumar, 1995; Hendrickson and Leland,

1993].

Dynamic Load Balancing

The application graph G = (V, E, � , �) of problems in this class is dynamic; that

is, nodes and edges are generated or deleted during runtime. Here, operations are

carried out in phases. Changes to G do not occur at arbitrary, nonpredictable times but

in synchronized manner. The mesh is usually refined based on error estimates of the

current solution [Bornemann, Erdmann, and Kornhuber, 1993]. In general, we split the

task of load balancing into two steps. First, we calculate how much load is to be shifted

between processors, and second we determine which load is to be moved [Diekmann,

Meyer, and Monien, 1997; Lüling and Monien, 1993].

Lin and Keller [1987] proposed a gradient model in which they assign a status of

high, medium, or low to processors depending on their load. The algorithm then pushes

the load from high to low. Lüling and Monien [1992] make processors balance their

load with a fixed set of neighbors if the load difference between them increases above

a certain threshold. Rudolph, Slivkin-Allouf, and Upfal [1991] showed that if processor

j initiates a balancing action with a randomly chosen other processor with probability

(c /load j), then the expected load of j is at most c times the average load plus a constant.

The first step of the load balancing is to calculate how much load has to be transferred

across each edge of H in order to achieve a globally balanced system. There are many

approaches to this task: (1) Token distribution. This is the synchronized setting of the

re-embedding problem in which a number of independent tokens on a network of

processors are evenly distributed [Meyer et al., 1996]. (2) Random matchings. Ghosh

et al. [1995] show that the load deviation halves in a minimal number of steps if a

random matching of H’s edges is chosen and some load is sent via these edges when the

corresponding processors are not balanced. However, this approach is impractical in

general situations. (3) Diffusion. A simple diffusive distributed load balancing strategy

in which each processor balances its load with all its neighbors in each round was

suggested by Cybenko [1989] and Boillat [1990]. These rounds are iterated until the

load is completely balanced.

In addition to determining how much load is to be transferred, it is also important

to choose load items which can be migrated in order to fulfill the flow requirements.

For example, global iterative methods for solving linear systems such as multigrid or

conjugate gradient computations can be parallelized by choosing load items so that

the communication demands are minimized. Here, we must take into account the total

length of subdomain boundaries, communication characteristics of the parallel system,

etc. An example of recursive graph bisection for airfoils as demonstrated by Diekmann

et al. [1997] is shown in Figure 20.3.6a. An aspect ratio optimization may be applied as

shown in Figure 20.3.6b.
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Figure 20.3.6 Dynamic load balancing of airfoil grid generation [Diekmann et al.,

1997].

20.4 EXAMPLE PROBLEMS

In this section, two examples of parallel processing with domain decomposition are

presented. Solutions of Poisson equation and Navier-Stokes system of equations will be

discussed.

20.4.1 SOLUTION OF POISSON EQUATION WITH DOMAIN DECOMPOSITION
PARALLEL PROCESSING

Domain decompositions methods are used effectively in parallel processing. Sub-

domains may be nonoverlapping, or overlapping. First, let us consider a nonoverlapping

case (Figure 20.4.1a) and construct the matrix equations of the form,

Lu =
⎡
⎣K11 0 K13

0 K22 K23

K31 K32 K33

⎤
⎦

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣ f 1

f 2

f 3

⎤
⎦ = f (20.4.1)

(a)

(b)

1221 ΓΩΩ=Ω

1221111 ΩΓΩ=Ω

2212212 ΩΓΩ=Ω

21 ΩΩ=Ω

2Ω1Ω

12Γ

11Ω 2112 Ω=Ω 22Ω
21Γ 12Γ

2Ω

1Ω

Figure 20.4.1 Domain decomposition. (a) Nonoverlapping subdomains.

(b) Overlapping subdomains.
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which is similar to (20.1.2). Here, the first two rows indicate subdomains �1 and �2,

with the third row representing the boundary interface �12. The subdomain variables

u1 and u2 are calculated as

u1 = K−1
11 ( f 1 − K13u3)

u2 = K−1
22 ( f 2 − K23u3)

(20.4.2)

where the boundary interface variables u3 are determined from(
K33 − K31 K−1

11 K13 − K32 K−1
22 K23

)
u3 = f 3 − K31 K−1

11 f 1 − K32 K−1
22 f 2 (20.4.3)

The above unknowns can be solved using two MIMD parallel processors. Here, we may

utilize the preconditioning operator as described in Section 20.1.1.

The two subdomains used in the above example may be overlapped as shown in

Figure 20.4.1b. In this case, the matrix equations take the form

Lu =

⎡
⎢⎢⎢⎢⎣

K11 K12 0 0 0

K21 K22 K23 0 0

0 K32 K33 K34 0

0 0 K43 K44 K45

0 0 0 K54 K55

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f 1

f 2

f 3

f 4

f 5

⎤
⎥⎥⎥⎥⎦ = f (20.4.4)

which is partitioned into two systems, �11 and �22 such that

L1�1 =
⎡
⎣K11 K12 0

K21 K22 K23

0 K32 K33

⎤
⎦

⎡
⎣�11

�12

�13

⎤
⎦ =

⎡
⎣g11

g12

g13

⎤
⎦ = F1 (20.4.5)

L2�2 =
⎡
⎣K33 K34 0

K43 K44 K45

0 K54 K55

⎤
⎦

⎡
⎣u3

u4

u5

⎤
⎦ =

⎡
⎣ f 3

f 4

f 5

⎤
⎦ = F2 (20.4.6)

with

F1 =
⎡
⎣ f 1

f 2

f 3

⎤
⎦ −

⎡
⎣0 0 0

0 0 0

0 K34 0

⎤
⎦

⎡
⎣u3

u4

u5

⎤
⎦ = F ′

1 − G2�2 (20.4.7)

F2 =
⎡
⎣ f 3

f 4

f 5

⎤
⎦ −

⎡
⎣0 K32 0

0 0 0

0 0 0

⎤
⎦

⎡
⎣u1

u2

u3

⎤
⎦ = F ′′

2 − G1�1 (20.4.8)

The above process results in the system of equations in the form[
L1 G2

G1 L2

] [
�1

�2

]
=

[
F1

F2

]
(20.4.9)

This can be solved using the block Jacobi scheme:[
L1 0

0 L2

] [
�1

�2

]k+1

=
[

F1

F2

]
−

[
0 G2

G1 0

] [
�1

�2

]k

(20.4.10)

This system suggests that we can utilize two processors on a MIMD machine, forming

a global and inner parallelism of the algorithm.
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20.4.2 SOLUTION OF NAVIER-STOKES SYSTEM OF EQUATIONS
WITH MULTITHREADING

Multithreaded programming is utilized to take advantage of multiple computational

elements on the host computer [Schunk et al., 1999]. Typically, a multithreaded pro-

cess will spawn multiple threads which are allocated by the operating system to the

available computational elements (or processors) within the system. If more than one

processor is available, the threads may execute in parallel, resulting in a significant re-

duction in execution time. If more threads are spawned than available processors, the

threads appear to execute concurrently as the operating system decides which threads

execute while the others wait. One unique advantage of multithreaded programming

on shared memory multiprocessor systems is the ability to share global memory. This

alleviates the need for data exchange or message passing between threads as all global

memory allocated by the parent process is available to each thread. However, precau-

tions must be taken to prevent deadlock or race conditions resulting from multiple

threads trying to simultaneously write to the same data.

Threads are implemented by linking an application to a shared library and making

calls to the routines within that library. Two popular implementations are widely used:

the Pthreads library [Nichol et al., 1996] (and its derivatives) that are available on most

Unix operating systems and the NTthreads library that is available under Windows NT.

There are differences between the two implementations, but applications can be ported

from one to the other with moderate ease and many of the basic functions are similar

albeit with different names and syntax.

Domain decomposition methods (Section 20.3.1) can be used in conjunction with

multithreaded programming to create an efficient parallel application. The subdomains

resulting from the decomposition provide a convenient division of labor for the pro-

cessing elements within the host computer. The additive Schwarz domain decompo-

sition method discussed in Section 20.1.2 is utilized. The method is illustrated below

(Figure 20.4.2.1) for a two-dimensional square mesh that is decomposed into four sub-

domains. The nodes belonging to each of the four subdomains are denoted with ge-

ometric symbols while boundary nodes are identified with bold crosses. The desire is

to solve for each node implicitly within a single subdomain. For nodes on the edge of

each subdomain, this is accomplished by treating the adjacent node in the neighboring

subdomain as a boundary. The overlapping of neighboring nodes between subdomains

is illustrated in Figure 20.4.2.2. Higher degrees of overlapping, which may improve

convergence at the expense of computation time, are also used.

In a parallel application, load balancing between processors is critical to achieving

optimum performance. Ideally, if a domain could be decomposed into regions requiring

an identical amount of computation, it would be a simple matter to divide the problem

between processing elements as shown in Figure 20.4.2.3 for four threads executing on

an equal number of processors.

Unfortunately, in a “real world” application the domain may not be decomposed

such that the computation for each processor is balanced, resulting in lost efficiency. If

the execution time required for each subdomain is not identical, the CPUs will become

idle for portions of time as shown in Figure 20.4.2.4.

One approach to load balancing, as implemented in this application, is to decompose

the domain into more subdomains than available processors and use threads to perform
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Figure 20.4.2.9 Density contours for Y-Z cross section, slip boundary.

cross sections, located at 67 mm and 92 mm, respectively, from the entrance are noted

on the plot.

Density contours for the flow in x-y planes located 67 mm (upstream of the inviscid

shock intersection) and 92 mm (coincident with the inviscid shock intersection) from the

combined fin/ramp entrance are shown in Figure 20.4.2.9. It appears that the upstream

predictions correlate well with the experimental images. The inviscid ramp and fin

shocks, as well as the corner reflection, are easily discernible in the upstream figure (see

left). Interestingly, it appears that the triangular-shaped slip lines are present in the

numerical results of the upstream plane. Since the sliplines divide constant pressure

regions with differing velocities, this feature is not visible in the static pressure plots.

As in the experimental imagery, the inviscid fin shocks merge together in the symmetry

plane at the point where the inviscid shocks intersect (see right). No curvature of the

inviscid fin shock intersection is observed in the numerical predictions. The reflection of

the corner shock about the symmetry plane is observed, but the ramp embedded shock

is lower relative to the height of the fin than in the experimental results.

20.5 SUMMARY

Three of the most important computing techniques have been discussed: domain de-

composition, multigrids, and parallel processing. For large geometrical configurations,

domain decomposition provides efficiency in data managements. The number of result-

ing algebraic equations can still be very large, and the multigrid method of solutions of

the large algebraic system of equations is considered a most effective approach.

The trends in parallel processing have been leaning toward the use of small clusters

of Symmetric Multiprocessors (SMP), often interconnected to address the needs of com-

plex problems requiring a large number of processing nodes. In the past, programming

based on message passing paradigms on massively parallel computers or specialized

supercomputers has been used. These systems are becoming less popular (or available)

and distributed networks of SMP clusters are becoming the preferred choice for en-

gineering. The growing interest in multithreaded programming and the availability of
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systems supporting multithreading can be seen as evidence of the departure from the

use of supercomputers.

Many engineering applications rely on adaptive grid techniques that require dy-

namic load balancing of the threads/processors. In this vein, it is necessary to de-

velop new scheduling and load balancing approaches for adaptive grid applications

on shared memory systems using thread migration. The shared memory model presents

opportunities for exploiting finer-grained threads, faster thread migration, and load dis-

tribution. Thus, the advanced research in parallel processing remains a great challenge

in the future.
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PART FIVE

APPLICATIONS

H
aving studied various computational methods in Parts Two and Three and

automatic grid generation, adaptive methods, and computing techniques in

Part Four, we are now prepared to re-examine these methods and test our

knowledge on some selected engineering problems of application. For the past four

decades, many applications have been accumulated to such a great extent that it is impos-

sible to review them all in this text. Rather, we limit our scope of study to the following

areas: turbulence (Chapter 21), chemically reactive flows and combustion (Chapter 22),

acoustics (Chapter 23), combined mode radiative heat transfer (Chapter 24), multiphase

flows (Chapter 25), electromagnetic flows (Chapter 26), and relativistic astrophysical

flows (Chapter 27).

The selection of computational methods depends on many factors such as types of

flows, ranges of speeds, dimensions of domain, etc. A decision as to the choice of FDM,

FEM, or FVM is now a matter of preference and judgments of the analyst in view of

the information presented in the previous chapters.

In the following chapters, example problems and computational methods are cho-

sen randomly, depending on availability of sources. Some of them are drawn from the

student works at the University of Alabama in Huntsville, and others are from those

available in the open literature. In each of the applications, the corresponding govern-

ing equations and associated physics are first introduced. This is then followed by the

computational methods used, numerical results and evaluations, each example being

self-contained as much as possible.

It is hoped that these examples serve as a reasonable guidance for the uninitiated

reader toward his or her direction and destination in CFD research. Some examples

are elementary, and others represent the research results which are highly specialized.

Thus, the reader may wish to explore subject areas selectively.





CHAPTER TWENTY-ONE

Applications to Turbulence

21.1 GENERAL

Turbulence is a natural phenomenon in fluids that occurs when velocity gradients are

high, resulting in disturbances in the flow domain as a function of space and time.

Examples include smoke in the air, condensation of air on a wall, flows in a combustion

chamber, ocean waves, stormy weather, atmospheres of planets, and interaction of the

solar wind with magnetosphere, among others.

Although turbulence has been the subject of intensive study for the past century,

it appears that many difficulties still remain unresolved, particularly in flows with high

Mach numbers and high Reynolds numbers. Turbulent flows arise in contact with walls

or in between two neighboring layers of different velocities. They result from unstable

waves generated from laminar flows as the Reynolds number increases downstream.

With velocity gradients increasing, the flow becomes rotational, leading to a vigorous

stretching of vortex lines, which cannot be supported in two dimensions. Thus, turbu-

lent flows are always physically three-dimensional, typical of random fluctuations. This

makes 2-D simplifications unacceptable in most of the numerical simulation.

In turbulent flows, large and small scales of continuous energy spectrum, which

are proportional to the size of eddy motions, are mixed. Here, eddies are overlapping

in space, with large ones carrying small ones. In this process, the turbulent kinetic

energy transfers from larger eddies to smaller ones, with the smallest eddies eventually

dissipating into heat through molecular viscosity. In direct numerical simulation (DNS),

a refined mesh is used so that all of these scales, large and small, are resolved. This is

known as the deterministic method. Although some simple problems have been solved

using DNS, it is not possible to undertake industrial problems of practical interest due

to the prohibitive computer cost.

Since turbulence is characterized by random fluctuations, statistical methods rather

than deterministic methods have been studied extensively in the past. In this approach,

time averaging of variables is carried out in order to separate the mean quantities

from fluctuations. This results in new unknown variable(s) appearing in the governing

equations. Thus, additional equation(s) are introduced to close the system, the process

known as turbulence modeling or Reynolds averaged Navier-Stokes (RANS) methods.

In this approach, all large and small scales of turbulence are modeled so that mesh

689
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refinements needed for DNS are not required. We discuss this topic in Sections 21.3

and 21.7.1.

A compromise between DNS and RANS is the large eddy simulation (LES) which

has become very popular in recent years. Here, large-scale eddies are computed and

small scales are modeled. Small-scale eddies are associated with the dissipation range

of isotropic turbulence, in which modeling is simpler than in RANS. Since the large-

scale turbulence is to be computed, the mesh refinements are required much more than

in RANS, but not as much as in DNS because the small-scale turbulence is modeled.

Governing equations and examples for LES are presented in Section 21.4 and

Section 21.7.2.

Finally, we examine the physical aspects associated with DNS in Section 21.5,

followed by numerical examples in Section 21.7.3.

21.2 GOVERNING EQUATIONS

Turbulent flowfields can be calculated with the Navier-Stokes system of equations aver-

aged over space or time. When this averaging is performed, the equations describing the

mean flowfield contain the averages of products of fluctuating velocities. In general, this

will result in more unknowns than the number of equations available. Such difficulty

can be resolved by turbulence modeling with additional equations being provided to

match the number of unknowns. Such models are designed to approximate the physi-

cal behavior of turbulence. There are numerous ways of averaging flow variables: time

averages, ensemble averages, spatial averages, and mass averages.

Time Averages

Any variable f is assumed to be the sum of its mean quantity f and its fluctuation

part f ′,

f (x, t) = f (x, t) + f ′(x, t) (21.2.1)

where f is the time average of f ,

f (x, t) = 1

�t

∫ t+�t

t
f (x, t)dt (21.2.2)

with

f ′ = 1

�t

∫ t+�t

t
f ′dt = 0 (21.2.3a)

The time average of the product of fluctuation parts of two different variables f ′ and

g′ is given by

f ′ g′ = 1

�t

∫ t+�t

t
f ′ g′dt �= 0 (21.2.3b)
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Here, the time interval �t is chosen compatible with the time scale of the turbulent

fluctuations, not only for the variable f but also for other variables within the physical

domain.

Ensemble Averages

In terms of measurements of N identical experiments, f (x, t) = f n(x, t), we may

determine the average,

f (x, t) = lim
N→∞

1

N

N∑
n=1

f n(x, t) (21.2.4)

Spatial Averages

When the flow variable is uniform on the average such as in homogeneous turbu-

lence, we may choose to use a spatial average defined as

f (t) = lim
�→∞

1

�

∫
�

f (x, t)d� (21.2.5)

Mass (Favre) Averages

For compressible flows, it is often more convenient to use mass (Favre) averages

instead of time averages,

f = f̃ + f ′′ (21.2.6)

where the mean quantity f̃ is defined as

f̃ = � f
�

= f + � ′ f ′

�
(21.2.7)

and the fluctuation f ′′ has the property

� f ′′ = 0 (21.2.8a)

whereas

f ′′ = −� ′ f ′/� �= 0 (21.2.8b)

for the case of a time average. It is clear that the correlation of density fluctuations, � ′,
with the fluctuating quantity, f ′, gives rise to a nonzero mean Favre fluctuation field,

f ′′. Thus, it is seen that the Favre average makes the turbulent compressible flow equa-

tions simpler with their form resembling those of incompressible flows. Despite these

simplifications, however, the density fluctuations or compressibility effects must still be

resolved; only the mathematical simplifications are achieved through Favre averages.

With time averages for incompressible flows and mass averages for compressible

flows, the conservation equations can be derived as follows:

Time-Averaged Incompressible Flows

Continuity

vi,i = 0 (21.2.9a)
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Momentum

�
∂v j

∂t
+ �v j,i vi = −p, j + (� i j + �∗

i j ),i (21.2.9b)

with

� i j = 2�di j , di j = 1

2
(vi, j + v j,i ), �∗

i j = −�v′
i v

′
j

Energy

∂T
∂t

+ vi T,i = −(qi − q∗
i ),i (21.2.9c)

with

qi = −�T,i q∗
i = −v′

i T ′

Mass (Favre)-Averaged Compressible Flows

Continuity

∂�

∂t
+ (� ṽi ),i = 0 (21.2.10a)

Momentum
∂

∂t
(� ṽ j ) + (� ṽi ṽ j ),i = −p, j + (� i j + �̃∗

i j ),i (21.2.10b)

with

� i j = 2�

(
di j − 1

3
dkk�i j

)
, �∗

i j = −�v′′
i v′′

j

Energy

∂

∂t
(� E) + [� ṽi H],i = −

(
qi + q∗

i − �i j v
′′
j + 1

2
�v′′

i v′′
j v

′′
j

)
,i

+ [(� i j + �∗
i j )ṽ j ],i

(21.2.10c)

with

E = ε̃ + 1

2
ṽi ṽi , H = H̃ + 1

2
ṽi ṽi , q∗

i = −�v′′
i H′′,

For time averaged incompressible flows, −�v′
i v

′
j in (21.2.9b) and −v′

i T ′ in (21.2.9c)

are identified as the Reynolds (turbulent) stress and Reynolds (turbulent) heat flux,

respectively. The counterparts for mass-averaged compressible flows are −�v′′
i v′′

j in

(21.2.10b) and −�v′′
i H′′ in (21.2.10c), respectively. If time averages are used for com-

pressible flows, the Reynolds stress components would be much more complicated. For

this reason, mass averages are preferred for compressible flows.

These Reynolds stress tensors and Reynolds heat flux vectors are additional un-

known variables. Therefore, additional governing equations other than those given in

(21.2.9) and (21.2.10) matching the same number of unknowns must be provided. This

is the process known as the turbulence closure or turbulence modeling. We discuss this

subject in the next section.
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21.3 TURBULENCE MODELS

There are many options in providing the closure process: zero-equation (algebraic)

models, one-equation models, two-equation models, second order closure (Reynolds

stress) models, and algebraic stress models as applied to incompressible flows. They

are presented in Sections 21.3.1 through 21.3.4 with the effects of compressibility in

Section 21.3.5.

21.3.1 ZERO-EQUATION MODELS

The purpose of zero-equation models is to close the system without providing extra

differential equations. This may be achieved by the classical method of Prandtl mixing

length [Prandtl, 1925]. Recent and more popular models are those advanced by Cebeci

and Smith [1974] or Baldwin and Lomax [1978]. These models provide the Reynolds

(turbulent) stress in terms of eddy (turbulent) viscosity �T ,

�∗
i j = −�v′

i v
′
j = 2�Tdi j = �T (vi, j + v j,i ) (21.3.1)

where �T is computed by various approaches as described below.

Prandtl’s Mixing Length Model

Historically, this is the earliest model proposed by Prandtl [1925] which applies to

2-D boundary layer problems:

�T = ��2

∣∣∣∣du
dy

∣∣∣∣ (21.3.2)

where the Prandtl mixing length � is given by

� = �y

with � being the von Karman constant (� = 0.41).

The turbulent shear stress for the incompressible boundary layer flow is given by

�∗ = �T
du
dy

= ��2

(
du
dy

)2

(21.3.3)

Upon integration of the above expression and using the empirical constant of integration

from experiments, it can be shown that

u+ = 1

�
In y+ + 5.5 (21.3.4)

with u+ = u/u∗ and y+ = yu∗/� being the nondimensional relative velocity and nondi-

mensional relative distance, respectively. A part of the turbulent velocity profile, called

the law of the wall as given by (21.3.4) is valid only to the relative distance of

approximately y+ = 30; below this is the buffer zone and viscous sublayer as shown in

Figure 21.3.1. From experiments, the viscous sublayer is identified by the range where

y+ is approximately equal to u+. A smooth curve connects between the points y+ = 5

and y+ = 30. For flows such as in pipes or flat plates, the log layer deviates (defect layer)

significantly at y+ ∼= 500 and above.
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Figure 21.3.2 One-equation model [Cebeci-Smith, 1974;

Baldwin-Lomax, 1978].

Baldwin-Lomax Model

The model given by (21.3.5) often encounters difficulties due to an uncertainty of the

external velocity at the boundary layer ue in (21.3.5b). To rectify this situation, Baldwin

and Lomax [1978] proposed that the outer eddy viscosity be defined as

�
(o)
T = 0.0168	Fymax�max (21.3.7)

F = 1

1 + 5.5 (�y/ymax)6

�max = y [1 − exp (−y+/A)] |∇ × v|
� = 0.3, 	 = 1.6

For shear layer applications, only the outer eddy viscosity will apply. In general, the

zero-equation models fail to perform well in the region of recirculation and separated

flows.

Turbulent Heat Flux Vector

The unknown quantity in (21.2.9c) is the turbulent heat flux q∗
i = −v′

i T ′. This may

be modeled as

q∗
i = �Tcp

PrT
T,i (21.3.8)

where PrT is the turbulent Prandtl number.
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In the absence of thermoviscous dissipation, the governing equations (21.2.9a,b,c)

together with any one of the turbulence models discussed above are closed. They can be

solved simultaneously using suitable computational schemes of the previous chapters.

21.3.2 ONE-EQUATION MODELS

In the one-equation model, the eddy viscosity is defined as

�T = c��
√

K, c� = 0.09

where K is the turbulent kinetic energy,

K = 1

2
v′

i v
′
i

Note that we have introduced one new variable K, so we must introduce one additional

governing equation. This can be provided by the transport equation for the turbulence

kinetic energy K,

DK
Dt

= (�kK,i ),i + (� i j vi ), j (21.3.9)

with

�k = � + �T

This turbulent kinetic energy transport equation (21.3.9) is added to the Navier-

Stokes system of equations for simultaneous solution, with �T calculated as shown in

Section 21.3.1.

21.3.3 TWO-EQUATION MODELS

K–� Model

There are many two-equation models used in practice today. Among them is the

K–ε model, which has been used most frequently for low-speed incompressible flows

in isotropic turbulence. In this model, the turbulent stress tensor is given

�∗
i j = 2�Tdi j − 2

3
� K�i j (21.3.10)

where the turbulent (eddy) viscosity �T is defined as

�T = �c�
K2

ε
(21.3.11a)

with ε being the turbulent kinetic energy dissipation rate,

ε = �v′
i, j v

′
i, j (21.3.11b)

Thus, the turbulent viscosity in (21.3.11a) contains two unknown variables, K and ε. It

is therefore necessary that transport equations for K and ε be provided, which can be

derived from the momentum equations. To obtain the turbulent kinetic energy transport

equation, we take a time average of the product of the fluctuation component of the
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velocity with the turbulent flow momentum equations. After some algebra, we arrive at

�
∂K
∂t

+ �vi K,i = A(k) + B(k) + C(k) (21.3.12a)

with A(k), B(k), C(k) denoting the production, dissipation, and diffusion transport,

respectively,

A(k) = � i j v j,i

B(k) = −�ε

C(k) =
(

�K,i − 1

2
�v′

i v
′
j v

′
j − p′v′

i

)
,i

where the first, second, and third terms of Ck represent the molecular diffusion, turbu-

lent diffusion, and pressure diffusion, respectively.

Similarly, the dissipation energy transport equation can be derived by taking a

time average of the product of 2�v′
i, j with the derivative of momentum equations,

resulting in

�
∂ε
∂t

+ �vi ε,i = A(ε) + B(ε) + C(ε) (21.3.12b)

with

A(ε) = −2�(v′
i,kv′

j,k + v′
k,i v

′
k, j )vi, j

B(ε) = −2�v′
kv′

i. j v
′
i. jk − 2�v′

i,kv′
i. j v

′
k. j − 2��v′

i,kj v
′
i.kj

C(ε) = (�ε, j − �v′
j v

′
i.kv′

i,k − 2�p′
,i v

′
j,i ), j

which represent production of dissipation, dissipation of dissipation, and dissipation

transport terms, respectively. Here, the first, second, and third terms of C(ε) indicate

molecular dissipation, turbulent dissipation, and pressure dissipation, respectively.

As a consequence of (21.3.12a,b), we are now confronted with more unknowns than

we originally started in (21.3.11a,b). To avoid such additional unknowns, Launder and

Spalding [1972] proposed the so-called K–ε model in which the turbulent kinetic energy

and dissipation energy transport equations can be written as follows:

∂

∂t
(� K) + (� Kvi ),i = (� i j v j ),i − �ε + (�kK,i ),i (21.3.13a)

∂�ε
∂t

+ (�εvi ),i = cε1(� i j v j ),i − cε2�
ε2

K
+ (�εε,i ),i (21.3.13b)

with

�� = � + �T


�
, �ε = � + �T


ε

c� = 0.09, cε1 = 1.45 ∼ 1.55, cε2 = 1.92 ∼ 2.00, 
� = 1, 
ε = 1.3 (21.3.14)

Notice that the first, second, and third terms on the right-hand side of (21.3.13a,b)

correspond to the production, dissipation, and transport terms, respectively, as defined in

(21.3.12a,b). The closure constants given in (21.3.14) are obtained from the experimental
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data. They may also be correlated (calibrated) by direct numerical simulation discussed

in Section 21.5. It is seen that no new variables other than K and ε are contained in

(21.3.13a,b). These two equations can now be combined in the solution of the Navier-

Stokes system of equations.

Nonlinear (anisotropic) K–� Model

An improved version of the K–ε model was proposed by Speziale [1987] in which

the turbulent stress tensor includes the frame indifferent Oldroyd derivative.

� ∗
i j = 2�Tdi j − 2

3
� K�i j + �̂ i j (21.3.15)

where �̂ i j represents the nonlinear anisotropic turbulence,

�̂ i j = 4�CDc2
�

K3

ε2

(
d̂i j − 1

3
d̂kk�i j + dikdkj − 1

3
dki dkj

)

d̂i j = ∂di j

∂t
+ vkdi j,k − dkj vi,k − dki v j,k

with CD = 1.68 as calibrated from the experimental data.

K–� Model

The basic idea of the K–� model was originated by Kolmogorov [1942] with

turbulence associated with vorticity, �, being proportional to K2/�,

� = c
K2

�
(21.3.16a)

where c is a constant. Thus, the eddy viscosity may be written as

�T = � K/� (21.3.16b)

The transport equations for k and � [Wilcox, 1988] may be written as

∂

∂t
(� K) + (� K vi,i ) = (�kK,i ),i + (� i j v j ),i − 	∗� K� (21.3.17a)

∂

∂t
(��) + (��vi ),i = (�ε�,i ),i + �

�

K
(� i j v j ),i − 	��2 (21.3.17b)

with the closure constants,

� = 5/9, 	 = 3/40, 	∗ = 9/100, 
 = 1/2, 
∗ = 1/2

Wall Functions

At the wall boundary, the velocity gradients are high, requiring excessive mesh

refinements. In order to alleviate such excessive mesh refinements, the so-called wall

function [Launder and Spalding, 1972] is needed. To this end, the boundary conditions

for K and ε in the near wall regions may be specified as

K = |�w|√
c�

, ε = |�w|
a�
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where the wall shear stress �w is given by

|�w| = a|u∗|
(
c0.5

� K
)0.5

�n(E�+)
(21.3.18)

with the turbulent kinetic energy K computed iteratively at a distance �+ ≥ 12,

a = 0.419, ε = 9.793, and

�+ = Re �
(
c0.5

� K
)0.5

For �+ < 12 the laminar stress is given by

|�w| = |u∗|
Re �

(21.3.19)

where the viscosity in the near wall regions is estimated as

�∗ = Re �
|�w|
|u∗|

If the flow velocity increases, however, it has been observed that the role of the

wall function becomes unrealistic and the K–ε model is considered unreliable. The K–ε
model described here is based on isotropic turbulence and is referred to as standard

K–ε model.

The following boundary conditions are typically imposed for a wall-bound turbulent

flow:

(a) Inflow: specify u, K, and ε
(b) Outflow: specify v by extrapolation, u by mass balance; p, K, and ε by extra-

polation

(c) Wall boundaries

(i) Standard two-layer form of the law of the wall

u+ = 1

�
ln y+ + 5,

K
u2∗

= c
− 1

2
� , ε = c

1
2
�

K
3
2

�y
(21.3.20)

These conditions are applied at the first grid point y away from the wall

if y+ ≡ yu∗/� ≥ 11.6 with u+ = u/u∗. If y+ < 11.6, then u, K, and ε are

interpolated to the wall values based on viscous sublayer constraints.

(ii) Three-layer form of the law of the wall

u+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y+ for ≤ 5

−3.05 + 5 ln y+ for 5 < y+ ≤ 30

5.5 + 1

�
ln y+ for y+ > 30

(21.3.21)

For the K–� model, Wilcox [1989] proposes the wall function for � in the form,

� = K1/2

c �
1/4

(21.3.22a)
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and further argued that the pressure gradient must be included for high-pressure

gradient flows.

� = u∗
0.41y

√
c�

(
1 − 0.32

y
�
√

u∗

dp
dx

)
(21.3.22b)

21.3.4 SECOND ORDER CLOSURE MODELS (REYNOLDS STRESS MODELS)

Effects of streamline curvature, sudden changes in strain rate, secondary motion, etc.

can not be accommodated in the two equation models presented in Section 21.3.3. The

second order closure models or Reynold stress models are designed to handle these

features. The stress tensor is given by

� i j = � i j + �∗
i j

with �∗
i j being the Reynold stress

�∗
i j = −�v′

i v′
j

The Reynolds stress transport equation is of the form

∂�∗
i j

∂t
+ (vk�∗

i j ), k = Ai j + Bi j + Ci j + Di j (21.3.23)

where Ai j , Bi j , Ci j , and Di j , denote production, dissipation (destruction), diffusion,

and pressure strain, respectively.

Ai j = −�∗
ikv j,k − �∗

jkvi,k (21.3.24)

Bi j = −2�v′
i,kv′

j,k (21.3.25)

Ci j = 
−(
�v′

i v
′
j v

′
k + p′v′

i � jk + p′v′
j �ik

) + ��∗
i j,k�, k (21.3.26)

Di j = p′(v′
i, j + v′

j,i ) (21.3.27)

Note that new variables are introduced in Ci j and Di j , whereas Ai j and Bi j contain no

new variables. Thus, we must model the diffusion transport and pressure-strain tensors.

Although dissipation occurs at the smallest scales and one can use the Kolmogorov

hypothesis of local isotropy, it may become anisotropic close to the wall, and thus

modeling is needed. We discuss below some of the well-known second order closure

models.

Dissipation Tensor

Since ε is the dissipation rate, this may be treated similarly as in the K–ε model.

However, Hanjalic and Launder [1976] propose to add an extra term representing

anisotropy close to the wall.

Bi j = −2

3
�ε�i j − 2 f�εbi j (21.3.28)
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where f is a damping function and bi j denotes the dimensionless anisotropy tensor,

respectively,

f = (1 + 0.1 Re∗)−1, Re∗ = K2/(ε�)

bi j = −

⎛
⎜⎝�∗

i j − 2

3
� K�i j

2� K

⎞
⎟⎠

Diffusion Transport Tensor

The turbulence transport is characterized by the diffusion tensor Ci jk. Launder,

Reece, and Rodi [1975] proposed that this tensor be modeled as

Ci jk = −2

3
c

K2

ε
(� ∗

i j,k + �∗
ik, j + �∗

jk,i ) + ��∗
i j,k (21.3.29a)

with c ∼= 0.11. They also postulated a more general form,

Ci jk = −c′ K
�ε

(�∗
i j,m�∗

mk + �∗
ik,m�∗

mj + �∗
jk,m�∗

mi ) + ��∗
i j,k (21.3.29b)

with c′ ∼= 0.25.

Pressure-Strain Correlation Tensor

This is an important contribution in turbulence since the terms involved in the

pressure-strain tensor are of the same order of magnitude as the production terms.

Pressure can be obtained by solving the pressure Poisson equation in which the forcing

functions consist of slow and rapid fluctuations. To see this, we examine the pressure

Poisson equation in the form,

p,i i = −�(vi, j v j ),i = −�(vi, j i v j + vi, j v j,i )

In terms of mean and fluctuating components, we obtain

p′
,i i = −�( fs + fr ) (21.3.30)

where the slow forcing function fs and rapid forcing function fr are given by

fs = (
v′

i v
′
j − v′

i v
′
j

)
,i j (21.3.31a)

fr = 2vi, j v
′
j,i (21.3.31b)

The solution of (21.3.30) via Green functions results in integral forms corresponding to

(21.3.31a) and (21.3.31b) such that the pressure-strain tensor can be written as

Di j = Ei j + Fi jkmvk,m (21.3.32)

where Ei j and Fi jkmvk,m denote the slow pressure strain and rapid pressure strain,

respectively. For inhomogeneous turbulence, the mean velocity present in the rapid

pressure strain (21.3.31b) implies the process is not localized, leading to the argument

that the single-point correlation may not be adequate. This would require that the prod-

ucts of fluctuating properties be correlated at two separate physical locations (two-point
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correlation). This task is difficult, and the so-called locally homogeneous approximation
may be adopted as described below.

Rotta [1951] postulated that the slow pressure strain is of the form

Ei j = c1

ε
K

(
�∗

i j + 2

3
� K�i j

)
1.4 ≤ c1 ≤ 1.8 (21.3.33)

whereas Launder, Reece, and Rodi [1975] (known as LRR method) proposed that the

rapid pressure-strain for homogeneous turbulence may be correlated by

Fi jkmvk,m = �

(
Ai j − 1

3
Akk�i j

)
− 	

(
Gi j − 1

3
Gkk�i j

)
− �� Kdi j (21.3.34)

with

Di j = �∗
imvm, j + �∗

jmvm,i (21.3.35)

� = 8 + c2

11
, 	 = 8c2 − 2

11
, � = 60c2 − 4

55
, 0.4 ≤ c2 ≤ 0.6 (21.3.36)

There are many other schemes for second order closure models. Among them are the

tensor invariant method [Lumley, 1978], multi-scale method [Wilcox, 1988], nonlinear

stress method [Speziale, Sarker, and Gatski, 1991], and modified LRR method [Launder,

1992].

21.3.5 ALGEBRAIC REYNOLDS STRESS MODELS

The purpose of algebraic Reynolds stress models is to avoid the solution of differ-

ential equations such as (21.3.23), and to obtain the Reynolds stress components di-

rectly from algebraic relationships. If mean strain rates are ignored in the Reynolds

stress transport equations (21.3.23), it follows from the strain-dependent generalization

of nonlinear constitutive relation that the turbulent stress tensor may be written as

[Rodi, 1976; Gatski and Speziale, 1992],

�∗
i j = K

ε
(Di j + Bi j ) (21.3.37)

with

Di j = c1

ε
K

(
�∗

i j + 2

3
� K�i j

)
(21.3.38)

Bi j = −2

3
�ε�i j (21.3.39)

Thus, if the mean strain rate vanishes, then we have

�∗
i j = −2

3
� K�i j (21.3.40)

This suggests that the algebraic stress model is confined to isotropic turbulence. Thus,

the algebraic stress model fails to properly account for sudden changes in the mean

strain rate. If this algebraic Reynolds stress model is combined with the K–ε model,
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however, it may be possible to obtain satisfactory results for secondary motions as

reported by So and Mellor [1978] and Dumuren [1991].

A fully explicit, self-consistent algebraic expression for the Reynolds stress, which

is the exact solution to the Reynolds stress transport equation in the weak equilibrium

limit can be derived as shown by Girimaji [1995]. Preliminary tests indicate that the

model performs adequately, even for three-dimensional mean flow cases.

21.3.6 COMPRESSIBILITY EFFECTS

The turbulent models discussed above are applicable to incompressible flows with time

averages. For compressible flows, however, it is more convenient to use Favre averages

than time averages as mentioned in Section 21.2. The Favre-averaged unknowns in

(21.2.10) are modeled as follows:

Favre-averaged turbulent stress tensor

�∗
i j = −�v′′

i v′′
j = 2�T

(
di j − 1

3
dkk�i j

)
− 2

3
� K�i j (21.3.41)

Favre-averaged turbulent heat flux vector

q∗
i = �v′′

i H′′ = −�Tcp

PrT
T̃,i = − �T

Pr T
H̃,i (21.3.42)

Favre-averaged turbulent molecular diffusion and turbulent transport

�i j v′′
j − 1

2
�v′′

i v′′
j v

′′
j =

(
� + �T


k

)
K,i (21.3.43)

The kinetic energy transport equations and Reynolds stress transport equations for

compressible turbulent flows are written as follows:

Compressible turbulent kinetic energy transport equation

∂� K
∂t

+ (� ṽi K),i = A(k) + B(k) + C(k) + D(k) (21.3.44)

with

A(k) = �∗
i j ṽ j,i

B(k) = −�ε

C(k) =
(

� i j v′′
j − 1

2
�v′′

i v′′
j v

′′
j
− p′v′′

i

)
,i

D(k) = −v′′
i p,i + p′v′′

i,i

The first three terms on the right-hand side of (21.3.44) are similar to the case of incom-

pressible flows with extra terms in D(k) representing the pressure work and pressure

dilatation due to density and pressure fluctuations.
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Compressible Reynolds stress transport equation

∂�∗
i j

∂t
+ (ṽk�∗

i j ), k = Ai j + Bi j + Ci j + Di j + D̂i j (21.3.45)

with

Ai j = −�∗
i j ṽ j,k − �∗

jkṽi,k

Bi j = −�∗
jkv′′

i,k − �∗
ikv′′

j,k

Ci j = [
�v′′

i v′′
j v

′′
k + p′v′′

i �jk + p′v′′
j �ik − (

� jkv′′
i + � ikv′′

j

)]
,k

Di j = −p′(v′′
i, j + v′′

j,i )

D̂i j = v′′
i p, j + v′′

j p,i

Here again the first four terms on the right-hand side of (21.3.45) have analogs for the

incompressible flow with the last terms in D̂i j for nonvanishing pressure gradients.

With additional new unknowns appearing in (21.3.44) and (21.3.45), we are faced

with the difficult task of modeling them. Modeling in compressible turbulent flows for

Reynolds averaged Navier-Stokes (RANS) system of equations has not been developed

to a satisfactory extent. This is because the large-scale motions are difficult to model

particularly in compressible flows. One way to resolve this problem is to use the large

eddy simulation (LES) in which only subgrid (small) scales need be modeled. This will

be discussed in Section 21.4.3.

Modifications From Incompressible Flows

Although the K–ε model has been applied to an incompressible flow with reasonable

success, its performance in high-speed compressible flows met with difficulties. Sarkar

et al. [1989] and Zeman [1990] independently proposed schemes which take into account

the compressibility corrections by providing the so-called dilatational component εd in

addition to the solenoidal component ε of the turbulence kinetic energy dissipation rate

for the source term of the turbulence kinetic energy transport equation. Thus, (21.3.13a)

is modified as

∂

∂t
(� K) + (� K vi ),i = (�kK,i ),i + (� i j v j ),i − �(ε + εd) (21.3.46)

where

εd = ∗F(Mt ) t

Sarkar Model
∗ = 1

F(Mt ) = M2
t

Mt = 2K
a2

(Turbulent Mach Number) (21.3.47)
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Zeman Model

∗ = 3

4

F(Mt ) = 1 − exp
[− 1

2
(� + 1)(Mt − Mto)2/�2

]
H(Mt − Mto)

H = Heavy side step function

Mto = 0.1
√

2/(� + 1)

� = 0.6

}
free shear flows

Mto = 0.25
√

2/(� + 1)

� = 0.66

}
wall boundary layers

Wilcox [1992] suggests that the Sarkar model can be improved by using

∗ = 3

2

F(Mt ) = (
M2

t − M2
to

)
H

(
Mt − Mto

)
Mto = 1

4

The K–� model with compressibility effects may be given by [Wilcox, 1992]

∂

∂t
(� K ) + (� K vi ),i = [(� + 
∗�T)K,i ],i + (� i j vi ),i − 	∗��K (21.3.48)

∂

∂t
(��) + (��vi ),i = [(� + 
∗�T) �,i ],i + �

�

K
(� i j v j ),i − 	�� [� + ̂

√
|2�mn�mn|]

(21.3.49)

with

� = ε
	∗K

, 	∗ = 	∗
o [1 + ∗F(Mt )]

�T = � K
�

, �mn = 1

2
(vi, j − v j,i )

	 = 	o − 	∗
o∗F(Mt )

where 	∗
o and 	o are the corresponding incompressible values of 	∗ and 	 as given in

(21.3.16).

Hanine and Kourta [1991] reported comparisons of the performance of various

turbulence models to predict the near wall compressible flows and emphasized the

importance of compressibility corrections. Wilcox [1992a] also studied the supersonic

turbulent boundary layer flows. He showed that neither the Sarkar nor the Zeman

compressibility term is completely satisfactory for both the compressible mixing layer

and wall-bounded flows [Wilcox, 1992b]. The compressibility corrections cause a de-

crease in the effective von Karman constant, which yields the unwanted decrease in skin

friction. However, for the K–ε model, the constant in the law of the wall varies with
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density ratio in a nontrivial manner. Wilcox [1992] then combines Sarkar’s simple func-

tional dependence of dilatational dissipation on turbulence Mach number with Zeman’s

lag effect to produce a compressibility term that yields reasonably accurate predictions.

Subsequently, Huang, Bradshaw, and Coarley [1992] reexamined the independent stud-

ies of Wilcox, Zeman, and Sarkar and concluded that the extension of incompressible

turbulence models to compressible flow requires density corrections to the closure co-

efficients to satisfy the law of the wall. They further suggest that the K–ε model is

more attractive than the K–ε model at high Mach numbers, because the coefficients

of the unwanted density gradient terms are smaller. In view of these observations, the

compressibility corrections which were originally developed for incompressible flows

should be used with caution for applications into high-speed compressible turbulent

flows.

The various turbulence models discussed in Section 21.3 represent a brief summary

of historical developments for the period of nearly half a century. In Section 21.7, we

present some limited numerical applications for the K–ε models. It appears, however,

that the current interest in turbulence research is directed toward large eddy simulation

and direct numerical simulation. We discuss these subjects in the following sections.

21.4 LARGE EDDY SIMULATION

Despite a great deal of effort and advancement in turbulence modeling for the past

century, difficulties still remain in geometrically and physically complicated flowfields.

The large eddy simulation (LES) is an alternative approach toward achieving our goal

for more efficient turbulent flow calculations. Here, by using more refined meshes than

usually required for Reynolds averaged Navier-Stokes (RANS) system of equations

discussed in Section 21.3, large eddies are calculated (resolved) whereas small eddies are

modeled. The rigor of LES in terms of performance and ability is somewhere between

RANS of Section 21.3 and the direct numerical simulation (DNS) to be discussed in

Section 22.5. There are two major steps involved in the LES analysis: filtering and

subgrid scale modeling. Traditionally, filtering is carried out using the box function,

Gaussian function, or Fourier cutoff function. Subgrid modeling includes eddy viscosity

model, structure function model, dynamic model, scale similarity model, and mixed

model, among others. These and other topics are presented below.

21.4.1 FILTERING, SUBGRID SCALE STRESSES, AND ENERGY SPECTRA

In order to define a velocity field containing only the large-scale components of the

total field, it is necessary to filter the variables of the Navier-Stokes system of equations,

resulting in the local average of the total field. To this end, using one-dimensional

notation for simplicity, the filtered variable f may be written as

f =
∫

G(x, ) f ()d (21.4.1)

with

∫
G(x, )d = 1
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where G(x, ) is the filter function which is large only when x and  are close together.

They include box (tophat) function, Gaussian function, and Fourier cutoff function.

Box

G(x) =
{

1/� if |x| ≤ �/2

0 otherwise
(21.4.2)

Gaussian

G(x) =
√

6

��2
exp

(
−6x2

�2

)
(21.4.3)

Fourier cutoff

Ĝ(k) =
{

1 if k ≤ �/2

0 otherwise
(21.4.4)

The filtered momentum equation takes the form

∂v j

∂t
+ (vi v j ),i = − 1

�
p, j + � i j,i (21.4.5)

with

vi v j = (vi + v′
i )(v j + v′

j ) = vi v j + v′
i v j + vi v′

j + v′
i v′

j

= vi v j + vi v j − vi v j + v′
i v j + vi v′

j + v′
i v′

j

= vi v j − �∗
i j (21.4.6)

Substituting (21.4.6) into (21.4.5) yields

∂v j

∂t
+ (vi v j ),i = − 1

�
p, j + � i j,i + �∗

i j,i

with the subgrid stress tensor �∗
i j identified from (22.4.6) as

−�∗
i j = Li j + Ci j + Ri j = vi v j − vi v j (21.4.7)

where Li j , Ci j , and Ri j are known as the Leonard stress tensor, cross stress tensor, and

subgrid scale Reynolds stress tensor, respectively.

Li j = vi vj − vi vj

Ci j = v′
i vj + vi v

′
j (21.4.8)

Ri j = v′
i v

′
j

Here, the Leonard stress represents the interaction between resolved scales, transferring

energy to small scales (known as outscatter). The Leonard stress can be computed

explicitly from the filtered velocity field. The cross stress represents the interaction

between resolved and unresolved scales, transferring energy to either large or small

scales. The subgrid scale Reynolds stress represents the interaction of two small scales,

producing energy from small scales to large scales (known as backscatter).
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The cross stress tensor may be simplified in terms of resolved scales using the so-

called Galilean scale similarity model [Bardina et al., 1980],

Ci j = v′
i v j + vi v

′
j = vi v j − vi v j (21.4.9a)

Summing (22.4.8a) and (22.4.9a) leads to

Ki j = Li j + Ci j = vi vj − vi vi (21.4.9b)

It is seen that the sum of the Leonard and cross stresses can be calculated from the

resolved scales and thus only the subgrid scale Reynolds stress need be modeled. Thus,

the turbulent stress tensor to be modeled is given by (21.4.6) or (21.4.7) as

�∗
i j = −(vi vj − vi vj ) (21.4.10)

Before we discuss subgrid scale models, it is informative to examine the physical

significance of the filtering in terms of the Kolmogorov’ “−5/3 law” for the energy

spectrum [Kolmogorov, 1941]. The energy spectrum E(�) is related by the turbulent

kinetic energy,

K = 1

2
v′

i v
′
i =

∫ ∞

0

E(�)d� (21.4.11)

The distribution of energy spectrum E(�) vs wave number � is divided into three regions

as shown in Figure 21.4.1: the region of energy containing large eddies, followed by the

inertial subrange and energy dissipation range, between the wave numbers identified by

the reciprocals of the energy bearing length scale � (integral scale) and the Kolmogorov

microscale �,

� = (�3/ε)1/4 (21.4.12)

Note that the inertial subrange is characterized by a straight line, known as the

Kolmogorov’s “−5/3 law,”

E(�) = �ε2/3�−5/3 (21.4.13)

where � is a constant. In this range, eddies are small and dissipation becomes important

at smallest scales. Thus, the filtering process is designed to identify this range with a

1
�

1

( ) 3

5

3

2 −

= kkE αε

( )kE

k

Energy
containing
eddies

Inertial
subrange

Energy
dissipation
range

Figure 21.4.1 Energy spectrum vs. wave number space (log-log scales).
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suitable filter width. In what follows, our discussion will be based on filtering by the box

function.

21.4.2 THE LES GOVERNING EQUATIONS FOR COMPRESSIBLE FLOWS

The Navier-Stokes system of equations for LES may be written in terms of Favre

averages using the filtering process presented in Section 22.4.1. The filtered continuity,

momentum, and energy equations for compressible flows are described below.

Construction of turbulent closure models for high Mach numbers and high Reynolds

numbers in hypersonic flows is difficult, particularly for large turbulence scales. For this

reason, one may wish to explore the possibility of LES in the hope that the subgrid scale

(SGS) modeling is still feasible. To this end, we rewrite the Favre-filtered compressible

flow governing equations as follows:

∂�

∂t
+ (� ṽi ),i = 0 (21.4.14a)

∂

∂t
(� ṽ j ) + (� ṽi ṽ j ),i + p, j − (� i j + �∗

i j ),i = 0 (21.4.14b)

∂

∂t
(� Ẽ) + [(� Ẽ + p)ṽi − �̃ i j ṽ j + q̃i ],i + (

q(H)
i + q(T)

i + q(v)
i

)
,i = 0 (21.4.14c)

where the SGS variables are the turbulent stress �∗
i j , turbulent heat flux q(H)

i , turbulent

diffusion q(T)
i , and turbulent viscous diffusion q(V)

i . They are expressed as

� ∗
i j = −� (ṽi v j − ṽi ṽ j )

q(H)
i = � c̃ p(ṽi T − ṽi T̃)

(21.4.15a,b,c,d)
q(T)

i = 1

2
� ( ˜vi v j v j − ṽi ṽ j ṽ j )

q(v)
i = − (� i j v j − �̃ i j ṽ j )

These unknown variables may be modeled by several different ways. Among them are

(1) eddy viscosity model, (2) scale similarity model, and (3) mixed model. We describe

these methods in the next section.

21.4.3 SUBGRID SCALE MODELING

The solution of the filtered Navier-Stokes system of equations enables only the large

eddies to be resolved, leaving the small eddies still unresolved. Since these small eddies

are more or less isotropic, the modeling is much easier than in the case of RANS. How-

ever, for compressible flows, particularly for supersonic and hypersonic flows in which

turbulent heat flux, turbulent diffusion, and viscous diffusion may become significant,

the SGS modeling process is far from satisfactory.

There are three different approaches for developing the SGS turbulent stress mod-

els. The eddy viscosity model is most widely used in which the global effect of SGS terms

is taken into account, neglecting the local energy events associated with convection and

diffusion [Smagorinsky, 1963; Yoshizawa, 1986; Moin et al., 1991; Gao and O’Brien,

1993].
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The scale similarity model assumed that the most active subgrid scales are those close

to the cutoff wave number and uses the smallest resolved SGS stresses. This approach

does account for the local energy events, but tends to underestimate the dissipation

[Bardina et al., 1980].

To compensate the drawbacks of the eddy viscosity model and scale similarity model,

Erlebacher et al. [1992] proposed the mixed model in which the dissipation is adequately

provided to the scale similarity model.

Germano [1992] proposed that the closure constants involved in the SGS turbu-

lent stress tensors be calculated dynamically (flowfield dependent), known as the dy-

namic model. The advantage of the dynamic model has been demonstrated by many

investigators.

Attempts have been made to provide SGS modeling for turbulent diffusion and vis-

cous diffusion in the energy equation by some investigators. Among them are Normand

and Lesieur [1992], Meneveau and Lund [1997], and Knight et al. [1998].

In what follows, we introduce some of the well-known models of SGS turbulent

eddy viscosity, turbulent heat flux, and turbulent diffusion.

SGS Eddy Viscosity Model for Stress Tensor with Time Averages

In this model, the traditional gradient-diffusion approach (molecular motion) is used

so that the turbulent stress tensor for compressible flows is written as

�∗
i j = 2�T

(
di j − 1

3
dkk�i j

)
− 2

3
K�i j (21.4.16)

�T = �(Cs�)2|d|, � ∼= �, di j = 1

2
(vi, j + v j,i ), |d| = (2di j di j )

1/2

where Cs is the Smagorinsky constant and K is the subgrid scale turbulent kinetic energy.

This constant can be evaluated by assuming the existence of an inertial range spectrum

given in Figure 21.4.1. To this end, it has been suggested in [Lilly, 1966] that

|d|2 ∼= 2

∫ �/�

0

�2 E(�)d� = 2Ckε2/3

∫ �/�

0

�1/3d� = 3

2
Ckε2/3

(
�

�

)4/3

(21.4.17)

where Ck = 1.41 is the Kolmogorov constant. Thus, we arrive at

Cs
∼= 1

�

(
2

3�

)3/4

= 0.18 (21.4.18)

The isotropic parts, K and dkk terms, on the right-hand side of (22.4.16) may be

neglected for incompressible flows. For further details on the subgrid scale modeling

for the isotropic parts in compressible flows, see Squires [1991], Erlebacher et al. [1992],

and Vreman, Geurts, and Kuerten [1995].

SGS Eddy Viscosity Model for Stress Tensor with Favre Averages

The subgrid scale stress tensor as given by (21.4.15a) may now be written for the

compressible flow Favre averages as

�∗
i j = −�(vi vi − ṽi ṽi ) = 2�T

(
d̃i j − 1

3
d̃kk�i j

)
− 2

3
K̃�i j (21.4.19)
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with

�T = �(Cs�)2|d̃|
(21.4.20)

K̃ = �CI�
2|d|2

with Cs = 0.16 and CI = 0.09.

Moin et al. [1991] extended the Germano’s dynamic model [Germano, 1992] for

Favre averages. The Favre averaged mixed model was developed by Speziale, Zang,

and Hussaini [1988] and used by Erlebacher et al. [1992].

SGS Structure Function Model

Metais and Lesieur [1992] proposed the structure function model in the form

�T = 0.105C−3/2
k �x[F(x, �x)]1/2 (21.4.21)

where F is calculated as

F(x, ��) = 1

6

3∑
i=1

[‖u(x) − u(x+�xiii)‖2 + ‖u(x) − u(x−�xiii)‖2]

(
��

��i

)2/3

(21.4.22)

with �� = (�x1�x2�x3)1/3. In the limit of �x → 0, Comte [1994] suggested that

�T
∼= 0.777(Cs�x)2

√
2di j di j + �i �i (21.4.23)

where Cs is the Smagoronsky’s constant and �i is the vorticity of the filtered field.

Dynamic SGS Eddy Viscosity Model with Time Averages

It has been shown in the literature that superior results may be obtained by updating

the model coefficients based on the current flowfields, known as the dynamic model

[Germano, Piomelli, Moin, and Cabot, 1991]. Here, in addition to the subgrid scale

filtering, a test filter is introduced with the test filter width �t larger than the grid filter

width � (usually �t = 2� is used) in order to obtain information from the resolved

flowfield. Based on this model, Lilly [1992] suggested that

�T = Cd��2|d| (21.4.24)

with

Cd = Ai j Mi j

MkmMkm
(21.4.25)

Ai j = 〈�vi v j 〉 − 〈�vi 〉〈�v j 〉
〈�〉

Mi j = −2�2
t 〈�〉〈|d|〉

〈
di j − 1

3
dkk�i j

〉
+ 2�2

〈
� |d|

(
di j − 1

3
dkk�i j

)〉

where 〈 〉 implies a test filtered quantity.
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The test filter operation can be performed as

〈 f (x, t)〉 =
∫

〈G(x, )〉 f (, t)d (21.4.26)

If the box function is used, we have

〈G(x − )〉 =

⎧⎪⎨
⎪⎩

1

�t
if xi − �t/2 ≤  i ≤ xi + �t/2

0 otherwise

(21.4.27)

The test filter can be calculated using the trapezoidal rule, Simpson’s rule, or inter-

polation function methods. For example, the one-dimensional filtering operation with

the trapezoidal rule assumes the form,

〈 f i 〉 = 1

�t

∫ x+�t /2

x−�t /2

f ()d = 1

4
( f i−1 + 2 f i + f i+1) (21.4.28)

We then apply this one-dimensional approximation successively in each coordinate

direction for multidimensional problems.

SGS Heat Flux Closure with Favre Averages

The subgrid scale modeling for the energy equation has not received much atten-

tion. This is because, for low Mach number flows, the effect of turbulence modeling is

negligible. For high Mach number flows, we may use the standard gradient diffusion

model (eddy viscosity)

q(H)
i = � c̃ p(vi T − ṽi T̃) = � c̃ pT

Pr T
T̃,i (21.4.29)

with

�T = C�2|d̃| (21.4.30)

The eddy viscosity in (21.4.30) may be expressed dynamically as shown in (21.4.25).

SGS Turbulent Diffusion and Viscous Diffusion Closures

Vreman et al. [1995] shows further details of subgrid modeling for the energy equa-

tion using the Fabre averaged variables. The SGS turbulent diffusion closure has been

proposed by Knight et al. [1998] and the SGS viscous diffusion closure model studied

by Meneveau and Lund [1997]. The scale similarity approach was applied in both cases.

Future developments in these areas are needed to substantiate the accuracy of models,

particularly for high Reynolds number and high Mach number hypersonic flows.

As a result of the LES solution of the Navier-Stokes system of equations, we obtain

the flow variables which contain not only the mean quantities but also the fluctuations.

We then compute the mean flowfield values by various schemes of averaging or filtering

methods (time averages, spatial averages, or filtered Favre averages, etc.). The difference

between the LES solution and the averages will lead to the turbulence fluctuations. From

these fluctuations, detailed turbulence statistics can be computed. Among them are

the turbulent intensities, distributions of energy spectra with respect to wave numbers,

production, dissipation, and diffusion of turbulent kinetic energy and Reynolds stresses,
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compressibility effects as reflected by dilatation, high-speed flow heat transfer, details of

shock wave turbulent boundary layer interactions through transition to full turbulence,

and physics of relaminarization. Some examples on LES computations will be presented

in Section 22.8, Applications.

21.5 DIRECT NUMERICAL SIMULATION

21.5.1 GENERAL

As we have seen in the previous chapters, turbulence modeling is not an easy task.

Even in large eddy simulation, in which we only need to model small scales of isotropic

motions, the process becomes complicated in dealing with energy equation for high-

speed compressible flows. Thus, our final resort may seem to be a direct numerical

solution in which no turbulence modeling is needed. However, we require excessive

mesh refinements and higher order accurate numerical schemes. The computational

cost for DNS particularly in high-speed compressible flows will be prohibitive.

In direct numerical simulations (DNS), the Navier-Stokes system of equations is

solved directly with refined meshes capable of resolving all turbulence length scales

including the Kolmogorov microscale,

� = (�3/ε)1/4 (21.5.1)

All turbulence scales ranging from the large energy-containing eddies to the dissipation

scales,

0.1 ≤ k� ≤ 1

with k being the wave number must be resolved (see Figure 21.4.1). To meet this re-

quirement, the number of grid points required is proportional to L/� ≈ Re3/4 where L
is the characteristic length and Re is the Reynolds number referenced to the integral

scale of the flow. This leads to the number of grid points in 3-D to be proportional to

N = Re9/4 (21.5.2)

The number of grid points required for a channel flow may be estimated in terms

of turbulence Reynolds number ReT [Moser and Moin, 1984; Kim, Moin, and Moser,

1987] as

N = (3ReT)9/4 (21.5.3)

with

ReT = uT H
2�

(21.5.4)

where uT is the shear velocity (approximately 5% of the mean average velocity) and H
is the channel height.

Similarly, the time step is limited [Kim et al., 1987] by the Kolmogorov time scale,

� = (�/ε)1/2, as

�t ∼= 0.003H

uT
√

ReT
(21.5.5)
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These restrictions are clearly too severe for DNS to be a practical design tool in industry

in view of currently available computer capacity.

21.5.2 VARIOUS APPROACHES TO DNS

The DNS applications have been carried out most successfully using spectral methods in

simple geometries. Fourier series are applied to the streamwise and spanwise directions

whereas Chebyshev polynomials or B-splines are used for the wall-normal direction.

However, the spectral methods are not suitable for practical industrial problems with

complex geometries and boundary conditions. The use of FDM, FEM, or FVM, although

not as accurate as spectral methods, is more flexible in handing arbitrary geometries and

boundary conditions. In view of the fact that turbulence is three-dimensional in nature

and DNS requires excessive grid refinements, FDM calculations with uniform structured

grids have been used predominantly in the past. DNS in unstructured arbitrary practical

geometries and boundary conditions at high Reynolds number flows are severely limited

by available computer resources.

Applications of DNS in incompressible or subsonic flows and compressible or super-

sonic flows are distinguished by several factors: (1) For incompressible simulations, the

viscous terms are treated usually implicitly, allowing the viscous stability limit to be re-

laxed, whereas for compressible flows the time discretization is explicit and the allowable

time step is limited by the viscous stability limit rather than by the convection condition;

(2) Toward transition to turbulence, instability growth rates are slower in compressible

flows than in incompressible flows. This will require longer time integration; (3) High-

speed transitional disturbance modes have high gradients for compressible flows requir-

ing much more mesh refinements and higher order accuracy in spatial approximations

than for incompressible flows.

In DNS, we may use either the temporal or spatial simulation approach. The tem-

porally evolving simulation is usually limited to periodic inflow and outflow bound-

ary conditions and a parallel flow without the consideration of the boundary layer

growth. The spatially evolving approach is more general and practical in which non-

periodic inflow and outflow boundary conditions are used and the evolution of non-

parallel boundary layer is accounted for. Some recent advancements for both tem-

porally and spatially evolving simulations are reported in Guo, Kleiser, and Adams

[1996].

The earlier works on transition and turbulence in boundary layer flows using

DNS include Kim, Moin, and Moser [1985], Spalart and Yang [1987], Fasel, Rist, and

Konzelmann [1990], Rai and Moin [1993], among others.

The DNS solution of the Navier-Stokes system of equations provides the flow vari-

ables which contain not only the mean quantities but also the fluctuations similarly as in

LES discussed in Section 21.4. The objective of DNS is to obtain more accurate results

for turbulence statistics than in LES at the expense of computing costs. Since the disad-

vantages resulting from possible inadequate subgrid scale modeling are eliminated in

DNS, it is anticipated that the DNS results may be used as a guidance of improving any

or all modeling processes for turbulence presented in the previous sections. Details of

applications in DNS will be presented in Section 21.7.
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21.6 SOLUTION METHODS AND INITIAL AND BOUNDARY CONDITIONS

Although explicit methods may be used in turbulent flows in general, it is often neces-

sary to employ implicit methods in order to handle viscosity in wall-bounded turbulence.

Various numerical schemes such as Runge-Kutta, Crank-Nicolson, Adams-Brashforth,

among others, have been used in RANS, LES, and DNS calculations using FDM and

FVM via FVM. For FEM formulations, the FEM equations may be solved using conju-

gate gradient or GMRES.

Initial and boundary conditions in turbulent flows are more sensitive to the solution

as compared with laminar flows. This is because a small change in the initial state

of turbulent flow is amplified exponentially in time. Since this is physical rather than

numerical, it is difficult to assess the numerical error if one changes the numerical

methods to improve the numerical methods or refine the mesh to obtain more accurate

results. So, the question is: how do we know if we have a good solution? This question

can be answered with reference to Figure 21.4.1. If the energy spectrum in the smallest

scales with the wave number larger than the inertial subrange is much smaller than

the peak in the smaller wave number region, then we may assume that the solution is

satisfactory.

For inflow initial and boundary conditions, periodic boundary conditions are conve-

nient to use (particularly suitable for spectral methods) if flows do not vary in a given

direction. Otherwise, the initial and boundary conditions may be obtained from other

simulations, adopted from isotropic turbulence.

For outflow boundaries, one may use the extrapolation conditions, requiring the

derivatives of all variables normal to the surface set equal to zero,

(�u),i ni = 0 (21.6.1)

If the flow is unsteady, then it appears that time-dependent boundary conditions be

implemented by enforcing the time-dependent mass flux conservation at the outflow

boundary,

�(�u) = −�tu0(�u),i ni (21.6.2)

with u0 being the average velocity of the outflow boundary. This tends to keep the

reflected pressure waves from moving back to the domain.

On the solid boundary, the standard no-slip condition can be applied. Because of

turbulence microscales close to the wall leading to complicated turbulent structures

including separated flows, one must use highly refined meshes adjacent to the wall.

Furthermore, in this region, turbulence may remain unsteady even when the flow away

from the wall has reached a steady state.

In DNS and LES, the resolved flow may become unsymmetric even if the geometry

and the flow boundary conditions are symmetric. Thus, the symmetry condition should

not be used in the simulation of turbulence using DNS or LES.

As we have seen in multigrid methods (Section 20.2) in which low frequency (small

wave number) errors are eliminated in coarse mesh, large-scale turbulence can be re-

solved quickly in the coarse mesh so that computational efficiency can be realized if the
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solution is then performed on the fine mesh subsequently. This suggests that multigrid

methods are particularly useful in DNS and LES.

21.7 APPLICATIONS

21.7.1 TURBULENCE MODELS FOR REYNOLDS AVERAGED NAVIER-STOKES (RANS)

Exhaustive numerical demonstrations for turbulence model applications are not at-

tempted in this section. Instead, we focus on some representative incompressible flow

applications for RANS. In this illustration, we introduce the work of Thangam and

Speziale [1992] which shows the comparison of various types of K–ε models as applied

to the backward-facing step shown in Figure 21.7.1.1a. The finite volume method via

FDM [Thangam and Hur, 1991] is employed with a computational grid of 200 × 100

mesh (a coarser version is shown in Figure 21.7.1.1b) and Re = 1.32 × 105. Computed

results for the standard K–ε model with the wall boundary conditions of the two-layer

case are shown in Figure 21.7.1.2a.

As compared with the experimental data of Kim, Kline, and Johnston [1980], it is

seen that reattachment length for the two-layer model (Xr = 6.0) is about 15% un-

derestimated (experimental value, Xr = 7.1, from Kim et al [1980]). Despite this dis-

crepancy, the mean velocity profiles appear to be in good agreement (Figure 21.7.1.2b),

although the turbulent intensity profiles (Figure 21.7.1.2c) and shear stress profiles

(Figure 21.7.1.2d) show some deviations from the experimental data.

For the three layer model, the reattachment length is Xr = 6.25 (Figure 21.7.1.3a),

about 5% improvement from the two-layer case. Mean velocity profiles (Figure

21.7.1.3b), turbulent intensity profiles (Figure 21.7.1.3c), and shear stress profiles

(Figure 21.7.1.3d) appear to be the same as in the two-layer model.

Figure 21.7.1.1 Incompressible turbulent flow backward facing step, 2-D

geometry for K–ε model analysis, C� = 0.09, Cε1 = 1.44, Cε2 = 1.92, 
k =
1.92, 
ε = 1.0, CD = 1.68 [Thangam and Speziale, 1988].
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Figure 21.7.1.2 Results with the standard K–ε two-layer model [Thangam and Speziale 1988], compared with

Kim et al. [1980]. (a) Contours of mean streamlines. (b) Mean velocity profiles at selected locations, compared

with experiments [Kim et al., 1980]. (c) Turbulence intensity profiles. (d) Turbulence shear stress profiles.

Figure 21.7.1.3 Results with the standard K–ε three-layer model [Thangam and Speziale, 1988]. (a) Contours

of mean streamlines. (b) Mean velocity profiles at selected locations, compared with experiments [Kim et al.,

1980]. (c) Turbulence intensity profiles. (d) Turbulence shear stress profiles.
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Figure 21.7.1.4 Results with the nonlinear (anisotropic) K–ε three-layer model [Thangam and Speziale, 1988].

(a) Contours of mean streamlines. (b) Mean velocity profiles at selected locations, compared with experiments

[Kim et al., 1980]. (c) Turbulence intensity profiles. (d) Turbulence shear stress profiles.

It is interesting to note that significant improvements for the reattachment length

(Xr = 6.9), only 3% deviation from the experimental data, arise when the nonlinear

(anisotropic) K–ε model is used (Figure 21.7.1.4a). Other data for the mean velocity,

turbulent intensity, and shear stress profiles (Figure 21.7.1.4b,c,d) still show some devi-

ations from the experiments.

21.7.2 LARGE EDDY SIMULATION (LES)

(1) Incompressible Flows

We consider here turbulent incompressible flows for a 3-D backward-facing step ge-

ometry (Figure 21.7.2.1) using LES as reported by Fureby [1999]. In this example, the

results of the various LES models including the Smagorinsky model (SMG), dynamic

x2

x1

x3
8.2h

3.3h

h

3h

h

h

h

Figure 21.7.2.1 Backward-facing step 3-D geometry for LES analysis

[Fureby, 1999].
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Table 21.7.2.1 Overview of Simulations, Grids, and Global Quantities

Case/ Grid; Sr, x1/ Sr, x1/ Ξ, x1/

run Re, 104 SGS mode resolution �/h ∂��/∂x1 h = 1 h = 6 h = 3

A1 1.5 OEEVM 87,104;2� 6.8 0.25 0.20 0.07 0.13

A2 1.5 OEEVM 204,460;3�/2 6.6 0.26 0.19 0.07 0.10

B1 2.2 OEEVM 366,750;3�/2 7.1 0.27 0.23 0.06 0.11

B2 2.2 OEEVM 170,400;2� 7.1 0.25 0.23 0.06 0.16

B3 2.2 SMG 170,400;2� 7.2 0.24 0.22 0.07 0.17

B4 2.2 DSMG 170,400;2� 7.1 0.27 0.24 0.07 0.17

B5 2.2 MILES 170,400;2� 7.4 0.25 0.23 0.05 0.15

B6 2.2 OEEVM 1,152,600; � 7.0 0.28 0.23 0.06 0.06

C1 3.7 OEEVM 366,750;2� 6.9 0.26 0.25 0.06 0.17

Exp* 1.5 — — 6.5 0.28 — — —

Exp* 2.2 — — 7.0 0.28 — — —

Exp* 3.7 — — 6.8 0.28 — — —

∗Pitz and Daily [1981].

Smagorinsky model (DSM), one-equation eddy viscosity model (OEEVM) [Lesieur

and Metais, 1996], and monotonically integrated large eddy simulation (MILES)

[Fureby, 1999] are compared with those of the experimental results of Pitz and Daily

[1981]. In MILES, the Navier-Stokes system of equations are solved using the monotonic

integration with flux limiters in which high-resolution monotone methods with embed-

ded nonlinear filters providing implicit closure models so that explicit SGS models need

not be used. Various test cases are summarized in Table 21.7.2.1.

Contours of streamwise instantaneous velocity as shown in Figure 21.7.2.2a indicate

the free shear layer terminating at approximately x1/h ∼= 7. Figure 21.7.2.2b shows the

Figure 21.7.2.2 Instantaneous velocity and velocity fluctuation contours in

the centerplane [Fureby, 1999]. (a) Streamwise velocity component. (b) Ver-

tical velocity component. (c) Spanwise velocity component.
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Figure 21.7.2.3 Streamwise mean velocity profiles < �1 > downstream of the step at (a) x1/H = 2,

Re = 15 × 103 (b) x1/H = 5, Re = 22 × 103, and (c) x1/H = 7, Re = 37 × 103 [Fureby, 1999].

vertical flow patches, with alternating positive and negative v2 regions of spanwise

Kelvin-Helmoltz vortices. Spanwise velocity fluctuations are shown in Figure 21.7.2.2c,

with peak values reaching as high as 0.5 u0 near reattachment. The near wall region

appears laminar-like in the simulation as well as in the experiment [Pitz and Daily,

1981].

Streamwise mean velocity profiles at various downstream locations are shown in

Figure 21.7.2.3. The results of MILES and LES results using OEEVM, SMG, and DSMG

models are compared with the experimental data [Pitz and Daily, 1981] for various cases

given in Table 21.7.2.1. It is seen that all LES models perform well as compared with the

experimental data, whereas the K–ε model deviates considerably toward townstream.

Figure 21.7.2.4 shows the power density spectra as a function of the nondimen-

sional frequency or the Strouhal number Sr = f h/v1. Spectra are presented at two

locations downstream of the step for run B1 (Figure 21.7.2.4a,b), for different Reynolds

numbers (Figure 21.7.2.4c) and for different SGS models (Figure 21.7.2.4d). Note that

all spectra exhibit a well-defined Sr−5/3 range over one decade. The energy in the

smaller scales is found to be more evenly distributed among the velocity components

(Figure 21.7.2.4a,b), indicating a trend toward isotropy. The energy distribution in the

larger scales is anisotropic, the v1 component being the most energetic.

Instantaneous spanwise vorticity �3 and streamwise vorticity �1 contours with the

step height and inflow velocity in typical x1 − x2 and x2 − x3 planes are shown in Figure

21.7.2.5 for runs A2, B1, B2, and C1. The shear layer separating from the step rolls

up into coherent �3 vortices due to the shear layer instability. They undergo helical
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inlet conditions

M1=1.2 SHOCK

Figure 21.7.2.6 Schematic diagram of the computational domain for sim-

ulations ST-1 to ST-5. Periodic conditions are applied in the y- and

z-directions [Ducros et al., 1999].

Thus, the artificial viscosity takes the form modified from that in (6.6.1) as

ε (2)

i+1/2 = k(2) Ri+1/2� i+1/2�i+1/2 (21.7.2.2)

with

� i+1/2�i+1/2 = max(� i�i , � i+1�i+1) (21.7.2.3)

The geometric configuration for the analysis is shown in Figure 21.7.2.6. The mean

flow is in the x-direction, with the periodic boundary conditions applied in the y- and

z-directions. Table 21.7.2.2 shows the various test cases, ST-1 through ST-5, with � and

�� indicating the unmodified and modified versions, respectively. Figure 21.7.2.7 shows

the distributions of the mean streamwise velocity, pressure, and Mach number. Note

that the refined mesh gives a closer Rankine-Hugoniot jump condition.

Figure 21.7.2.8a,b shows the evolution of the normalized turbulent kinetic energy

and turbulent Mach number for some simulations of Table 21.7.2.2. It is interesting to

note that only the modified limiter �� predicts a correct decay of turbulent kinetic

energy for the preshock region, whereas the standard limiter [Jameson et al., 1981]

exhibits a spurious dissipation (ST-1 and ST-3). As observed in Lee et al. [1993] and

Lee et al. [1997], the isotropic flow becomes axisymmetric through the shock. This is

Table 21.7.2.2 Parameters of Simulations for the Three-Dimensional Shock/Turbulence Interaction

Simulation (nx , ny , nz) Grid K 2 k3 Limiter

ST-1 64 × 32 × 32 Isotropic 1.5 0.02 �

ST-2 64 × 32 × 32 Isotropic 1.5 0 ��

ST-3 262 × 32 × 32 Locally refined 1.5 0.02 �

ST-4 262 × 32 × 32 Locally refined 1.5 0 ��

ST-5 156 × 32 × 32 Locally refined 1.5 0 ��

Note: The resolutions are referred to as resolution 1 (respectively, 2, 3) for 64 × 32 × 32 (respectively,

262 × 32 × 32 and 156 × 32 × 32).

Source: [Ducros et al., 1999]. Reprinted with permission from Academic Press.
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Figure 21.7.2.7 The x distribution of mean streamwise velocity, pressure, and Mach number [Ducros et al.,

1999]. (a) X distribution of mean steamwise velocity u (top) and mean pressure p (bottom) accross the

shock wave for simulations ST-1, ST-2, and ST-4; dashed lines denote the laminar values satisfying Rankine-

Hugoniot jump conditions. (b) The x distribution of mean Mach number for simulations ST-1, ST-2, and ST-4

with the same legend as the previous figure.

shown in Figure 21.7.2.8c by the streamwise distribution of the Reynolds stresses (ST-2

and ST-4).

The streamwise and spanwise distributions of normalized vorticity fluctuations are

displayed in Figure 21.7.2.9. Note that the cases of standard limiter (ST-1 and ST-3)

leads to a spurious decay of vorticity, whereas this non-physical behavior is corrected

by means of the modified limiter (ST-2, ST-4, ST-5).

Figure 21.7.2.10a shows a cut of instantaneous streamwise and spanwise components

of vorticity for ST-1. No change in size and intensity of the scales for both components

is visible, although the size of the smallest scales is larger than the width of the shock.

The same variables for ST-4 are shown in Figure 21.7.2.10b. Here, the x-component
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Figure 21.7.2.8 The x distribution of normalized turbulence kinetic energy, turbulent kinetic Mach number,

and normalized Reynolds stresses [Ducros et al., 1999]. (a) The x distribution of normalized turbulence

kinetic energy E(x)/E(0) for simulations ST-1-4. (b) The x distribution of turbulence Mach number Mt for

simulations ST-1, 2, 4. (c) The x distribution of normalized Reynolds stress Rii (x)/Rii (0) for stimulations

ST-2, 4, 5.

Figure 21.7.2.9 The x distribution of normalized fluctuation vorticity components [Ducros et al., 1999].

(a) The x distribution of normalized fluctuations vorticity component �2
x(x)/�2

x(0) for simulations ST-1-5.

(b) The x distribution of normalized fluctuations vorticity component �2
z(x)/�2

z(0) for simulations ST-1-5.
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Figure 21.7.2.10 Instantaneous cut of the streamwise vorticity components [Ducros et al., 1999]. (a) Instan-

taneous cut of the streamwise �x , (top) and of the transverse to �z (bottom) vorticity field for simulation

ST-1. Isopressure lines show the instantaneous position of the shock. The mean flow goes from left to right.

(b) Instantaneous cut of the streamwise �x , (top) and of the transverse to �z (bottom) vorticity field for

simulation ST-4. Isopressure lines show the instantaneous position of the shock. The mean flow goes from

left to right.

undergoes a little change in intensity, while the intensity of the z-component increases

through the shock and some structures of smaller scales appear in the post-shock region.

21.7.3 DIRECT NUMERICAL SIMULATION (DNS) FOR COMPRESSIBLE FLOWS

The research on DNS was primarily concentrated on incompressible flows [Kim et al.,

1987; Spalart, 1988; Moser and Moin, 1984, among others]. Recently, DNS calculations

have been extended to compressible flows [Pruett and Zang, 1992; Rai and Moin, 1993;

Huang et al., 1995, among others]. From the numerical viewpoint, the direct numerical

simulation is much more difficult in compressible flows dealing with higher Reynolds

numbers and higher Mach numbers. As an example, we present here the work of Rai

and Moin [1993].

In this example, the analysis is carried out using the temporally fully implicit and

fifth order accurate spatial discretization with FDM for the primitive flow variables as

shown in Section 6.6.2. Also, the inlet boundary conditions include the perturbation

velocity components given by the Fourier series representation for the 3-D channel

flow.

The geometry with a zonal grid system and the two grid options (A,B) are presented

in Figure 21.7.3.1a,b. The computed power spectrum, skin friction, and mean velocity

profiles are shown in Figure 21.7.3.2, whereas turbulence intensities and Reynolds stress

distributions are presented in Figure 21.7.3.3. The results appear to be qualitatively in

agreement with experimental data.

Figure 21.7.3.4a represents spanwise vorticity contours in an (x, y) plane at different

times in the transition region with the y-direction expanded by a factor of 10 and the

letter “d” on the ordinate indicating the laminar boundary layer thickness at Rex =
2.5 × 105. This figure shows the rollup of its tip into a spanwise vortex. Streamwise

vorticity contours at y+ = 34.5 are presented in Figure 21.7.3.4b. The letter “s” on the

ordinate denotes the dimension of the computational region in the z-direction. Here.
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Figure 21.7.3.1 The geometry of 3-D duct and zonal grid system [Rai and Moin, 1993]. (a)
Schematic of computational region (not to scale). (b) Zonal configurations used in grids

A and B.

it is seen that the transition boundary is marked by the appearance of counter-rotating

vortex pairs in the region Rex ≤ 4.0 × 105. Figure 21.7.3.4c shows crossflow velocity

vectors in a (y, z) plane cutting through the largest pair of vortices. The letter “d” on

the ordinate represents the laminar boundary layer thickness at Rex = 4.0 × 105. The

cross sectional structure of this pair of vortices is clearly seen in this figure. Further

details are given in Rai and Moin [1993].

Some recent contributions in DNS include Pointsot and Lele [1992], Pruett and

Zang [1992], Choi et al. [1993], Lee et al. [1993], Huser and Biringen [1993], Huang

et al [1995]. Pruett et al [1995], Mittal and Balachandar [1996], and Guo et al. [1996],

among others. In all cases, the main features in DNS are that higher order accurate

computational methods must be used with refined mesh, and thus the computer cost

will be very excessive.
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Figure 21.7.3.2 Power spectrum, skin friction, and mean velocity profiles [Rai and Moin, 1993]. Reprinted

with permission from Academic Press.

21.8 SUMMARY

In this chapter, we have provided a brief review of the current state of the art on tur-

bulence, including not only the theory of turbulence but also the examples of compu-

tations. Turbulence models with Reynolds averaged Navier-Stokes equations (RANS),

large eddy simulation (LES), and direct numerical simulation (DNS) are covered.

Turbulence models include zero-equation models, one-equation models, two-

equation models, second order closure models (Reynolds stress models), algebraic

Reynolds stress models, and models with compressibility effects. Their advantages and

disadvantages are noted.

Although the turbulence model approaches are still used in practice, there is a trend

toward favoring LES for more accuracy, in which large scales are calculated and only the
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Figure 21.7.3.4 Spanwise and streamwise vorticity contours and crossflow velocity vectors

[Rai and Moin, 1993]. (a) Spanwise vorticity contours in (x, y) plane, 2.5 × 105 ≤ Rex ≤
4.0 × 105, t = 51.25�∗/u∞. (b) Streamwise vorticity contours in (x, y) plane, y+ = 34.5, 3.6 ×
105 ≤ Rex ≤ 5.1 × 105, 0 ≤ Z ≤ 5. (c) Crossflow velocity vectors at the streamwise location

Rex = 384,375. Reprinted with permission from Academic Press.
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small scales are modeled. However, the small scale modeling is still in need of further

research for high-speed compressible flows and reactive flows.

Our ultimate goal is then the DNS in which no modeling is required. Unfortunately,

the state of the art on DNS is far from practical applications due to demands in un-

available computer resources. If and when DNS becomes a reality, then our concern

is the most accurate numerical simulation approaches from those introduced in Parts

Two and Three. This will be the focus of our research in the future. In this vein, the

FDV theory introduced in Sections 6.5 and 13.6 will be particularly useful in resolving

turbulence microscales as accurately as possible. Some examples of FDV applications

with K–ε turbulence models for combustion are presented in Section 22.6.2.
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CHAPTER TWENTY-TWO

Applications to Chemically Reactive

Flows and Combustion

22.1 GENERAL

In this chapter, we examine computations for reactive flows in general with computa-

tional combustion in particular. In reactive flows, the conservation equations for chem-

ical species are added to the Navier-Stokes system of equations. This addition also

requires a modification of the energy equation. Furthermore, the sensible enthalpy is

coupled with the chemical species, which contributes to the heat source and diffusion

of species interacting with temperature. Chemical reactions in high-speed turbulent

flows with high temperatures are of practical interest. They are involved in hypersonic

aircraft and reentry vehicles. In this case, it is necessary that the vibrational and elec-

tronic energies be taken into account, in which the ionization of chemical species may

be important. Thus, the chemically reactive flows and combustion require significant

modifications of not only the governing equations but also the existing computational

methods discussed in previous chapters.

In general, we are concerned with characterizing ordinary flame and detonation by

different time scales. These scales range over many orders of magnitude. When reaction

phenomena are modeled such that characteristic times of variation are shorter than the

time step used, the equations describing such physical phenomena become numerically

stiff with respect to convection and diffusion.

Another type of difficulty is the disparity in spatial scales occurring in combustion. To

model the steep gradients at a flame front, an extremely small grid spacing is required. In

addition, complex phenomena such as turbulence, which occur on intermediate spatial

scales, lead to difficult modeling problems.

The third set of obstacles arises because of the geometric complexity associated with

real systems. Most of the detailed models developed to date have been one-dimensional.

Thus, they give a very limited picture of how the energy release affects the hydrody-

namics. Even though many processes in a combustion system can be modeled in one

dimension, there are others, such as boundary layer growth or the formation of vortices

and flow separation, which clearly require at least two-dimensional hydrodynamics.

Combustion in the presence of shock wave turbulent boundary layer interactions de-

mands a complete three-dimensional analysis.

The final consideration is the physical complexity. Combustion systems usually have

many interacting species. These are represented by sets of many coupled equations

734
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which must be solved simultaneously. Complicated ordinary differential equations de-

scribing the chemical reactions or large matrices describing the molecular differential

equations are costly and increase calculation time by orders of magnitude over ideal-

ized or empirical models. The fundamental processes in combustion include chemical

kinetics, laminar and turbulent hydrodynamics, thermal conductivity, viscosity, molecu-

lar diffusion, thermochemistry, radiation, nucleation, surface effects, evaporation, con-

densation, etc. Before a model of a whole combustion system can be assembled, each

individual process must be identified. These submodels are either incorporated into the

larger model directly or, if the time and spatial scales are too disparate, they must be

incorporated phenomenologically. In this process, microscopic details of chemistry and

physics are not considered. Instead, we take a macroscopic or continuum view of the

domain under study.

It is quite common that reactive flows and combustion occur in turbulent environ-

ments. The subject of turbulence, discussed in Chapter 21, then plays a new role in

reactive flows and combustion. Both spatial and temporal scales must be reevaluated.

Reynolds numbers and Damköhler numbers affect suitable selections of numerical

schemes. For high-speed flows, the situation is even more complex. High Mach num-

bers associated with shock waves must be compromised in determining both spatial

and temporal scales. Thus, the reactive flows and combustion in shock wave turbulent

boundary layer interactions represent extremely difficult physical phenomena for a nu-

merical simulation. Most likely, in this case, temperature gradients are high and the

role of Peclet numbers is crucial as well. The reaction rates for many common chemical

reactions are affected by turbulent flow. Thus, much of the data on file for reaction rates

is also altered.

With these basic items of consideration in mind, our focus then will be the com-

putational strategies in solving the governing equations involved in reactive flows in

general with combustion in particular. These governing equations are summarized

in Section 22.2, followed by computation of chemical equilibrium in Section 22.3,

chemistry-turbulence interaction models in Section 22.4, and hypersonic reactive flows

in Section 22.5. Finally, we examine some applications in Section 22.6. These examples

include supersonic inviscid reactive flows (premixed hydrogen-air), turbulent reactive

flow analysis with RANS models, PDF models for turbulent diffusion combustion, spec-

tral element methods for spatially developing mixing layer analysis, spray combustion

for turbulent reactive flows, LES and DNS analyses for turbulent reactive flows, and

hypersonic nonequilibrium reactive flows with vibrational and electronic energies taken

into account.

22.2 GOVERNING EQUATIONS IN REACTIVE FLOWS

22.2.1 CONSERVATION OF MASS FOR MIXTURE AND CHEMICAL SPECIES

Before we discuss the reactive flow governing equations, let us summarize definitions

of variables involved in reactive flows.

Mass Concentration, �k

The mass of species k per unit volume of the mixture.
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Molar Concentration, Ck = �k/Wk

The number of moles of species k per unit volume with Wk being the molecular

weight.

Mass Fraction, Yk = �k/�

The ratio of mass concentration of species k to the total mass density of the mixture,∑N
k=1Yk = 1, with N being the total number of species.

Mole Fraction, Xk = Ck/C
The ratio of molar concentration of species k to the total molar density C of the

mixture, with
∑N

k=1 Xk = 1.

Number Density, Nk = Ck/� = Yk/Wk

Actual number of moles of species k.

Partial Pressure for a Mixture

p =
N∑

k=1

pk, with Xk = pk

p

Equation of State

p = � R0T
N∑

k=1

Yk

Wk

with R0 being the universal gas constant (8.3143 J/g-mol K).

Stoichiometric Condition

This is the most stable condition of chemical reactions, defined by the equivalence

ratio

� = F/O
(F/O)st

= 1

with F = mass of fuel, O= mass of oxidant, and the subscript st denoting the stoichio-

metric condition (most stable condition).

Mixture Fraction

f = �M − �A

�F − �A

where � denotes any extensive property (total energy, mass, etc.), � = YF − (F/O)st Yo,

with subscripts F , A, and M representing fuel, air, and mixture, respectively.

The Law of Mass Action

Chemical reactions are characterized by the chemical reaction equations of the form

N∑
k=1

�′
ki Mk

kf−→←−
kb

N∑
k=1

�′′
ki Mk (i = 1, . . . M) (22.2.1)
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in which �ki is the stoichiometric coefficient of the species k for the reaction step i ,

with the prime and double primes representing the reactant and product, respec-

tively. Mk is the chemical symbol for the species k, and kf and kb denote the specific

reaction rate constants for the forward and backward reactions, respectively. These

reactions are governed by the so-called law of mass action related by the reaction

rate �k,

�k = Wk

M∑
i=1

(�′′
ki − �′

ki )

[
kf i

N∏
j=1

C
�′

j i

j − kbi

N∏
j=1

C
�′′

j i

j

]
(22.2.2)

where Cj is the molar concentration. Using the Arrhenius law, the specific reaction rate

constants of species k are in the form

kf i = Ai T �i exp

(
− Ei

R0T

)
, kbi = kf i

Kc
, Kc =

N∏
j=1

C
(�′′

j i −�′
j i )

j,e (22.2.3)

Here, Ai is the frequency factor, �i is the constant, Ei is the activation energy, and R0 is

the universal gas constant, Kc denotes the equilibrium constant, and Cj,e refers to the

molar concentration at thermodynamic equilibrium.

The law of mass action, as confirmed by numerous experimental observations, states

that the rate of disappearance of a chemical species is proportional to the products of

the concentrations of the reacting chemical species, each concentration being raised to

the power equal to the corresponding stoichiometric coefficients. Thus, it follows from

(22.2.1) and (22.2.3) that the forward reaction can be given by

�k = Wk

M∑
i=1

(�′′
ki − �′

ki )Ai T�i exp

(
− Ei

R0T

) N∏
j=1

(
Xj p
R0T

)�′
j i

(22.2.4)

where the pressure p is related by the partial pressure pj and mole fraction Xj as

p =
∑

j

pj , pj = Xj p

Chemical kinetics and thermodynamic models and constants for various chemical

reactions are available in the literature [Gardiner (ed), 1984; Westbrook and Dryer,

1984].

Mixture Conservation Equations

Let us now consider the continuity equation for component A in a binary mixture

with a chemical reaction at a rate �A (kg m−3 sec−1), known as the mass rate of produc-

tion of species A,

∂� A

∂t
+ ∇ · (� AvA) = �A (22.2.5a)

Similarly, the equation of continuity for component B is

∂�B

∂t
+ ∇ · (�BvB) = �B (22.2.5b)
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Adding (22.2.5a) and (22.2.5b) gives

∂�

∂t
+ ∇ · (�v) = 0 (22.2.6)

The above equation results from the law of conservation of mass

�A + �B = 0, � A + �B = � , � AvA + �BvB = �v

where the mixture velocity v is related by the diffusion velocity Vk and the species

velocity vk

Vk = vk − v (22.2.7a)

with

v =
∑

k

�kvk

/ ∑
k

�k (22.2.7b)

which leads to∑
k

�kVk =
∑

k

�YkVk = 0,
∑

k

YkVk = 0 (22.2.7c)

In terms of the molar units, the continuity equation takes the form

∂CA

∂t
+ ∇ · (CAvA) = �A (22.2.8)

where �A is the molar rate of production of Aper unit volume.

The species mass flow may be written in terms of the Fick’s first law of diffusion,

� AVA= −� DAB∇YA (22.2.9)

where DAB is the diffusion constant for rigid spheres of two unequal mass (mA, mB) and

diameter (dA, dB) [Hirschfelder, Curtis, and Bird, 1954; Gardiner, 1984]

DAB = 2

3

(
k3

�3

) 1
2
(

1

2mA
+ 1

2mB

) 1
2 T

1
2

p
(

dA + dB

2

)2

with k being the Boltzmann constant. More elaborate forms of diffusion constant will

appear in Section 22.5.

It follows from (22.2.5)–(22.2.9) that

∂� A

∂t
+ ∇ · (� Av) = ∇ · (� DAB∇YA) + �A (22.2.10)

Similarly, we have, from (22.2.8) and (22.2.7),

∂CA

∂t
+ ∇ · (CAv) = ∇ · (CDAB∇ XA) + �A (22.2.11)

where XA denotes the molar fraction for the species A.

Notice that if chemical reactions are absent and all velocities vanish, then

∂CA

∂t
= DAB∇2CA (22.2.12)
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which is called Fick’s second law of diffusion, and is valid in solids or stationary non-

reacting fluids.

In view of (22.2.7) and (22.2.5), the continuity equation for a multicomponent system

for species becomes

∂

∂t
(�Yk) + ∇ · [�Yk(v + Vk)] = �k, (k = 1, 2, . . . , N) (22.2.13)

where we have used the relation �k = �Yk. Carrying out differentiation in (22.2.13) and

satisfying (22.2.7), we obtain

�
∂Yk

∂t
+ �(v · ∇)Yk + ∇ · (�YkVk) = �k (22.2.14)

Using the Fick’s first law of diffusion in (22.2.14), we obtain the conservation of mass

equation for Yk in the form

�
∂Yk

∂t
+ �(v · ∇)Yk − ∇ · (� Dkm∇Yk) = �k (22.2.15)

which indicates the existence of N species equations. Thus, (22.2.6) and (22.2.15) consti-

tute the conservation of mass for the mixture and individual species. It is now obvious

that any one of these N equations may be replaced by the continuity equation for the

mixture in any given problem, indicating that only N − 1 equations of the Yk species

are independent.

22.2.2 CONSERVATION OF MOMENTUM

For reacting fluids with a mixture of species k, the body force, �F, acting on species k
will contribute to the rate of change of the momentum.

�F = �
N∑

k=1

Ykfk

in which fk is the external force per unit mass on species k. Thus, the momentum equation

takes the form

�
∂v
∂t

+ �(v · ∇)v = −∇ p + ∂	i j

∂xi
i j + �

N∑
k=1

Ykfk (22.2.16)

where 	i j is the viscous stress tensor,

	i j = 


(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3

∂vk

∂xk
�i j

)
(22.2.17)

with 
 being the viscosity and �i j is the Kronecker delta. Substituting (22.2.17) in

(22.2.16) we obtain:

�
∂v
∂t

+ �(v · ∇)v = −∇ p + 


[
∇2v + 1

3
∇(∇ · v)

]
+ �

N∑
k=1

Ykfk (22.2.18a)
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The momentum equation may be written in the conservation form

∂

∂t
(�v j ) + ∂

∂xi
(�vi v j ) + ∂

∂xi

[
p�i j − 


(
∂v j

∂xi
+ 1

3

∂vi

∂xj

)]
= �

N∑
k=1

Yk fkj (22.2.18b)

in which both continuity (22.2.3) and momentum (22.2.18a) equations are satisfied.

Throughout this chapter, the subscripts for species and indices for tensors are inter-

changeably used, so the reader should distinguish them from the physical aspect of

each case.

22.2.3 CONSERVATION OF ENERGY

The reactive flow energy equation may be written in various forms. Let us define the

stagnation energy E as

E = ε + 1

2
v · v (22.2.19a)

where ε is the specific internal energy density

ε =
N∑

k=1

YkHk − p
�

(22.2.19b)

with Hk being the enthalpy given by

Hk = Ho
k + Hk (22.2.20a)

where Hk is the sensible enthalpy above the zero-point enthalpy H0
k ,

Hk =
∫ T

To

cpkdT (22.2.20b)

so that the static enthalpy is of the form

H =
∑

k

YkHk =
N∑

k=1

Yk

(
Ho

k +
∫ T

To

cpkdT
)

=
∑

k

YkH0
k + H (22.2.21)

with H = ∑
k YkHk. A general form of the specific heat for k species (thermodynamic

model) is given by

cpk = Ak + BkT + CkT2 + DkT 3 + EkT 4 (22.2.22a)

If we consider a linear form (first two terms on RHS above), then the integral in (22.2.21)

becomes∫ T

To

cpkdT = AkT + 1

2
BkT2 (22.2.22b)

The coefficient of these polynomials are available from the general data bank in the

JANNAF Tables, or Hirschfelder et al. [1954].

The nonconservation form of the energy equation may be written as (2.2.9c)

�
Dε
Dt

= −∇ · q − p∇ · v + 	i j v j,i (22.2.23)
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with

q = q(C) + q(D)

where q(C) and q(D) are the heat fluxes due to conduction and chemical species diffusion,

respectively,

q(C) = −k∇T (22.2.24)

q(D) = �
N∑

k=1

HkYkVk (22.2.25)

Using the Fick’s first law of diffusion, we have

q(D) = −�
N∑

k=1

HkDkm∇Yk (22.2.26)

The additional heat fluxes from the Dufour effect (influence of species gradient on

temperature), and Soret effect (influence of temperature gradient on species diffusion),

and radiative heat transfer may be added as necessary [Hirschfelder, Curtis, and Bird,

1954].

It follows from (22.2.23) that the energy equation takes the form

�
DH
Dt

= Dp
Dt

+ ∇ · (k∇T) + ∇ ·
(∑

k

� HkDkm∇Yk

)
+ 	i j v j,i (22.2.27)

Take a substantial derivative of (22.2.21) in the form,

DH
Dt

= DH
Dt

+
∑

k

H0
k

DYk

Dt
(22.2.28)

Inserting (22.2.14) into (22.2.28), we obtain

�
DH
Dt

= �
DH
Dt

+
∑

k

H0
k (−∇ · �YkVk + �k) (22.2.29)

Equating (22.2.27) and (22.2.29) and using the Fick’s first law of diffusion lead to the

nonconservation form of the energy equation,

�
DH
Dt

− Dp
Dt

− ∇ · (k∇T) − ∇ ·
( ∑

k

� HkDkm∇Yk

)
− 	i j v j,i = −

∑
k

H0
k �k

(22.2.30)

Using the relation (22.2.20), we may write (22.2.30) in the conservation form as

∂

∂t
(� E) + ∂

∂xi
(� Evi + pvi ) − ∂

∂xi

(
kT,i +

∑
k

� HDkmYk,i + 	i j v j

)

= S −
∑

k

H0
k �k (22.2.31)



742 APPLICATIONS TO CHEMICALLY REACTIVE FLOWS AND COMBUSTION

Here, the total energy E is given by

E = H +
∑

k

H0
k Yk − p

�
+ 1

2
vi vi (22.2.32a)

and the energy due to the body force is of the form

S = �
N∑

k=1

Ykfk · v (22.2.32b)

Equation (22.2.31) is the most general expression of the energy equation for reacting

flows. By carrying out differentiation as implied in (22.2.31) and having satisfied con-

servation of mass (22.2.6), momentum (22.2.18a), and species (22.2.14), the remaining

terms represent the nonconservation form of energy equation, given by (22.2.30) or

�cp

[
∂T
∂t

+ (v · ∇)T
]
−∂p

∂t
− (v · ∇)p − 	i j v j,i − k∇2T −

∑
k

�cpkDkm(∇Yk · ∇)T

= −
∑

k

H0
k �k (22.2.33)

in which substitutions

H =
∑

k

Yk

∫ T

T0

cpkdT = cpT and Hk =
∫ T

T0

cpkdT = cpkT

are made for the zero-point enthalpy.

It should be noted that the energy equation (22.2.27) does not include coupling

with species equations through (22.2.28). The direct influence of the reaction rate

appearing on the right-hand side of (22.2.31) is important if chemical reactions domi-

nate the diffusion process. The chemical reaction as represented by the energy equa-

tion in (22.2.31) can be either exothermic or endothermic if the relative enthalpy

change (ratio of the enthalphy change to the total energy) is positive (heat release)

or negative (heat absorption), respectively. Thus, combustion is the exothermic

process.

22.2.4 CONSERVATION FORM OF NAVIER-STOKES SYSTEM OF EQUATIONS
IN REACTIVE FLOWS

Grouping all governing equations for continuity, momentum, energy, and species, the

conservation form of the Navier-Stokes system of equations in reactive flows is written

as follows:

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (22.2.34)
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where U, Fi , and Gi are the conservation variables,

U =

⎡
⎢⎢⎣

�

�vj

� E
�Yk

⎤
⎥⎥⎦ , Fi =

⎡
⎢⎢⎣

�vi

�vi v j + p�i j

� Evi + pvi

�Ykvi

⎤
⎥⎥⎦ , Gi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

−	i j

−	i j v j − kT,i −
N∑

k=1

� HDkmYk,i

−� DkmYk,i

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�
N∑

k=1

Yk fkj

S − 2
N∑

k=1

H0
k �k

�k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

To prove that (22.2.34) is indeed the correct conservation form, we perform the differen-

tiation implied in (22.2.34) and recover the nonconservation forms of the equations for

momentum (22.2.16), energy (22.2.33), and species (22.2.15). If integrated, however,

conservation properties across discrete boundaries are guaranteed through physical

discontinuities such as shock waves as observed in Section 2.2.

Relationships between chemical reactions and flowfield phenomena which con-

trol the mixing process are characterized by Damköhler numbers. Each term in the

species equation and energy equation influences such relationships, with temperature

changes closely linked to the chemical reactions. Thus, the Damköhler number, Da, is

defined in many different ways (see Table 22.2.1): as the ratio of the mass source to

Table 22.2.1 Various Definitions of Peclet and Damköhler Numbers

∇ · (� E + p)v

A
− k∇2T

B
−

∇ · (� HkDkm∇Yk)

C
=

−H0
k �k

D
∇ · (�Ykv)

E
− ∇ · (� Dkm∇Yk)

F
= �k

G

Peclet number, I PeI

uL
�

A
B

= convective heat transfer

conductive heat transfer

Peclet number, II PeII

uL
Dkm

E
F

= convective mass transfer

diffusive mass transfer

Damköhler number, I DaI

�kL
�uYk

G
E

= mass source

convective mass transfer

Damköhler number, II DaII

�kL2

� DkmYk

G
F

= mass source

diffusive mass transfer

Damköhler number, III DaIII

�kL
�u

D
A

= heat source

convective heat transfer

Damköhler number, IV DaIV

Hk�kL2

kT
D
B

= heat source

conductive heat transfer

Damköhler number, V DaV

H0
k �kL2

� HDkmYk

D
C

= heat source

diffusive heat transfer
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the species convection(DaI) or to the species diffusion(DaII) of the species equation.

Similarly, Damköhler numbers are defined also as the ratio of the heat source to the

heat convection(DaIII), to the heat conduction(DaIV), or to the heat diffusion(DaV) of

the energy equation. For example, the Damköhler number DaI is defined as

Da = DaI = �kL
�uYk

= 	d

	r
(22.2.35)

where L is the characteristic length, 	d and 	r are the characteristic diffusion time

and characteristic reaction time, respectively. If the reaction is very fast, 	r � 	d or

Da → ∞, this is known as the equilibrium chemistry. The so-called frozen chemistry
results if 	r � 	d or Da → 0. The finite rate chemistry prevails for 0 < Da < ∞. It will

be shown later that the Damköhler numbers are instrumental in determining appropri-

ate numerical schemes as dictated by the dominance of each of the terms in both the

energy and species equations, indicative of stiffness or time and length scales (Section

13.6 for FDV methods).

In correspondence with the above definitions, the equilibrium chemistry may be

represented by the last equation of (22.2.34) with

∂

∂xi

(
�Ykvi − � Dkm

∂Yk

∂xi

)
= 0

which leads to

∂

∂t
(�Yk) = �k (22.2.36a)

or

�k = d
dt

(�Yk) = d�k

dt
= Wk

M∑
i=1

(�′′
ki − �′

ki )Ai T�i exp

(
− Ei

R0T

) N∏
j=1

(
Xj p
R0T

)�′
j i

(22.2.36b)

The frozen chemistry occurs for �k = 0 so that the species equation takes the form

∂

∂t
(�Yk) + ∂

∂xi

(
�Ykvi − � Dkm

∂Yk

∂xi

)
= 0 (22.2.37)

Our objective is to solve simultaneously the Navier-Stokes system of equations for

the compressible reacting flow given by (22.2.34). The main variable solution vector

is the conservation flow variables U. Once the solution is obtained, it is necessary to

convert (decode) the conservation variables into the primitive variables. Although the

process is trivial for nonreacting equations, this is not the case for the reacting flows. In

order to calculate temperature, we utilize the Lagrange interpolation polynomials for

the total enthalpy as follows.

To begin, we equate the total enthalpy for the chemical species to the total flowfield

static enthalpy.

N∑
k=1

YkHk = E + RT − 1

2
vi vi (22.2.38)
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Consider the j discrete temperature abscissa, j = 1, . . . , J , such that

Hk(Tj ) = Hk, j for Tj = ( j − 1)�T with T1 ≤ T ≤ TJ

Applying the Lagrange interpolation polynomials to Hk, j leads to

Hk, j =
[

(T − Tj )(T − Tj+1)

(Tj−1 − Tj )(Tj−1 − Tj+1)

]
Hk, j−1 +

[
(T − Tj−1)(T − Tj+1)

(Tj − Tj−1)(Tj − Tj+1)

]
Hk, j

+
[

(T − Tj−1)(T − Tj )

(Tj+1 − Tj−1)(Tj+1 − Tj )

]
Hk, j+1

(22.2.39)

with

|T − Tj | ≤ �T ( j = 2, . . . , J − 1)

Assuming that �T is constant, we have

Hk, j = 1

2

[
T

�T
− ( j − 1)

][
T

�T
− j

]
Hk, j−1 −

[
T

�T
− ( j − 2)

][
T

�T
− j

]
Hk, j

+ 1

2

[
T

�T
− ( j − 2)

][
T

�T
− ( j − 1)

]
Hk, j+1

= A�2 + B� + C
(22.2.40)

with

A =
[

1

2
Hk, j−1 − Hk, j + 1

2
Hk, j+1

]

B =
[
−1

2
(2 j − 1)Hk, j−1 − (2 j − 2)Hk, j − 1

2
(2 j − 3)Hk, j+1

]

C =
[

1

2
j( j − 1)Hk, j−1 − j( j − 2)Hk, j + 1

2
( j − 1)( j − 2)Hk, j+1

]

� = T
�T

Substituting (22.2.40) to (22.2.38) leads to

a�2 + b� + c = 0

or

� = b + √
b2 − 4ac
2a

(22.2.41)

where

a =
N∑

k=1

Yk A

b =
N∑

k=1

Yk

(
B + R0�T

Wk

)

c =
N∑

k=1

Yk

(
C − E + 1

2
vi vi

)
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Thus, the temperature and pressure are determined as

T = ��T

p = � R0T
N∑

k=1

Yk

Wk

(22.2.42)

The solution of the Navier-Stokes system of equations in conservation form is de-

sirable for high speed compressible flows. However, as indicated earlier (Section 6.4),

the preconditioning of the time dependent term is an important choice particularly

for low speed incompressible flows, in which the solution vector is altered already

in terms of primitive variables and thus the cumbersome process of conversion of

the conservation flow variables to primitive variables as shown above can be eli-

minated.

22.2.5 TWO-PHASE REACTIVE FLOWS (SPRAY COMBUSTION)

The combustion of liquid fuel sprays has numerous important applications in diesel

engines, gas turbines, and space shuttle main engines. The prediction of the flow prop-

erties of spray flames requires the consideration of two phases in the flowfield. Various

approaches [Faeth, 1979; Sirignano, 1993; Sirignano, 1999, among others] have been

suggested to model the coupling of the discontinuous gas-liquid phase. There are three

approaches to spray combustion modeling: Eulerian-Eulerian formulation, Eulerian-

Lagrangian formulation, and probabilistic formulation.

The Eulerian-Eulerian approach treats both gaseous and liquid phases as contin-

uum. In the Eulerian-Lagrangian approach, the gas field is described in Eulerian co-

ordinates and the liquid droplet field is described in the Lagrangian formulation. This

approach employs computational particles to represent a collection of physical particles

having the same attributes such as spatial location, velocity, mass, temperature etc. The

motion of the droplet is simulated using a Lagrangian formulation to predict the droplet

behavior under the gas phase. The influence of the liquid phase on the gas phase is

treated by inclusion of coupling source terms arising due to the gas and liquid phase

interaction. In the probabilistic formulation, we define a droplet number density func-

tion or, in other words, a droplet number probability density function (PDF). This func-

tion f (x, t, R, , v, e�) depends upon spatial position x, time t , droplet radius R, droplet

velocity v, and droplet thermal energy e�. An excellent discussion of spray combustion

and other related topics may be found in Sirignano [1999]. We introduce below a portion

of the governing equations on Eulerian-Lagrangian formulation whose applications will

be presented in Section 22.6.2.

If all external effects except the drag force are neglected, the equations of motion

for the droplet can be expressed as

dxik

dt
= Uik (22.2.43)

dUik

dt
= 3CD
 Rek

16�kr2
k

(Ui − Uik) (22.2.44)
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with

Rek = 2rk�



|Ui − Uik| (22.2.45)

CD = 24

Rek

(
1 + Re

2/3
k

6

)
(22.2.46)

where xik is the displacement of the droplet characteristics k in the coordinate direction

i , Uik is the corresponding droplet velocity component, Ui is the gas velocity component,

Rek is the relative Reynolds number, and CD is the drag coefficient.

The droplet evaporation rate and heat balance equation are given as

ṁk = CaCb

dTk

dt
= QL/mkcpk

(22.2.47)

where Ca and Cb denote the evaporation coefficient and the correction factor for the

convection effect, respectively; Tk is the droplet surface temperature, QL is the heat

transferred into the droplet interior, mk is the droplet mass, and cpk is the droplet

specific heat at constant volume. The parameters involved in (22.2.47) have been pro-

posed by various investigators [Lefebvre, 1989; Abramzon and Sirignano, 1988, among

others].

Chin and Lefebvre [1983] proposed that

Ca = 4�rk�g/cpg ln(1 + Bm)

Cb = 1 + 0.276 Re
1/2
k Pr1/3

(22.2.48)

QL = ṁ
[

cpg(T − Tk)

Bm
− H�

]

where Bm is the mass transfer number,

Bm = Y f s − Y f ∞
1 − Y f s

Y f s =
[

1 +
(

p
p f s

− 1

)
Wa

W f

]−1

Here, Yf s and pf s are the mass fraction and the fuel vapor pressure at the droplet surface,

p and Yf ∞ are the ambient pressure and the fuel mass fraction at the outer boundary

of the film, and Wa and Wf are the molecular weights of air and fuel, respectively.

Another approach proposed by Abramzon and Sirignano [1988] is given by

Ca = 4�rk� g Dg ln(1 + Bm)

Cb = 1 + (Sho/2 − 1)/F(Bm) (22.2.49)

QL = ṁ
[

cpf (T − Tk)

Bm
− H�

]
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with

F(B) = (1 + B)0.7 ln(1 + B)

B

Sho = 1 + (1 + Rek Sc)1/3 f (Rek)

f (Rek) =
{

1 for Rek ≤ 1

Re0.077 for 1 ≤ Rek ≤ 4k00

Bt = (1 + Bm)� − 1, � = cpf

cpg

Sh∗

Nu∗
1

Le
, Sh∗ = Cb

Le = �g/� g Dgcpg

Nu∗ = 1 + (Nuo/2 − 1)/F(B)

Nuo = 1 + (1 + Rek Pr)1/3 f (Rek)

H�,eff = cpf (T − Tk)

Bt

where F(B) is the film thickness correctin factor and Dg is the diffusion coefficient in

the film.

Recent advances in two-phase reactive flows or spray combustion may be found

in Sirignano [1999]. Further discussions on reactive turbulent flows in fluid-particle

mixtures will be presented in Section 25.3.3.

22.2.6 BOUNDARY AND INITIAL CONDITIONS

Boundary and initial conditions for reacting flows are similar to those for nonreacting

flows except that inflow boundary conditions must include chemical species based on

reactant species being either premixed or nonpremixed. For the nonpremixed case,

reactants are specified at separate inflow boundaries, whereas they are specified together

at the inflow boundaries for the premixed case.

The Neumann boundary conditions are applied on �N at the wall and outflow

boundaries as

(Fi + Gi ) ni = N (22.2.50)

Mixture Mass Flux

�vi ni = A (22.2.51a)

Momentum Flux

(�vi v j + p�i j − 	 i j ) ni = Bj (22.2.51b)

Energy Flux(
� Evi + pvi − 	i j v j − kT,i +

N∑
k=1

�kHVki

)
ni = C (22.2.51c)

Species Mass Flux

(�Ykvi + �YkVki )ni = Dk (22.2.51d)
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Figure 22.2.1 Neumann boundary conditions for burning of solid fuel.

(a) Momentum flux Neumann boundary conditions (Burning of solid fuel).

(b) Species mass flux Neumann boundary conditions (Burning of solid fuel).

(c) Energy flux Neumann boundary conditions (gas-liquid interface).

The momentum and species mass flux Neumann boundary conditions for a typical

burning surface of solid fuel are shown in Figure 22.2.1a and Figure 22.2.1b, respectively.

Similarly, the energy flux Neumann boundary conditions for a liquid fuel burning surface

are depicted in Figure 22.2.1c.

If Dirichlet boundary conditions are specified on �D, then the Neumann bound-

ary conditions need not be specified. The Dirichlet boundary conditions are not to be

specified for the case of Neumann boundary conditions vanishing along the walls and

outflow boundaries.

Initial conditions for all chemical kinetics, equation of state, molecular, and thermal

transport data should be provided at the beginning of the calculation, rather than ap-

pended as constraints at each time step. Care should be exercised, as these data may be

the cause for large errors.
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22.3 CHEMICAL EQUILIBRIUM COMPUTATIONS

Numerical solutions of the ordinary differential equations (ODE) of the type charac-

terized by (22.2.36b) representing the equilibrium chemistry are difficult due to the fact

that a kinetic system is composed of many species whose concentrations can decay (or

grow) at widely disparate rates (a broad range of reaction rate constants). The numer-

ical solution is dominated by the species that have the fastest reaction rates. Such a

system constitutes stiff governing equations. Our objective in reactive flows is to exam-

ine, by solving such stiff equations, the interactions of many reacting chemical species

with fluctuating temperature and velocity fields. It is important to provide a numerically

efficient scheme for calculating chemically complex equilibrium distributions of species

mole numbers or mass fractions both in equilibrium and/or finite rate chemistry.

The solution of equilibrium species equations is sought for the following cases:

(1) we model the reaction mechanisms describing the consumption of fuels and pollu-

tant formation and destruction in which the nonlinear stiff ODEs are integrated, and

(2) multidimensional modeling of reactive flows, which includes the equations of fluid

motion, thus repeating the process of (1) for every grid point in the domain.

Many numerical techniques and computer programs are available for the solution

of stiff ordinary differential equations arising in combustion chemistry. There are three

approaches that have been used to develop some of the well-known computer pro-

grams. They include DIFFSUB or LSODE [Gear, 1971]; CHEMEQ [Young and Boris,

1977]; CREK1D [Pratt, 1983]; GCKP84 [Zeleznik and McBride, 1984], among others.

In LSODE, backward finite difference schemes are used to resolve stiffness of the non-

linear equations in conjunction with Newton procedure. CHEMEQ utilizes an explicit

method for regular equations whereas the stiff equations are solved using an asymptotic

integration. In CREK1D and GCKP84, exponentially fitted methods are used together

with the Newton-Raphson process.

Some of the basic equations and computational procedures associated with these

programs will be discussed in the following section.

22.3.1 SOLUTION METHODS OF STIFF CHEMICAL EQUILIBRIUM EQUATIONS

The ordinary differential equations given by (22.2.36) may be recast in the form

dYk

dt
= f k(Ni , T) k, i = 1, n (22.3.1)

fk = 1

�

m∑
i

(�′′
ki − �′

ki )(Rf i − Rbi ) (22.3.2)

with the initial conditions Yk(t = 0) and T(t = 0) given. Here, Rf i and Rbi are the

forward and backward molar reaction rates per unit volume, respectively, with

Rf i = kf i

n∏
i=1

(�Yk)�′
j i , Rbi = kbi

n∏
i=1

(�Yk)�′′
j i (22.3.3)

kf i = Af i T� f i exp

(−T f i

T

)
, Tf i = Ef i

R0
(22.3.4a)

kbi = Abi T�bi exp

(−Tbi

T

)
, Tbi = Ebi

R0
(22.3.4b)
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where kf i and kbi are the forward reaction rate constant and backward reaction rate

constant, respectively, and

kbi = kf i (R0T)�Ni exp

(
1

R0T

n∑
k=1

(�′
ki − �′′

ki )g0
k

)
(22.3.5)

Tbi = Tf i + 1

R0

n∑
k=1

(�′′
ki − �′

ki )Hk (22.3.6)

where g0
k is the 1 atm molar-specific Gibbs function of species k, Hk is the molar-specific

enthalpy of species k, and �Ni is given by

�Ni =
n∑

k=1

(�′′
ki − �′

ki ) (22.3.7)

Equating the temperature exponents in (22.3.4b) and (22.3.5) for k̂i , we obtain

�̂i = �i + �Ni (22.3.8)

To solve (22.3.1), we require the enthalpy constraint condition given by

n∑
k=1

YkHk = H0 = constant (22.3.9)

Differentiating (22.3.9) with respect to time and using (23.3.1) leads to

n∑
k=1

Ykcpk
dT
dt

+
n∑

k=1

f kHk = 0 (22.3.10)

To implement the constraint condition (22.3.10) for the nonlinear equation solvers

such as in the Newton-Raphson method, it is necessary to have derivatives of quan-

tities dT/dt and f k in (22.3.10) with respect to temperature and the mass fraction as

follows:

∂

∂T

(
dT
dt

)
= −

n∑
k=1

∂ f k

∂T
Hk +

n∑
k=1

f kcpk +
(

dT
dt

) n∑
k=1

Yk
dcpk

dT

N∑
k=1

Ykcpk

∂

∂Yj

(
dT
dt

)
= −

n∑
k=1

∂ f k

∂Yj
Hk + cpj

(
dT
dt

)
n∑

k=1

Ykcpk

(22.3.11)

∂ fk

∂T
= f k

T
+ 1

� T

m∑
i=1

(�′′
ki − �′

ki )

×
[

Rf i

(
�i + Ti

T
−

n∑
k=1

�′
ki

)
− Rbi

(
�̂i + Ti

T
−

n∑
i=1

�′′
ki

)]

In addition to these constraint derivatives, we must have the derivatives of fk with
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respect to the mass fraction Yk.

∂ f k

∂Yj
= (�Yk)−1

m∑
i=1

(�′′
ki − �′

ki )(�′
j i Rf i − �′′

j i Rbi ) + fk
n∑

k=1

Yk

−
(

�
n∑

i=1

Yk

)−1

×
n∑

i=1

(�′′
ki − �′

ki )(�′
j i Rf i − �′′

j i Rbi ) (22.3.12)

The derivatives given above constitute the Jacobian matrix J for the Newton-

Raphson solution of (22.3.1) (see Section 11.5.1 for Newton-Raphson methods) such

that

J�yk = −Rk (22.3.13)

where Rk represents the residual of (22.3.1).

In CREK1D and GCKP84, the Gibbs function is minimized in order to achieve equi-

librium. Chemical equilibrium is reached when the Gibbs function G and the Helmholtz

free energy � are minimum. The partial molar Gibbs function for a species k is given by

gk = hk − TSk = εk + pVk − TSk = �k + pVk (22.3.14)

where �k is the Helmholtz free energy,

�k = εk − TSk

Minimization of (22.3.14) gives

dgk = d�k + d (pVk) = d�k + RT
dVk

Vk
+ RT

dp
p

(22.3.15)

Setting

d�k = 0,
Vk

V 0
k

= �0
k

�
= Nk

N
, and g0

k = h0
k − TS0

k , (22.3.16)

and integrating (22.3.15), we obtain

gk = g0
k + RT ln

Nk

N
+ RT ln

p
p0

(22.3.17)

The mass specific Gibbs function for the mixture is given by

G =
n∑

k=1

gkNk (22.3.18)

subject to the conservation of atomic species,

n∑
k=1

m∑
i=1

(aikNk − bi ) = 0, k = 1, n, i = 1, m (22.3.19)

where aik represents the number of atoms of element i per mole of species k, bi is the

atom number of element i in the mixture, and m is the number of reaction equations

for atomic species.
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Multiplying (22.3.19) by the Lagrange multiplier �i , adding it to (22.3.18), and min-

imizing the sum with respect to Nk, we obtain

n∑
k=1

(
gk +

n∑
k=1

m∑
i=1

�i aik

)
dNk = 0 (22.3.20)

which leads to the equilibrium equation,

f k = gk +
m∑

i=1

�i aik = 0, Nk(k = 1, n), �i (i = 1, m) (22.3.21)

The minimization process of the mass specific Gibbs function consists of the

following:

(a) Minimize (22.3.17) and (22.3.8),

dG=
n∑

j=1

∂

∂ N j

{
n∑

k=1

Nk

[
g0

k + RT ln Nk − RT ln
n∑

i=1

Ni + RT ln
p
p0

]}
dN j

=
n∑

j=1

{
n∑

k=1

[
Nk

(
RT
Nk

� jk − RT
N

)
+ gk� jk

]}
dN j = 0 (22.3.22)

or

dG =
n∑

k=1

gkdNk = 0 (22.3.23)

(b) Multiply (22.3.19) by the Lagrange multiplier �i and minimize,

�i

n∑
k=1

aikdNk = 0 (22.3.24)

(c) Add (22.3.23) to (22.3.24),

n∑
k=1

(
gk +

m∑
i=1

�i aik

)
dNk = 0 (22.3.25)

The final form (22.3.25) leads to

gk +
m∑

i=1

�i aik = 0 k = 1, n i = 1, m (22.3.26)

This is in addition to the m constraint equations given by (22.3.19).

We now have (n + m) equations for the (n + m) unknowns, (Nk(k = 1, n)) and

(�i (i = 1, m)), which is a greater number than the n equations and unknowns required

in the equilibrium constant formulation. However, it is possible to reduce the system

to an m-dimensional system of equations and unknowns. It follows from (22.3.26) and

(22.3.19) that

f k = gk

RT
−

m∑
i=1

Bi aik k = 1, n (22.3.27)

f i = bi − b∗
i i = 1, m (22.3.28)

with Bi = −�i/RT, bi = aikNk.
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These functions must vanish at equilibrium. To this end, the Newton-Raphson pro-

cess for f i with unknowns (correction variables) xj can be carried out as follows.

n∑
j=1

∂ f k

∂x j
�x j = −� f k k = 1, n (22.3.29)

Here, the appropriate equations are expanded in Taylor series with all terms containing

derivatives higher than the first omitted. In view of the Gibbs function being given in the

logarithmic quantities (23.3.17), the derivatives (Jacobians) are carried out with respect

to the log function of N j , N, and T,

n∑
j=1

∂ f k

∂ ln N j
� ln N j + ∂ f k

∂ ln N
� ln N + ∂ f k

∂ ln T
� ln T = −� f k k = 1, n (22.3.30)

Similar derivatives are required for f i (22.3.28) and the enthalpy function (22.3.9).

This process leads to the determination of corrections to the initial estimates of com-

positions Nj , Lagrange multipliers �i , mole number N, and temperature T. See further

details in Gordon and McBride [1971] or Pratt and Wormeck [1976]. Comparisons of

performance of various codes are presented in Radhakrishnan [1984].

22.3.2 APPLICATIONS TO CHEMICAL KINETICS CALCULATIONS

In order to solve (22.3.1) and (22.3.10), it is necessary to have information on elementary

chemical reaction rates for a given reaction mechanism. To illustrate, let us consider the

global system of hydrogen and oxygen:

H2 + O2 = OH + OH

for which the reaction rate is calculated from

k= 10BT s exp

(
− E

RT

)

with B = 13, s = 0, E = 43 kcal/mole. Such information is available from the existing

literature. For example, the reaction rates data for hydrocarbon combustion chemistry

are provided by Westbrook and Dryer [1984] and the C-H-O system by Warnats [1984].

In most of the combustion calculations, there are several hundred reactions that can

be considered. However, due to limited computational resources, it is customary to

select only important reaction mechanisms, neglecting those that are less important.

For the purpose of illustration, some computed results for the H-N-O systems reported

by Radhakrishnan [1984] using LSODE [Gear, 1971] are presented in Figure 22.3.1a

for the reactions given in Table 22.3.1a and in Figure 22.3.1b for the reactions given

in Table 22.3.1b. Notice that the mole fractions for all species appear to have reached

equilibrium at approximately t ∼= 10−3 seconds for both cases.

For the nonequilibrium finite rate chemistry, it is necessary that the complete Navier-

Stokes system of equations (22.2.34) be solved, in which the convection and diffusion

terms are included in the species equations. Modifications in (22.2.34) will result in

various types of simplified reactive flows. As in nonreactive flows, CFD calculations

may be divided into reactive inviscid flows, reactive laminar flows, and reactive turbulent
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Figure 22.3.1 Variation with time of species mole fractions and temperature.

flows. Computational schemes dealing with these topics have been introduced in earlier

chapters. However, the method of the probability density function (PDF) as applied to

reactive turbulent flows has not been covered in Chapter 21. This subject is introduced

in the next section.

22.4 CHEMISTRY-TURBULENCE INTERACTION MODELS

Although many different turbulence models for RANS have been used extensively for

nonreacting flows, detailed studies of applicability of such models in reacting flows are

incomplete. Among the various alternatives, probability density function (PDF) meth-

ods have been found very favorable in applications to reacting flows. In the following

subsections, we summarize some of the representative probability density function ap-

proaches used along with two-equation models.

22.4.1 FAVRE-AVERAGED DIFFUSION FLAMES

In reacting flows, the temperature of the products is higher than that of the reactants

since the chemical reactions are exothermic. This trend is more prominent in turbulent

flows due to the possibility of more enhanced mixing, leading to inhomogeneous density



Table 22.3.1 Reaction Mechanisms and Rate Constants for H-N-O

(a) System A

Rate Constants

Reaction B N E, kcal/mole

CO + OH = CO2 + H 11.49 0 0.596
H + O2 + OH 14.34 0 16.492
H2 + O = H + OH 13.48 0 9.339
H2O + O = OH + OH 13.92 0 18.121
H + H2O = H2 + OH 14.0 0 19.870
N + O2 = NO + O 9.81 1.0 6.M
N2 + O = N + NO 13.95 0 75.506
NO + M = N + O + M 20.60 −1.5 149.025
H + H + M = H2 + M 18.00 −1.0 0
O + O + M = O2 + M 18.14 −1.0 .34
H + OH + M = H2O + M 23.88 −7.6 0
H2 + O2 = OH + OH 13.00 0 43.0

(b) System B

Rate Constants

Reaction B N E, kcal/mole

H + O2 = OH + O 14.342 0 16.790
O + H2 = OH + H 10.255 1.0 8.900
H2 + OH = H2O + H 13.716 0 6.500
OH + OH = O + H2O 12.799 0 1.093
H + O2 + M = HO2 + M 15.176 0 −1.000
O + O + M = O2 + M 13.756 0 −1.788
H + H + M = H2 + M 17.919 −1.0 0
H + OH + M = H2O + M 21.924 −2.0 0
H2 + HO2 = H2O + OH 11.857 0 18.700
H2O2 + M = OH + OH + M 17.068 0 45.500
H2 + O2 = OH + OH 13.000 0 43.000
H + HO2 = OH + OH 14.398 0 1.900
O + HO2 = OH + O2 13.699 0 1.000
OH + HO2 = H2O + O2 13.699 0 1.000
HO2 + HO2 = H2O2 + O2 12.255 0 0
OH + H2O2 = H2O + HO2 13.000 0 1.800
O + HM = OH + HO2 13.903 0 1.000
H + H2O2 = H2O + OH 14.505 0 9.000
HO2 + NO = NO2 + OH 13.079 0 2.390
O + NO2 = NO + O2 13.000 0 .596
NO + O + M = NO2 + M 15.750 0 −1.160
NO2 + H = NO + OH 14.462 0 .795
N + O2 = NO + O 9.806 1.0 6.250
O + N2 = NO + N 14.255 0 76.250
N + OH = NO + H 13.602 0 0
N2O + M = N2 + O + M 14.152 0 51.280
O + N2O = N2 + O2 13.794 0 24.520
O + N2O = NO + NO 13.491 0 21.8W
N + NO2 = NO + NO 12.556 0 0
OH + N2 = N2O + H 12.505 0 80.280
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distributions. Thus, the mass average (often known as Favre average) is particularly

useful in turbulent reacting flows.

For completeness, we record the summary of the mass-average process below:

ṽi (x) = �vi (x)

�
(22.4.1)

in which the bar indicates the conventional time average, whereas the tilde denotes a

mass-averaged quantity. Thus, the velocity vi consists of

vi (x) = ṽi (x) + v′′
i (x, t) (22.4.2)

where the double prime denotes the fluctuations about the mass-averaged mean.

The mass-averaged conservation equations are given by

Continuity Equation

∂�

∂t
+ (� ṽi ),i = 0 (22.4.3)

Momentum Equation

∂�v j

∂t
+ � ṽ j,i ṽi + p, j + (	 j i − �v′′

i v′′
j ),i = 0 (22.4.4)

Energy Equation

∂� h̃
∂t

+ (� h̃ṽi ),i − ∂ p
∂t

− ṽi p,i + v′′
i p,i − i j ṽ j,i − i j v

′′
j,i + (qi + �h′′v′′

i ),i

−(�c pDT̃Ỹk,i ),i − (�cp DT′′Y′′
k,i ),i = −

N∑
k=1

h�k�k

(22.4.5)

Species

∂

∂t
(�Ỹk) + (� ṽi Ỹk),i − (� DYk,i − �v′′

i Yk),i = �k (22.4.6)

Equation of State

p = Ro

N∑
i=1

(� T̃Ỹk + � T′′Yk)
1

Wk
(22.4.7)

where h̃ and Wk are the static enthalpy and molecular weight, respectively.

A variety of closure models for reacting turbulent flows have been proposed. The

most widely used approaches are the K−ε model and the Reynolds stress model (second

order closure) written in terms of the Favre average as follows:

�
∂K
∂t

+ � ṽi
∂K
∂xi

= ∂

∂xi

[(

t

K
+ 


)
∂K
∂xi

]
− �v′′

i v′′
j
∂ ṽi

∂xj
+ 
t

� 2

∂�

∂xi

∂ p
∂xi

− �ε (22.4.8)

�
∂ε
∂t

+ � ṽi
∂ε
∂xi

= ∂

∂xi

[(

t

ε
+ 


)
∂ε
∂xi

]
− c1

ε
K

(
�v′′

i v′′
j
∂ ṽi

∂xj
+ 
t

� 2

∂�

∂xi

∂ p
∂xi

)
− c2�

ε2

K

(22.4.9)
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with

�v′′
i v′′

j = 2

3
�i j

(
� K + 
t

∂ ṽi

∂xi

)
− 
t

(
∂ ṽi

∂xj
+ ∂ ṽ j

∂xi

)
(22.4.10)

�v′′
i �′′ = 
t

t

∂�̃

∂xi

K = v′′
i v′′

i

2
, ε = �v′′

i, j v
′′
i, j , 
t = c
� K2

ε
(22.4.11)

The Reynolds stress model calls for the following transport equations:

�
∂

∂t
(v′′

i v′′
j ) + � ṽk

∂

∂xk
(v′′

i v′′
j ) = − ∂

∂xk
(�v′′

i v′′
j v

′′
k) − v′′

i
∂ p̃
∂xj

− v′′
j
∂ p̃
∂xi

−
(

v′
j
∂p′

∂xi
+ v′′

j
∂p′

∂xj

)
− �v′′

i v′′
k
∂ ṽ j

∂xk
− �v′′

i v′′
k
∂ ṽ j

∂xk

− �v′′
j v

′′
k
∂ ṽi

∂xk
−

(
	 ′

ki

∂v′′
j

∂xk
+ 	 ′

kj
∂v′′

i

∂xk

)
(22.4.12)

�
∂

∂t
(v′′

i �′′) + � ṽ j
∂

∂xj
(v′′

i �′′) = − ∂

∂xj
(�v′′

i v′′
j �

′′) − �′′ ∂ p̃
∂xi

− �′′ ∂p′

∂xi
− �v′′

j �
′′ ∂ ṽi

∂xj

− �v′′
i v′′

j
∂�̃

∂xj
−

(
	i j

∂�′′

∂xj
+ �′

k
∂v′′

i

∂xk

)
+ �v′′

i Q(�)

(22.4.13)

Here Q(�) is the source or sink term and � denotes any variable other than pressure

(� = T, or � = Yk, etc.).

22.4.2 PROBABILITY DENSITY FUNCTIONS

The mean reaction rate cannot be expressed in terms of mean concentrations. For

diffusion type flames, it is convenient to assume fast reactions and an appropriate shape

for the probability density distributions of a conserved scalar, known as the probability

density function (PDF). This can be taken to be the mixture fraction defined as the mass

fraction of fuel in both burned and unburned forms.

The PDF, P( f, xi ), is usually described in terms of two parameters f̃ (mixture frac-

tion) and g̃ (square of fluctuations of mixture fraction, f̃ ′′2),

f̃ =
∫ 1

0

f P( f, xi )df (22.4.14)

g̃ = f̃ ′′2 =
∫ 1

0

( f − f̃ )2 P( f, xi )df (22.4.15)
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which may be obtained by solving the partial differential equations

� ṽ j
∂ f̃
∂xj

= ∂

∂xj

(

t

t

∂ f̃
∂xj

)
(22.4.16)

� ṽ j
∂ g̃
∂xj

= ∂

∂xj

(

t

t

∂ g̃
∂xj

)
+ 2


t

t

(
∂ f̃
∂xj

∂ f̃
∂xj

)
− CD

�ε
K

g̃ (22.4.17)

Various forms of probability density function [Bilger, 1980] include (1) double-delta or

rectangular-wave variation of mixture fraction with time, (2) clipped Gaussian distri-

bution, (3) intermittency function, (4) beta probability density function, and (5) joint

PDF for mixture function and reaction progress variable.

The PDF is inapplicable to phenomena such as ignition and extinction where direct

kinetic effects are important. Furthermore, the definition of the mixture fraction, f ,

is not suitable for premixed flames. For premixed flames, therefore, the mean reaction

rate must be evaluated.

In physically controlled diffusion flames, it is assumed that the chemistry is suffi-

ciently fast and intermediate species do not play a significant role. The reaction takes

place in an irreversible, single step as follows:

Oxidizer + Fuel = Product

For fast chemistry and the one step irreversible reaction, there will be no oxidant

present for mixtures richer than stoichiometric and no fuel present when the mixture is

weaker than stoichiometric. Both will be zero when the mixture is stoichiometric.

For the physically controlled diffusion flames, the mixture composition can be related

to one conserved scalar quantity. In a two-feed system, the mixture fraction is conserved

under chemical reactions and is defined by

� = (sYf u − Yox) + Yox,A

sYf u,F + Yox,A
(22.4.18)

Here, Yf u and Yox denote the mass fractions of fuel and oxidizer, respectively; s, the

stoichiometric oxidant required to burn 1 kg fuel; the subscripts A and F , the air and

fuel stream conditions at the inlet. At the location where Yox = sYf u, combustion is

complete and the mixture fraction is in stoichiometric condition.

�st = Yox,A

sYf u,F + Yox,A
(22.4.19)

The corresponding location is called the flame sheet. The assumption of chemical equi-

librium is now made so that

0 ≤ � ≤ �st , Yf u = 0, Yox = Yox,A
�st − �

�st
(22.4.20)

�st ≤ � ≤ 1, Yox = 0, Yf u = Yf u,F
� − �st

�st
(22.4.21)

The mass fraction of the products can be obtained by the mass conservation

Ypr = 1.0 − (Yox + Yf u) (22.4.22)
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For adiabatic operation of gaseous flames, the enthalpy is a conserved scalar, and for

unit Lewis number, the instantaneous enthalpy (h) and thermochemical properties are

related to the instantaneous value of the mixture fraction

h(�) = �hF + (1 − �)hA (22.4.23)∫ T

0

cpdT = h(�) − Yf u Hf u (22.4.24)

cp(�) =
∑

i

Yi (�)cpi (�) (22.4.25)

�(�) = M(�)P
RT(�)

(22.4.26)

1

M(�)
= Yf u(�)

Mf u
+ Yox(�)

Mox
+ Ypr (�)

Mpr
(22.4.27)

The density-weighted mean values (�) of any property are evaluated by convoluting

the property functions with a probability density function:

�̃ =
∫ 1

0

�(�)P(�, xi )d� (22.4.28)

Let us consider, for example, two of many possible probability density function ap-

proaches: (1) double-delta PDF and (2) beta PDF, as described below.

Double-Delta PDF

P(�, xi ) = a�(�−) + (1 − a)�(�+) (22.4.29)

�+ = f + √
g, �− = f − √

g (22.4.30)

�(�−)|�−<0 = �(0), �(�+)|�+>0 = �(1) (22.4.31)

a =
⎧⎨
⎩

0.5 for 0 < �± < 1

(1 − f )/1 − f + g/(1 − f ) for �+ > 1

g/[ f ( fg/ f )] for �− < 0

(22.4.32)

where �(�) is the Dirac delta function.

Beta PDF

P(�, xi ) = �a−1(1 − �)b−1∫ 1

0
�a−1(1 − �)b−1d�

(22.4.33)

a = f
[

f (1 − f )

g
− 1

]
(22.4.34)

b= (1 − f )

[
f (1 − f )

g
− 1

]
(22.4.35)

The fluctuations g must satisfy the following conditions

0 < g ≤ f (1 ≤ f ) (22.4.36)
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The constraints of (22.4.36) imply

a ≥ 0 and b ≥ 0 (22.4.37)

The integration of (22.4.28) with �-PDF can be performed using a standard procedure,

but singularities � − 0 or 1 must be analytically removed before weighting any property

with �-PDF.

There are many other options to the PDF methods such as the rectangular-wave

variation of mixture fraction with time [Spalding, 1971; Khalil, Spalding, and Whitelaw,

1975], clipped Gaussian distribution [Lockwood and Naguib, 1975], and joint PDF for

mixture fraction and reaction-progress variable [Janicka and Kollmann, 1980]. An ex-

cellent account of PDF approaches can be found in Pope [1985] and a review paper by

Kollmann [1990].

Boundary Treatments and Numerical Solutions

The general boundary conditions for axisymmetric cylindrical coordinates are u or

	x and v or 	r , specified as

	x = nr

(
∂v

∂x
+ ∂u

∂r

)

t + nx

(
2
∂u
∂x

− 2

3
∇ · v

)

t (22.4.38)

	r = nr

(
2
∂v

∂r
− 2

3
∇ · v

)

t + nx

(
∂v

∂x
+ ∂u

∂r

)

t (22.4.39)

where nx and nr are the direction cosines of the outward normal to the boundary �. For

other scalar variables � (i.e., K, ε, f , and g), general boundary conditions are simply �

or ∂�/∂n specified on �.

For the inlet boundaries of a coaxial jet, all variables (u, v, K, ε, f , g) are specified.

The turbulent kinetic energy is specified by experimental data or reasonable profiles.

Since no measurements are available for the length scale, the following expression is

used for the calculation of the dissipation rate:

ε = c
 K
3
2

0.03Dh
(22.4.40)

where Dh is the hydraulic diameter. The mixture fraction at the inlet stream is, by

definition, fA = 0.0, fF = 1.0 and thus, the fluctuations (g) of the mixture fraction are, by

definition, zero for the inlet of the oxidizer and fuel side. At outlet boundaries, traction-

free boundary conditions (	x = 	r = 0) or (	x = v = 0) are used with ∂�/∂n = 0. At

symmetry, the normal gradients of all scalar variables (∂�/∂n) are zero, and the radial

velocity component (v) and tangential surface traction (	r ) are zero.

The wall regions present several flow characteristics that distinguish them from

the other regions of the flow, such as steep gradients and a relatively low level of

turbulence. To account for flow phenomena in wall regions, the wall function method is

commonly employed. In the context of finite elements, the wall function method can be

implemented by assuming a constant shear stress up to a distance � within the near-wall

region of the flow. With this assumption, the shear stress is calculated by the modified
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log law

|	w| = ��u	 c
1
4

 K

1
2

ln E�+ (22.4.41)

�+ = ��c
1
4

 K

1
2



(22.4.42)

in which u	 and K are the potential values computed at the previous time step. Once

the near-wall values of the shear stresses are evaluated, near-wall values of K and ε can

be calculated from

K = |	w/� |
c

1
2



(22.4.43)

ε = |	w/� | 3
2

��
(22.4.44)

In finite element formulation, 	w is used as a Neumann boundary condition for calcu-

lating the new tangential velocity component with the normal component being zero.

The surface integral form for the wall function can be written as

∫
�

∗
� �r	wnr d� =

∫
�

∗
� �r

��u	 c
1
4

 K

1
2

ln E�+ nr d� (22.4.45)

The near-wall heat flux is determined by

q̇w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ucp(T − Tw)

Pr �
for �+ < 11.6

(T − Tw)�cpc
1
4

 K

1
2

Prt

[
1

�
ln(E�+) + P(Pr)

Pr

] for �+ ≥ 11.6
(22.4.46)

where the function P(Pr) is of the form [Launder and Spalding, 1974],

P(Pr)

PrT
= 9.24

[(
Pr

PrT

) 3
4

− 1

][
1 + 0.28 exp

(
−0.007

Pr

PrT

)]
(22.4.47)

Here 	w and q̇w are specified as Neumann boundary conditions in the momentum and

energy equations, respectively.

In turbulent reacting flows, the strong coupling between the velocity and pressure

fields and the nonlinear stiff source terms in the turbulence equations have a dominant

influence on the solution strategy. In treating the continuity and momentum equations,

a coupled velocity-pressure formulation leads to an improvement of the solution con-

vergence. Such a coupled solution eliminates the need for the transformation of the

continuity equation into a pressure or pressure-correction equation as required in the

sequential solution method. The coupled solution is relatively insensitive to Reynolds

numbers, grid density, and grid aspect ratio. Other scalar transport equations (K, ε, f ,

and g) are solved sequentially. The stiff source terms in the K−ε turbulence equations

are treated implicitly for numerical stability.
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The overall solution procedure is outlined below:

(1) Guess the values of all variables.

(2) Calculate auxiliary variables such as temperature, density, etc., from the associ-

ated combustion model.

(3) Solve the coupled continuity and momentum equations.

(4) Solve the transport equations for other variables (K, ε, f , and g).

Treat the new values of the variables as improved guesses and return to Step 2 and

repeat the process until convergence.

For solutions with the conservation form of the Navier-Stokes system of equations,

it is necessary to obtain appropriate modeling for the energy and species equations.

These topics are discussed in the next section.

22.4.3 MODELING FOR ENERGY AND SPECIES EQUATIONS IN REACTIVE FLOWS

Favre Averages

Additional governing equations for reacting turbulent flows include the energy equa-

tion and species equations in terms of Favre averages:

∂� Ẽ
∂t

+ (� Ẽṽi ), i =
[(




Pr
+ 
T

Pr T

)
H̃,i +

(

 + 
T

k

)
K̃,i

]
, i + [(	 i j + 	∗

i j − p�i j )ṽ j ], i

(22.4.48)

∂�Ỹk

∂t
+ (�Ỹkṽi ), i −

[(



Sc
+ 
T

ScT

)
Ỹk,i

]
, i = �k (22.4.49)

in which the standard K−ε model is used. Additionally, we must model the reaction

rate �k. To this end, we return to the law of mass action given by (22.2.2). Here, the

forward reaction rate constant in (22.2.3) is modified to

kf i = Ai (T̃ + T′′)�i exp

(
− T̂i

T̃ + T′′

)
(22.4.50)

where T̂i is the species activation temperature. Assuming that T ′′
T

< 1 and expanding
the sum T̃ + T′′ in series, we obtain the Favre averaged reaction rate constant,

k̃ f i = (1 + s)Ai T̃ �i exp

(
− T̂i

T̃

)
(22.4.51)

with

s =
[

(�i − 1)

(
�i

2
+ T̂i

T̃

)
+ 1

2

(
T̂i

T̃

)
2

]
T̃′′T′′

T̃2
(22.4.52)

where the terms higher than second order in T′′/T̃ are neglected.

Direct Stress Model

An alternative approach is to use the direct stress method in which we introduce

the transport equation for the Reynolds (turbulent) heat flux in the form,

�
D
Dt

(̃v′′
i T′′) = Ai + Bi + Ci + Di + D̂i (22.4.53)
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where Ai , Bi , Ci , Di , and D̂i denote production, dissipation (destruction), diffusion,

pressure strain, and nonvanishing pressure gradient, respectively [Launder, Reece, and

Rodi, 1975]:

Ai = −�(v′′
mT′′vi,m + ṽ′′

mv′′
i T′′

,m)

Bi = ṽ′′
i q′′/cp = −Cq

K
ε

ṽ′′
i v′′

m qT ,m

Ci =
[

CT�
K
ε

ṽ′′
mv′′

n(̃v′′
i T′′),n

]
, m (22.4.54a,b,c,d,e)

Di = pT
′′
,i = −pT

′′
,i − C1T�

ε
K

ṽ′′
i T′′ + C2T� ṽ′′

mT′′v′′
i,m

D̂i = −T
′′

p,i

with Cq = 1, CT = 0.15, C1T = 3.0, C2T = 3.3 [Gibson and Launder, 1978; Launder

et al., 1975]. The Favre averaged temperature is modeled as

T̃ ′′ = � T
′′

�
= (� T′′)T′′

� T
= T̃′′2

T
(22.4.55)

where the Favre mean temperature fluctuation can be determined from the transport

equation,

�
DT̃′′2

Dt
=

[
CT�

K
ε

ṽ′′
mv′′

n(T̃′′2),n

]
, m − 2� ṽ′′

mT′′ T,m + 2T̃′′q′′/cp − CL
ε
K

T̃′′2

(22.4.56)

with CL = 2. It should be noted that all unknowns have been defined (correlated)

except for qT in (22.4.54b) and T̃′′q′′ in (22.4.56). They can be correlated with the

laminar flamelet model and thermochemical approach [Bray, 1979; Bradley et al., 1990;

Al-Masseeh et al., 1990] as follows:

qT = erf
(

sq

s�0.5

) ∫ 1

0

ql(�)P(�)d� (22.4.57)

T̃′′q′′ = erf
(

sq

s�0.5

)
(Tb − Tu)

∫ 1

0

(� − �)ql(�)P(�)d� (22.4.58)

Here, sq is the critical flame quenching value, � = (T − Tu)/(Tb − Tu) is the dimen-

sionless reaction progress variable with the subscripts b and u implying fully burned

and unburned gaseous temperatures, ql(�) is the heat release rate for a one-dimensional

laminar flame, s is the mean strain rate acting on the flamelets, and P(�) is the Gaussian

PDF of the reacting progress variable. Further details are given in Al-Masseeh et al.

[1990].

22.4.4 SGS COMBUSTION MODELS FOR LES

For applications of LES in combustion, we may consider two approaches: the conserved

scalar method discussed in Section 22.4.2 and the direct closure method [Bilger, 1980].
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Here, we consider an exothermic, single-step, irreversible chemical reaction of the type

A+ r B → (1 + r)P where r represents the stoichiometric ratio of oxidizer to fuel mass.

Derivation of the direct closure models begins with the reaction rate for the kth

species, �k, appearing in (22.2.14). The spatially filtered reaction rate is of the form.

�k = �k(� , T, Y1, Y2, . . . Yn) (22.4.59)

which may be decomposed in two different ways.

�k1 = �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn) + �SGS1

�k2 = �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn) + �SGS2

(22.4.60)

with

�SGS1 = �k(� , T, Y1, Y2, . . . Yn) − �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn)

�SGS2 = �k(� , T, Y1, Y2, . . . Yn) − �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn)
(22.4.61)

The first decomposition breaks the filtered reaction rate into filtered large-scale and SGS

contributions, whereas the second decomposition leads to resolved large-scale and SGS

contributions, with �SGS1 and �SGS2 representing the contribution of SGS fluctuations,

but requiring models. To this end, these terms are filtered again at the same filter level,

resulting in

�k1 = �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn) + �SGS1

�k2 = �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn) + �SGS2

(22.4.62)

which may be expressed in terms of large-scale and SGS contributions to the twice-

filtered reaction rate, using the same decomposition strategies as in (22.4.60) as follows:

�k1 = �k( ˜̃� , ˜̃T, ˜̃Y1,
˜̃Y2, . . .

˜̃Yn) + �̂1 + �SGS1

�k2 = �k( ˜̃� , ˜̃T, ˜̃Y1,
˜̃Y2, . . .

˜̃Yn) + �̂2 + �SGS2

(22.4.63)

where

�̂1 = �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn) − �k(� , ˜̃T, ˜̃Y1,
˜̃Y2, . . .

˜̃Yn)

�̂2 = �k(� , T̃, Ỹ1, Ỹ2, . . . Ỹn) − �k(� , ˜̃T, ˜̃Y1,
˜̃Y2, . . .

˜̃Yn)

(22.4.64)

with ˜̃a = � ã/� for any variable a. Invoking scale similarity, we may express �SGS1 =
K1�̂1, �SGS2 = K2�̂2 with K1, K2 as model coefficients. Thus, returning to (22.4.60), the

so-called similarity filtered reaction rate model (SFRRM) and scale similarity resolved

reaction rate model (SSRRRM) are given by, respectively,

(�k)SFRRM = �k(� , T̃, Ỹ1, Ỹ2, . . . . .Ỹn) + K1�̂k1

(�k)SSRRRM = �k(� , T̃, Ỹ1, Ỹ2, . . . . .Ỹn) + K2�̂2

(22.4.65)

There are other options for SGS reaction rate modeling such as in Pope [1990],

Moller, Lundgren, and Fureby [1996], Norris and Edward [1997], among others. Appli-

cations of these models will be demonstrated in Section 22.6.6.
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22.5 HYPERSONIC REACTIVE FLOWS

22.5.1 GENERAL

Computations in hypersonic flows present new challenges. The reason for this is that,

when the Mach number is higher than about 5, most or all variable gradients increase

significantly close to the wall. Typical cases of external and internal flows are depicted

in Figure 22.5.1. We are concerned with high pressure gradients, high entropy gradients,

high velocity gradients, and high temperature gradients.

For the external flow (Figure 22.5.1a), high pressure gradients will result in thin

shock layers on sharp nose and highly curved shock layers on a blunt nose. A possible

merging with the viscous boundary layer will complicate calculations for high Mach

numbers coupled with low Reynolds numbers. Across the shock wave, entropy increases

sharply particularly at the nose, thus forming the entropy layer which flows downstream.

In this process, strong vortical flows are generated, contributing to turbulence. In the

vicinity of the wall, high velocity gradients are prevalent. This will cause turbulence

microscale motions, resulting in high pressure and high skin friction on the wall. The

Figure 22.5.1 Hypersonic external and internal flows. (a) External flow over a blunt

body. (b) Internal flow through fins and a ramp.
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Figure 22.5.2 Ranges of vibrational excitation, dissociation, and ionization for air at

1 atm.

viscous boundary layer due to the high velocity gradient will grow as the Mach number

increases. As the boundary layer moves closer to the entropy layer and shock layer,

the so-called viscous interaction with inviscid regions leads to difficulties in obtaining

accurate computational solutions.

For the internal flow (Figure 22.5.1b), high temperature gradients close to the wall

lead to the rise of temperature due to viscous dissipation of energy. Most of the currently

available CFD methods encounter difficulties in predicting the correct heat flux. Triple

shock waves are formed with two fin shocks interacting with the ramp shock. In the vicin-

ity of triple shock interactions, complex boundary layer separations and reattachments

also cause numerical difficulties in predicting turbulence microscale behavior.

In case of a reentry vehicle, the kinetic energy of a high speed, hypersonic flow is

dissipated due to friction, resulting in a thermal boundary layer with extremely high

temperatures (Figure 22.5.2). This will excite vibrational energy within molecules and

possibly cause dissociation and even ionization within the gas, leading to a chemically

reacting boundary layer. For air at 1 atm, O2 dissociation (O2 → 2O) begins at about

2000 K and the molecular oxygen is essentially entirely dissociated at 4000 K. At this

temperature, N2 dissociation (N2 → 2N) begins and is essentially totally dissociated at

9000 K. Above 9000 K, ionization takes place (N → N++ e−, O → O++ e−) and the

gas becomes a partially ionized plasma. These high temperature gases are known as

real gases. If the vibrational excitation and chemical reactions take place very rapidly

in comparison with the flow diffusion velocity, then this is referred to as the equilibrium

flow. If the opposite is true, then we have nonequilibrium flow, which is much more

difficult in computations. High temperature chemically reacting flows influence lift,

drag, and moments for a hypersonic aircraft and if the shock-layer temperature is very

high, then heat transfer may be dominated by radiation. When ionization takes place,

the free electrons absorb radio frequency waves, causing the communication blackout.

Examples of chemical reaction equations are shown in Table 22.5.1.
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Table 22.5.1 Kinetic Mechanism for High-Temperature Air (T > 9000K)

Reaction C f � f k f

O2 + N = 2O + N 3.6000E18 −1 118800

O2 + NO = 2O + NO 3.6000EI8 −1 118800

N2 + O = 2N + O 1.9000EI7 −0.5 226000

N2 + NO = 2N + NO 1.9000EI7 −0.5 226000

N2 + O2 = 2N + O2 1.9000EI7 −0.5 226000

NO + O2 = N + O + O2 3.9000E20 −1.5 151000

NO + N2 = N + O + N2 3.9000E20 −1.5 151000

O + NO = N + O2 3.2000E9 1 39400

O + N2 = N + NO 7.0000EI3 0 76000

N + N2 = 2N + N 4.0850E22 −1.5 226000

O + N = NO+ + e− 1.4000E06 1.5 63800

O + e− = O+ + 2e− 3.6000E31 −2.91 316000

N + e− = N+ + 2e− 1.1000E32 −3.14 338000

O + O = O+ + e− 1.6000EI7 −0.98 161600

O + O+
2 = O2 + O+ 2.9200EI8 −1.11 56000

N2 + N+ = N + N+
2 2.0200E11 0.81 26000

N + N = N+
2 + e− 1.4000E13 0 135600

O + NO+ = NO + O+ 3.6300EI5 −0.6 101600

N2 + O+ = O + N+
2 3.4000EI9 −2 46000

N + NO+ = NO + N+ I.0000E19 −0.93 122000

O2 + NO+ = NO + O+
2 1.8000EI5 0.17 66000

O + NO+ = O2 + N+ 1.3400EI3 0.31 154540

O2 + O = 2O + O 9.0000EI9 −1 119000

O2 + O2 = 2O + O2 3.2400E19 −1 119000

O2 + N2 = 2O + N2 7.2000EI8 −1 119000

N2 + N2 = 2N + N2 4.7000EI7 −0.5 226000

NO + O = N + 2O 7.8000E20 −1.5 151000

NO + N = O + 2N 7.8000E20 −1.5 151000

NO + NO = N + O + NO 7.8000E20 −1.5 151000

O2 +N2 = NO + NO+ + e− 1.3800E20 −1.84 282000

NO + N2 = NO+ + e− + N2 2.2000EI5 −0.35 216000

For high-altitude flights, about 150 km or above, the Knudsen number KN is KN > 1,

where the continuum theory (Euler and Navier-Stokes system of equations) fails, and

we must resort to the kinetic theory of gas (or free molecular flow theory). A hypersonic

vehicle entering the atmosphere from space will experience the full range of these low-

density effects.

22.5.2 VIBRATIONAL AND ELECTRONIC ENERGY IN NONEQUILIBRIUM

The statistical thermodynamics and kinetic theory of gases are used in derivations of the

governing equations for hypersonic flows. The basic foundations are well established

in the literature [Wilke, 1950; Hirschfelder et al., 1954; Brokaw, 1958; Lee, 1985; Park,

1990]. The Navier-Stokes system of equations governing the hypersonic flows includes

not only the conservation of mass, momentum, and species, but also the conservation
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of vibrational energy and electronic energy. Thus, the conservation form of the Navier-

Stokes system of equations is written as

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (22.5.1)

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

�

�vi

� E
�Yk

� E�

� Ee

⎤
⎥⎥⎥⎥⎥⎥⎦

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎣

�vi

�vi v j + p�i j

(� E + p)vi

�Ykvi

� E�vi

(� Ee + pe)vi

⎤
⎥⎥⎥⎥⎥⎥⎦

(22.5.2)

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

−	 i j

−	 i j v j + qi + �

qi

−� DkmYki

qvi

qei

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−
N∑

k=1

H0
k �k

�k

Ėv

Ėe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

qi = khT,i + keTe,i

�

qi =
[
−

∑
k

(εrk + εvk + εek + Hk)
∑

j

N j V j

]
i

qvi =
[
−

∑
k

εvk

∑
j

N j V j

]
i

qei = − f ekeTe,i −
[∑

k

εek

∑
j

N j V j

]
i

Ev =
∑

m

εvmNm, Ee = 3

2
NekTe +

∑
k

εek(Te)Nk

E = E1 + E2 + E3 + E4 + E5 + E6 + E7

E1 = 3

2
kT

∑
Nk Translation (heavy particle)

E2 = 3

2
kTe Ne Electron translation

E3 = kT
∑

Nk Rotation (molecule) (22.5.3)

E4 =
∑

ε�i (T�)Nk Vibration (molecule)

E5 =
∑

εek(Te)Nk Electronic excitation

E6 =
∑

HkNk Chemical

E7 = 1

2
vi vi Kinetic
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where k is the Boltzmann constant, with the subscripts � and e indicating the vibration

and electronic energy, respectively, and i denoting the number of heavy particles or

molecules as well as the coordinates xi (for simplicity of notation). The rates of change

of the vibrational and electronic energy in the source terms are given by

Ėv = Ėv1 + Ėv2 + Ėv3

Ėe = Ėe1 + Ėe2 + Ėe3 + Ėe4 + Ėe5 + Ėe6 + Ėe7

Vibrational relaxation energy rate, Ėv1 =
∑
k=m

Nk fv

(
εvE − εv

	L

)
k
, εvE = equilibrium

internal energy

Vibrational N2 energy exchange rate, Ėv2 = (N2)
εvE(Te) − εv

	e
, 	e = relaxation time

Vibrational molecule energy exchange rate, Ėv3 =
∑
k=m

εvk
∂ Nk

∂t
, εvk = average re-

moved energy

Electronic ionization energy exchange rate, Ėe1 = −
∑

k=ion

E∞k

(
∂ Nk

∂t

)
+

E∞k = ioni-

zation potential

Electronic impact dissociation energy rate, Ėe2 = D(N2)

(
∂ Ne

∂t

)
de, D= dissociation

energy

Electronic energy gain rate, Ėe3 = 2Ne

∑
k=all

vk
me

mk

3

2
k(T − Te), vk = collision fre-

quency

Electron–vibration energy exchange rate, Ėe4 = −(N2)
εvE(Te) − εv

	e

Electronic excitation energy rate, Ėe5 =
∑
k=all

εek
∂ Nk

∂t

Electronic associative ionization energy, Ėe6 =
∑

kl

εk
∂ Nk

∂t

Electronic radiative energy rate, Ėe7 = −QR

The diffusion velocity Vi in (22.5.3) may be obtained by solving the multicomponent

diffusion equation of the form

∇ Xk =
n∑

j=1

XkXj

Dkj
(V j − Vk) + (Yk − Xk)

∇ p
p

+ �

p

n∑
j=1

YkYj (fk − f j )

+
n∑

j=1

XkXj

� Dkj

(
Dj

Yj
− Dk

Yk

)∇T
T

(22.5.4)

Thus, it can be shown that

Vi = N
� Xk

∑
j

mj Dkj

[
∇ Xj +

(
Xj − � j

�

)
1

p
∇ p − N j

p
Zj eE

]
− 1

�kT
Dk∇T

(22.5.5)
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where Dkj is the binary diffusion coefficient, Dk is the thermal diffusion, Zj is the

number of electrostatic charge (= 0 for neutral species, = 1 for positive ions, and = −1

for electrons), e is the electronic charge, and E is the electrostatic field intensity. A

simplification of the diffusion velocity given in (22.5.5) leads to the Fick’s first law of

diffusion (22.2.9).

Following Vos [1963], the diffusion coefficients Dkj may be written as

Dkj = kT

p�
(�,s)
kj

(22.5.6)

where

�
(�,s)
kj = 8

3

√
2mkmj

�kT(mk + mj )
��

(�,s)
kj , (�, s = 1) (22.5.7a)

��
(�,s)
kj =

∫ ∞
0

∫ �

0
e−�2

� 2s+3(1 − cos� � )4�kj d� d�∫ ∞
0

∫ � e−�2 � 2s+3(1 − cos� � ) sin � d� d�
(22.5.7b)

with kj and � being the differential cross section and scattering angle, respectively,

and

� =
√

mkmj

2(mk + mj )kT
g (22.5.8)

where g is the relative velocity of the colliding particles.

The thermal conductivity kh for heavy particles and ke for electron energy are defined

as

kh = 15

4
k

∑
k

Xk
n∑

j=1

�kj Xj�
(�,s)
kj

, (�, s = 2) (22.5.9)

kh = 15

4
k

∑
k

Xe
n∑

j=1

�ej Xj�
(�,s)
kj (Te)

, (�, s = 2) (22.5.10)

with

�kj = 1 + (1 − mk/mj )(0.45 − 2.54mk/mj )

(1 + mk/mj )2
(22.5.11)

The viscosity constant 
 associated with the stress tensor is given by Wilke [1950] as


 =
∑

k

mkXk∑
j �=k

Xj�
(�,s)
kj

(22.5.12)

with

�
(�,s)
kj = 16

5

√
2mkmj

�kT(mk + mj )
��

(�,s)
kj , (�, s = 2) (22.5.13)
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It is apparent that the inclusion of vibrational and electronic energy components will

be computationally intensive.

The chemical species Yk in (22.5.2) consist of

Yk = [O, N, O2, N2, NO, O+, N+, O+
2 , N+

2 , NO+, e−]T

with typical chemical reactions in air occurring in six different ways.

(1) Thermal dissociation of O2

O2 + M ⇔ O + O + M

(2) Dissociation of N2

N2 + e− ⇔ N + N + e−

(3) Exchange reactions of NO (known as Zeldovich reactions)

O + N2 ⇔ NO + N

NO + O ⇔ O2 + N

(4) Associative ionization, dissociative recombination

N + O ⇔ NO+ + e−

O + O ⇔ O+
2 + e−

N + N ⇔ N+
2 + e−

(5) Ionization of O

O + e− ⇔ O+ + e− + e− − e−

(6) Exchange reactions

NO+ + O ⇔ N+ + O2

With all ingredients that enter the most general form of the governing equation

(22.5.1), the solution undergoes a laborious process. For applications to numerical simu-

lations, we must provide adequate thermochemical models. They include the vibrational

model, electronic excitation model, and chemical reaction model. Note that there are

six different temperatures corresponding to six different energies shown in (22.5.3) with

the kinetic energy excluded. Candler [1989] shows an illustration of effects of these tem-

peratures upon the computational results for all other variables. Park and Yoon [1991]

demonstrate the validity of using two temperatures (corresponding to translational and

vibrational energies only). The thermochemical model in Park [1990] is described below.

Neglecting the ionizing phenomena, only five neutral species, �1 = O2, �2 = N,

�3 = NO, � 4 = O2, and � 5 = N2, are considered. We further note that O2 and N2 can

be expressed as a linear combination of other species from the elemental conservation

condition. Thus, only the first three species can be treated as the species variables.

Vibrational Model

The vibrational energy is then given by

Ev =
∑

k

nkεvk, (J/m2) (22.5.14)
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where

εvk = 8.314
�k

exp[(�kTv − 1)]
, (J/mole) (22.5.15)

with �k being the characteristic vibrational temperature of the molecules, �k = 2740,

2273, 3393 K for k = 3, 4, and 5, respectively.

The rate of change of the average vibrational energy of the molecules k by collisiosn

with species j is of the form

�kj = εvE − εvk

	Lk j + 	c

∣∣∣∣ Ts − Tv

Ts − Tvs

∣∣∣∣s−1 (J/mole·s) (22.5.16)

where εvE is the average vibrational energy of the species k per mole evaluated as the

translational temperature. The quantity 	 Lkj is the vibrational relaxation time of the

Landau-Teller model [Millikan and White, 1963],

	 Lk j = exp(Ak j T−1/3 − Bkj )/pc (22.5.17)

where pc is the partial pressure of the colliding particles in atm. The quantity 	 c is the

average collision time,

	 c = (cnv)−1

where c is the average molecular speed c = √
8KT/�m, n is the total number density

of the mixture, and v is the limiting cross section, v = 10−21(50,000/T)2. Ts and T�s

are the translational temperature-rotational and vibrational-electronic temperatures

immediately behind the shock wave, respectively. The exponent s is given by

s = 3.5 exp(−Ts5000)

The parameters Akj and Bkj are adjusted for conformity with experimental data [Park

and Yoon, 1990].

The rate of change of vibrational energy per unit volume of the flow in J/m3 · s takes

the form

Ėv =
∑

k

[∑
j

(
nk �kj − εk

�k

Wk

)]
(22.5.18)

where εk is the average vibrational energy removed in the dissociation of molecule k,

approximately 80% of the dissociation of molecule k. In a rapidly expanding flow or in

a boundary layer, this model may not be valid.

Electronic Excitation Model

The electronic excitation energy of the species is given by

Ee(nk, Tv) =
∑

k

nkεek (J/m3) (22.5.19)

where the expression for the electronic energy εek is given in Lee [1985]. The rate of



774 APPLICATIONS TO CHEMICALLY REACTIVE FLOWS AND COMBUSTION

change of electronic excitation energy of the flow is

Ėe =
∑

k

εek
�k

Wk
(22.5.20)

Chemical Reaction Model

With the vibrational and electronic energies calculated as described above, the

translational-rotational temperature can be determined by the equation

E =
(∑

k

cvknk

)
T + Ev + Ee +

∑
k

H0
k nk + �

2
vi vi (J/m3) (22.5.21)

where cvk is the frozen specific heat at constant volume for species k for translational and

rotational energies (cv1 = cv2 = 12.47 and cv3 = cv4 = cv5 = 20.79 J/mole). The quantity

H0
k is the energy of formation of species k (H0

k = 246.81, 470.70, 89.79, 0, 0).

The average temperature [Park, 1990] is given by

Ta =
√

TvT (22.5.22)

The forward reaction rate coefficient for reaction j with the third body k is

kf jk = C jkTnjk
a exp

(
−Tdjk

Ta

)
(mole/m3·s) (22.5.23)

where Cjk and n are the rate parameters (Table 22.5.2). The backward reaction rate

coefficient is given by

kbjk = kf jk/Kej (Ta) (22.5.24)

The equilibrium constants Kej are calculated using partition functions from the atomic

and molecular constants [Park, 1990].

Kej = exp

[
a1z + a2 + a3 ln

(
1

z

)
+ a4

z
+ a5

z2

]
(22.5.25)

with z = Ta/10,000 and the coefficients ai given in Table 22.5.3.

Table 22.5.2 Reaction Rate Parameters Cik, nki and Tjk in (22.5.23)

j k Reaction C j m3/moles n j Td j , K

1 1 O2 + O = O + O + O 1.0 × 1016 −1.5 59,500

2 2 O2 + N = O + O + N 1.0 × 1016 −1.5 59,500

3 4 O2 + NO = O + O + NO 2.0 × 1015 −1.5 59,500

4 4 O2 + O2 = O + O + O2 1.0 × 1016 −1.5 59,500

5 5 O2 + N2 = O + O + N2 2.0 × 1015 −1.5 59,500

6 N2 + O = NO + N 1.8 × 108 0.0 76,000

7 NO + O = O2 + N 2.2 × 103 1.0 19,500

8 1 N2 + O = N + N + O 3.0 × 1016 −1.6 113,200

9 2 N2 + N = N + N + N 3.0 × 1016 −1.6 113,200

10 3 NO2 + NO = N + N + NO 7.0 × 1015 −1.6 113,200

11 4 N2 + O2 = N + N + O2 7.0 × 1015 −1.6 113,200

12 5 N2 + N2 = N + N + N2 7.0 × 1015 −1.6 113,200
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Table 22.5.3 Coefficients aj in (22.5.25)

j a1 a2 a3 a4 a5

1-5 0.55388 16.27551 1.77630 −6.5720 0.03144

6 0.97646 0.89043 0.74572 −3.9642 0.00712

7 0.004815 −1.7443 −1.2227 −0.95824 −0.045545

8-12 1.53510 15.4216 1.2993 −11.4940 −0.00698

In the following section, some selected example problems for various topics in re-

active flows and combustion are presented.

22.6 EXAMPLE PROBLEMS

22.6.1 SUPERSONIC INVISCID REACTIVE FLOWS (PREMIXED HYDROGEN-AIR)

(1) Global Two-Step Model (Quasi-1-D and 2-D Analysis), Rapid Expansion Diffuser

Examples of combustion with hydrogen-air reactions are numerous. Among them

are Janicka and Kollmann [1979], Evans and Schexnayder [1980], Rogers and

Schexnayder [1981], Rogers and Chinitz [1983], Drummond, Hussaini, and Zang [1985],

Kim [1987], and Chung, Kim, and Sohn [1987]. To illustrate the simplest cases of

hydrogen-air combustion, we begin with a two-step global model of Rogers and Chinitz

[1983],

H2 + O2

kf 1−→←−
kb1

2OH (22.6.1a)

2OH + H2

kf 2−→←−
kb2

2H2O (22.6.1b)

with

kf ,k = Ak(�)TNi exp

(
− Ek

R◦T

)
A1(�) = (8.917�+ 31.433/� − 28.95) × 1047(cm3/mole·s)

E1 = 4865 cal/mole

N1 = −10

A2(�) = (2 + 1.333/� − 0.833�) × 1064 (cm6/mole2·s)

E2 = 42,500 cal/mole

N2 = −13

These data are for initial temperature of 1000–2000 K and equivalent ratio, 0.2 ≤
� ≤ 2.
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Using the law of mass action (22.2.2), we can construct from (22.6.1a,b), four non-

linear simultaneous ordinary differential equations of the form

�1/W1 = dC1

dt
= −aC1C2 + bC2

3 − cC1C2
3 + dC2

4

�2/W2 = dC2

dt
= −aC1C2 + bC2

3

�3/W3 = dC3

dt
= 2aC1C2 − 2bC2

3 − 2cC1C2
3 + 2dC2

4

�4/W4 = dC4

dt
= 2cC1C2

3 − 2dC2
4

(22.6.2a,b,c,d)

with

C1 = CH2
, C2 = CO2

, C3 = COH, C4 = CH2O,

a = kf 1, b = kb1, c = kf 2, d = kb2.

More complete models have been proposed by various investigators. For example,

an eighteen-step model of Rogers and Schexnayder [1980] is shown in Table 22.6.1.1.

In what follows, we demonstrate quasi–one-dimensional calculations for the su-

personic inviscid reactive flows in a diffuser, as shown in Figure 22.6.1.1a with the

two-step global model (22.6.1a,b). The various approaches used in this analysis

include: (1) Implicit Adams-Moulton finite differences [Drummond et al., 1985],

(2) Spatial Chebyshev spectral method with the temporal Runge-Kutta iterations

Table 22.6.1.1 Combustion Mechanism for Eighteen-Step Hydrogen-Air

Reaction A (moles) N (cm3) E (cal/gm-mole)

(1) O2 + H2 = OH + OH 1.70 × 1013 0 48150

(2) O2 + H = OH + O 1.42 × 1014 0 16400

(3) H2 + OH = H2O + H 3.16 × 107 1.8 13750

(4) H2 + O = OH + H 2.07 × 1014 0 13750

(5) OH + OH = H2O + O 5.50 × 1013 0 7000

(6) H + OH + M = H2O + M 2.21 × 1022 −2.0 0

(7) H + H + M = H2 + M 6.53 × 1017 −1.0 0

(8) H + O2 + M = HO2 + M 3.20 × 1018 −1.0 0

(9) OH + HO2 = O2 + H2O 5.0 × 1013 0 1000

(10) H + HO2 = H2 + O2 2.53 × 1013 0 700

(11) H + HO2 = OH + OH 1.99 × 1014 0 1800

(12) O + HO2 = O2 + OH 5.0 × 1013 0 1000

(13) HO2 + HO2 = O2 + H2O2 1.99 × 1012 0 0

(14) H2 + HO2 = H + H2O2 3.01 × 1011 0 18700

(15) OH + H2O2 = H2O + HO2 1.02 × 1013 0 1900

(16) H + H2O2 = H2 + HO2 5.0 × 1014 0 10000

(17) O + H2O2 = OH + HO2 1.99 × 1013 0 5900

(18) H2O2 + M = OH + OH + M 1.21 × 1017 0 45500

Source: [Rogers and Schexnayder, 1981].
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Figure 22.6.1.1 Global 2-step chemical reactions (H2-air), rapid-expansion diffuser. (a) Rapid expansion

supersonic diffuser for quasi–1-D analysis. (b) Upper half of (a) for 2-D analysis.

[Drummond et al., 1985], and (3) Operator splitting/point implicit Taylor-Galerkin

method (Section 13.2.2) [Chung and Karr, 1980; Kim, 1987; Chung et al., 1987].

The governing equations are of the form

∂U
∂t

+ ∂F
∂x

= B (22.6.3)

U =

⎡
⎢⎢⎣

� A
�uA
� EA
�Yk A

⎤
⎥⎥⎦ F =

⎡
⎢⎢⎢⎣

�uA
�u2 A+ pA

�uHA
�uYk A

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎢⎣

0

p
dA
dx
0

�k A

⎤
⎥⎥⎥⎥⎦ (22.6.4)

where Ais the cross-sectional area as defined in Figure 22.6.1.1a with initial and bound-

ary conditions. The thermodynamic model for the specific heat and the total enthalpy

is as given in (22.2.22).

To compare the results of the quasi–one-dimensional analysis with those of two-

dimensional analysis, we show the analysis using the operator splitting/point implicit

Taylor-Galerkin method (see Section 13.2.2) with the discretization as shown in

Figure 22.6.1.1b [C. S. Yoon, 1992]. In this case, we use the conservation form of the full

Navier-Stokes system of equations (22.2.34) without the diffusion terms.

Although not shown, normal shocks are formed at the inlet, contrary to the nonre-

active flows of a similar case shown in Figure 13.7.2. Due to chemical reactions, inlet

normal shocks and high gradients of temperature, pressure, and mass fractions of all

reactants and products are clearly evident in Figure 22.6.1.2. Approximately 2,000 it-

erations are required before convergence to the steady state. This is contrary to 1,000

iterations for the case of non-reacting flows demonstrated in Figure 13.7.2.

Our intention here is to compare the effect of quasi–one-dimensional analysis with

the two-dimensional calculations and also to compare the results of the finite rate

chemistry with those of equilibrium chemistry. The steady state quasi–1-D results of

Drummond et al., [1985] and Kim [1987] with the finite rate chemistry are identical,

both shown by the solid lines, whereas the 2-D results (along the center line) of Yoon

[1992] (dash-dot-dash lines) show considerable differences. Both temperature and pres-

sure are higher for the 2-D analysis, indicating the significant convection effects which



Figure 22.6.1.2 Hydrogen-air reactive supersonic inviscid flow, comparison between quasi–1-D and

2-D analyses, and comparison of finite rate chemistry with equilibrium chemistry and frozen chemistry

for 2-D calculations [Drummond, 1985; Kim, 1987; Yoon, 1992]. (a) Axial temperature profile. (b) Axial

pressure profile. (c) Axial mass fraction distributions.
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promote the reaction process. This leads to a more rapid consumption of reactants

(H2, O2), causing the product (H2O) to be produced in a larger amount with (OH) re-

maining about the same as in the quasi–1-D simulation. The equilibrium solution shows

that temperature is higher with an increase of H2 consumption and H2O production,

resulting in a decrease in the radical (OH) dissociation. This trend shows the inadequacy

of an equilibrium model in which the effect of convection and diffusion is absent.

(2) Comparison of Global Two-Step Model with Eighteen-Step Model, Ramjet Combustion

To investigate the effect of different reaction models, we examine in this example the

comparison of the global two-step model with the eighteen-step model (Table 22.6.1.1)

using the ramjet combustor (15◦ ramp) shown in Figure 22.6.1.3a [Yoon, 1992]. The

supersonic inflow and outflow and adiabatic wall conditions are assumed.

Because of the inlet temperature of 900 K, which is less than the ignition temper-

ature of 1,000 K, there should not be any reaction until the corner shock raises the

temperature beyond this limit. Contour lines for temperature and mass fractions of var-

ious species clearly indicating corner shocks for the eighteen-step model are shown in
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Figure 22.6.1.3 Ramjet combustion (hydrogen-air reactions), comparison of the result of 18-step with 2-step

reactions [Yoon, 1992], —— 18-step, ----- global 2-step.
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(h) Oxygen distribution (i) Water distribution

(j) Hydroxyl distribution

hy
dr

ox
yl

 m
as

s 
fr

ac
ti

on
ox

yg
en

 m
as

s 
fr

ac
tio

n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

w
at

er
 m

as
s 

fr
ac

tio
n

0 0.1 0.2 0.3 10.4 0.5 0.6 0.7 0.8 0.9

X/Lx

0.00

0.05

0.10

0.15

0.20

0.25

0 0.1 0.2 0.3 10.4 0.5 0.6 0.7 0.8 0.9

X/Lx

0 0.1 0.2 0.3 10.4 0.5 0.6 0.7 0.8 0.9

X/Lx

Figure 22.6.1.3 (continued).

Figure 22.6.1.3b,c,d,e. These shock waves then dictate the profile distributions of temper-

ature and various mass fractions along the wall surfaces as shown in Figure

22.6.1.3f,g,h,i,j. Note that the global two-step model shows a sharp increase in tem-

perature due to its higher ignition flame temperature. This is because the two-step

model has only the limited number of products and predicts a nondissociative flame

temperature. Note also that there is an ignition delay for the global two-step model as

seen in the profile distributions of hydrogen and oxygen, x/Lx = 0.33 for the two-step

model vs x/Lx = 0.27 for the eighteen-step model. In this process, the eighteen-step

model allows a gradual buildup of free radicals without any significant temperature

changes. The two-step model is inaccurate for flow situations of long ignition delays,

whereas the eighteen-step model is superior for the prediction of ignition.

22.6.2 TURBULENT REACTIVE FLOW ANALYSIS WITH VARIOUS RANS MODELS

(1) Turbulent Premixed Combustion Analysis

In this example, we examine the work of Al-Masseeh et al., [1990] in which the

K−ε model and the direct stress model (Reynolds stress model) are compared with
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the experimental data for turbulent reactive flows (premixed CH−
4 air). The turbulent

(Reynolds) heat flux transport equation and its related equations as shown in (22.4.53–

22.4.58) in addition to the standard Reynolds stress transport equation are used. The

geometry, initial, and boundary conditions are shown in Figure 22.6.2.1a. Using the

SIMPLE algorithm (Section 5.3.1), the following results are obtained. Both nonswirling

and swirling cases are included.

The temperature contours of nonswirling gases with an annular axial velocity of

60 m/s are shown in Figure 22.6.2.1b. Both K−ε model and the direct stress model

predict a conelike turbulent flame and the velocity vectors similar to the experimental

data. The flame length temperature of 1700 K occurs at approximately 80 mm for all

cases. However, the predicted temperature contours differ considerably from those of

measured data with the predicted flame thickness being much thinner.

Figure 22.6.2.1c shows the temperature distributions for the lower inlet velocity of

30 m/s. Here, instead of the conelike flames, the direct stress model exhibits an annular

jet flame as expected and confirmed in the experiment. This is not the case for the K−ε
model, which predicts a rather different field and a threshold velocity of about 24 m/s.

In the case of swirling flows (Figure 22.6.2.1d) (swirling numbers, S = 0.53 and

S = 0.69) with the inlet velocity of 30 m/s, both sets of prediction are in better agree-

ment with the experimental data. It is seen that the contours are substantially thicker

and shorter for the swirling flames. Note that the K−ε model overpredicts the flame

thickness due to the higher turbulence dissipation rate in the K−ε model solution and

consequent increased strain rate, causing error function in the heat release rate expres-

sion in (22.4.57) to be less than that with the direct stress model.

(2) Turbulent Scramjet Flame Holder Combustion Analysis

The purpose of this example [W. S. Yoon, 1992; Yoon and Chung, 1991, 1992; Chung,

1993a,b] is to compare the results of the turbulent scramjet flame holder combustion

with K−ε model with those of laminar and inviscid flame. Calculations are carried out

using the flowfield-dependent variation (FDV) method (Section 13.6). In this example

all FDV parameters (s1, s2, s3, s4) are made independent of the flowfield (Mach number

and Reynolds number) and set equal to 0.5. The geometry (10◦ ramp) and finite element

discretization is shown in Figure 22.6.2.2a. The inlet initial and boundary conditions are:

� = 0.4437 kg/m3, p = 0.119 MPa, T = 900 K, M = 4,

YO2
= 0.2356, YH2

= 0.0029, YOH = YH2O = 0,

� = 0.1, M = 4.0, Re = 106.

The calculated contours of the various variables are plotted in Figure 22.6.2.2b for

the turbulent flow. The temperature and various species mass fraction distributions

along the vertical direction at different axial locations are shown in Figure 22.6.2.2c,d.

At an upstream position (x = 0.4), the inviscid flame remains constant along the ver-

tical plane, whereas the laminar flame oscillates slightly in the vicinity of both upper

and lower walls with H2 and O2 remaining still constant. For turbulence, the tempera-

ture and products close to the boundary edges rise sharply due to mixing. Somewhere

downstream (x = 2.5) the trend rapidly changes for the inviscid flame. Temperature

rises sharply toward the lower wall due to the shock wave interactions, causing chemi-

cal reactions predominantly at the lower wall. For the laminar flame, the viscous effects
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(c) Temperature and species
mass fraction plots along the
vertical direction (x=0.4)

 (d) Temperature and species
mass fraction plots along the
vertical direction (x=2.5)

(e) Temperature and species
mass fraction plots along the
center line

(f) Temperature and H2
and H2O mass fraction
plots along the center line
for  inviscid, laminar, and
turbulent flows

(a) Geometry and discretization

(b) Flowfield contours

(1) Mach number 

(2) Pressure

(3) Density

(4) Temperature
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(6) H2 
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(8) OH 
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Figure 22.6.2.2 Turbulent (k−ε model) scramjet flame holder combustion, comparison with inviscid and

laminar flames [Yoon, 1992].
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closer to the walls cause the chemical reactions to be enhanced at the upper wall as well.

This trend becomes more significant for turbulence.

In Figure 22.6.2.2e, we examine the effect of viscosity and turbulence along the

centerline. For the case of an inviscid flame, all variables remain constant or linearly

vary about two-thirds of the way downstream and suddenly undergo perturbations at

the ramp corner where expansion waves begin to emerge. In contrast, for the laminar

flame these variations are gradual throughout the domain. This trend also prevails for

the turbulent flame.

In order to examine the effects of viscosity and turbulence more clearly we observe

that, in Figure 22.6.2.2f, along the centerline, temperature variations are shown for

inviscid, laminar, and turbulent flames with peaks occurring at x = 5.5. Temperature

rises sharply at x = 2.5 for turbulence, whereas the inviscid flame remains constant until

x = 4.5 is reached with the laminar flame somewhere in between. Similar trends exist

for H2 and H2O. For the case of H2O, however, at the ramp corner, the mass fractions

for inviscid, laminar, and turbulent flames coalesce. All indications are that combustion

appears to have been completed at x = 5.5.

(3) Transverse Hydrogen Jet Injection

In this example, the FDV theory is applied to the FEM analysis to the trans-

verse hydrogen injection combustor with the eighteen-step finite rate chemistry model

(Table 22.6.1.1) [Moon, 1998]. Here, all of the FDV parameters (s1, s2, s3, s4, s5, s6)

are utilized and calculated as prescribed in Sections 6.5 and 13.6 except that only the

species convection Damkohler number DaI is applied. The mixing and combustion

of a sonic transverse hydrogen jet injection from a slot into a Mach 4 airstream in a

two-dimensional duct combustor is involved in shock wave turbulent boundary layer

interactions. The combustor geometry, initial and boundary conditions are shown in

Figure 22.6.2.3.

Because of the hydrogen fuel jet introduced into the freestream from the wall at

a right angle, a detached normal shock wave forms just upstream of the jet, causing

the upstream wall boundary layer to separate. Both upstream and downstream of the

injector, recirculation regions develop so that flow separation occurs at the wall. Note

also that the two recirculation regions provide longer fuel residence times as well as

better mixing of fuel, air, and hot combustion gas, resulting in acting as the subsonic

flame stabilization zone in a gas turbine combustor primary zone or the wake of the

flameholding gutter in ramjet combustors and turbojet afterburners. Furthermore, the

nearfield mixing is dominated by the stirring or macromixing driven by the large-scale

vorticies generated by the jet and freestream interaction, whereas the far-field mixing

depends on the small-scale turbulence within the plume and mixing layer.

The static pressure contours are presented in Figure 22.6.2.3b. The leading edge

shock and the incidence and reflection of the bow shock to and from the symmet-

ric plane of the duct can be seen. Velocity distributions in the vicinity of the injector

are shown in Figure 22.6.2.3c. For clarity of presentation the velocity components for

every other grid point are shown. Both recirculation zones and mixing layers can be

identified. The mass fraction contours of H2 and H2O are shown in Figure 22.6.2.3d,e.

It is noted that high reaction rate regions spread downstream along the mixing

layer.
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Figure 22.6.2.3 Transverse hydrogen jet injection combustor analysis with K–ε model [Moon,

1998]. (a) Schematics of injection slot, M= 1, T = 300 K, P = 0.404 Mpa. (b) Pressure contours.

(c) Velocity field near the injector. (d) H2 mass fraction (max = 1.0 min = 0.0, � = 0.01). (e) H2O

mass fraction (max = 0.2158, min = 0.0, � = 0.08).

22.6.3 PDF MODELS FOR TURBULENT DIFFUSION COMBUSTION ANALYSIS

The use of PDF approach in combustion is widespread. In PDF applifications, we employ

the assumed-PDF approach. On the form of the assumed PDF, however, various choices

are available such as the modeling of scalar mixing with mapping closure methods [Pope,

1985; Girimaji, 1991; Frolov et al., 1997], among others.

In this example, we demonstrate the PDF approach presented in Section 22.4.2 using

the K–ε model with GPG-FEM [Kim, 1987]. The geometry of a coaxial combustor is

shown in Figure 22.6.3.1a. The fuel properties and inlet conditions are: Stoichiometric
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A/F ratio = 10.6, heat of reaction = 2.63 × 107 (J/kg), inlet A/F ratio = 15.75, inlet fuel

velocity = 21.57 m/s, inlet air velocity = 1.46 m/s, inlet fuel density = .474 kg/m3, inlet air

density = 1.165 kg/m3. Calculations are carried out using the �-PDF and double delta

PDF and without PDF for comparisons.

The turbulent reacting flow calculations begin with the uniform cold-flow conditions.

Figures 22.6.3.1b,c,d show the contours of streamline, mixture fractions, and temper-

ature, respectively. The results of only the �-PDF are shown. The radial variations of

temperature, density, and mixture fractions at various locations in the axial direction are

shown in Figure 22.6.3.1e through Figure 22.6.3.1g. The general trend appears to be that

the �-PDF provides the results between the double delta PDF and those without PDF.

22.6.4 SPECTRAL ELEMENT METHOD FOR SPATIALLY DEVELOPING MIXING LAYER

Spectral methods are preferred in turbulent combustion when the domain and boundary

conditions are relatively simple. The reason for this is that the accuracy derived from the

mathematical approximations in the spectral methods is superior, compared to other

methods. Some of the earlier contributions are reported in [Rogallo and Moin, 1984;

Hussaini and Zang, 1987; Givi, 1989; McMurty and Givi, 1992; Givi and Riley, 1992],

among others. The basic concept of the spectral method is extended to the spectral

element methods (SEM) as developed by various authors [Patera, 1984; Korczak, 1985;

Karniadakis, 1990; Maday and Petera, 1989], among others. Applications of SEM to

combustion have been contributed by Givi and Jou [1988], McMurtry and Givi [1992],

Frankel, Madina, and Givi [1992], Korczak and Hu [1987], and Hu [1987], among others.

In the example presented below, we examine the results of a spatially developing

mixing layer analysis by the spectral element method [Frankel et al., 1992; Hu, 1987] as

reported in Givi [1993]. Chebyshev functions introduced in Section 14.1.1 are used in

the SEM applications.

The discretization in the cross-stream direction (x2) is done by the spectral collo-

cation method, whereas the discretization in the streamwise direction (x1) is done by

means of a spectral-element method using Chebyshev polynomials [Frankel et al., 1992].

The assembly of the elements in the streamwise direction and the Chebyshev collocation

points within one element are shown in Figure 22.6.4.1a. Based on this SEM process, the

plots of concentration contours of a conserved scalar in a spatially developing mixing

layer at two different times are presented in Figure 22.6.4.1b.

Instead of discretizing only the streamwise direction, Hu [1987] performs the dis-

cretization in both streamwise and cross-stream directions (x1, x2) by mean of the spec-

tral element method using Chebyshev polynomials as shown in Figure 22.6.4.1c. The

corresponding results of vorticity contours in spatially developing mixing layers at sev-

eral times are demonstrated in Figure 22.6.4.1d.

22.6.5 SPRAY COMBUSTION ANALYSIS WITH EULERIAN-LAGRANGIAN FORMULATION

As mentioned in Section 22.2.5, spray combustion represents a two-phase flow and

may be analyzed by either one of the three approaches: Eulerian-Eulerian, Eulerian-

Lagrangian, and probabilistic formulation. From the computational point of view, the
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Table 22.6.5.1 Initial Conditions Used in the Prediction

Gas-Phase Boundary Conditions Liquid-Phase Initial Conditions

Velocity (m/s) 30 Fuel n-decane

Temperature (K) 1000 Liquid density (kg/m3) 773

Pressure (atm) 10 Droplet temperature (K) 300

Density (kg/m3) 3.399 Droplet velocity (m/s) 20

Duct wall temperature (K) 700 Equivalent ratio 0.3

Centerbody wall temperature (K) 1000 Air flow rate (kg/s) 0.9

Turbulent kinetic energy (m2/s2) 0.01u2 Fuel flow rate (kg/s) 0.018

Eulerain-Lagrangian approach has been preferred. We present below the n-decane fuel

centerbody combustor analysis [Kim and Chung, 1990] using the Eulerian Lagrangian

formulation.

Consider the centerbody geometry as shown in Figure 22.6.5.1a. The initial and

boundary conditions are given in Table 22.6.5.1. In the Eulerian-Lagrangian approach

described in Section 22.2.5, we require approximations for the droplet evaporation

rate in the heat balance equation (22.2.47). In this analysis, the evaporation model of

Abramzon and Sirignano [1988] will be used.

The finite element analysis with GPG utilizes the discretization of 29 × 24 mesh

with finer mesh in the vicinity of the recirculation zone. The injected spray is assumed

to comprise four conical streams with half-angles of the corresponding streams given

by � = 5, 15, 25, and 35 degrees. In the limiting cases of the droplet impingement on

the chamber walls, the droplet is considered when 97% of the mass of the droplet

is vaporized. In case of the droplet passage through the plane of symmetry, another

droplet with similar instantaneous properties and physical dimensions, but with the

mirror image velocity vector, is injected into the flowfield. The time steps for the steady

state calculations are:

�tinj = 1.6 m/s, �t g = 1.6 m/s, �t�,m = 0.04 m/s

The overall solution procedure is as follows:

(a) Integrate the gas-phase equations from the Eulerian locations to the character-

istic location.

(b) Integrate the liquid-phase equations with �t�,m.

(c) Evaluate the characteristic source terms at the Eulerian nodes surrounding the

characteristic.

(d) Steps (a) through (c) are repeated until the liquid-phase numerical time catches

up with the gas-phase numerical time (n�t�,m = �tg)

(e) Solve the gas-phase equations.

(f) Steps (a) through (e) are repeated until the iteration converges before advancing

to the next step for unsteady calculations.

Figure 22.6.5.1b shows the droplet trajectories and vaporization process. The four

droplet groups are identified by the volume of the droplet and the characteristic location.

It is seen that the droplet motion is initially governed by the droplet inertia force
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Figure 22.6.5.1 Spray combustion of center body combustor [Kim and Chung, 1990].

before the inertia force causes the droplets to decelerate and the droplet path is eventu-

ally determined by the gas-phase flowfield. Most of the vaporization occurs within the

recirculation zone because the smaller droplets are unable to penetrate downstream.

Because of the strong negative radial gas-phase velocity field near the injector, the
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droplet trajectories are significantly affected by the gas-phase velocity field, especially

for the droplet characteristic with the lowest injection angle, � = 5 degrees. The strong

negative radial gas-phase velocity field in the injection region results from the large

drag force portion of the interaction source terms in the radial momentum equation.

The velocity vectors are presented in Figure 22.6.5.1c. The secondary recirculation

zone as seen is due to the gas-droplet interaction in the recirculation zone having the

high vaporization rate. Contours of temperature and their radial profiles at various

locations are presented in Figure 22.6.5.1d and Figure 22.6.5.1f, respectively. The tem-

perature difference between two adjacent lines is about 150◦K. The maximum and

minimum temperature of the gas field are about 2800◦K and 700◦K, respectively. The

low temperature near the injector results from the cooling effect of the vaporization

process. The contours and the radial profiles of the fuel mass fractions are shown in

Figure 22.6.5.1e and Figure 22.6.5.1g, respectively. The large concentration of fuel va-

por in the recirculation zone is due to the insufficient mixing of the fuel and air.

In a separate analysis using the Eulerian coordinates for the gas phase and the

method of characteristics with the Runge-Kutta for the droplet liquid phase, the sensitiv-

ity of time steps, injection pulse time, grid spacing, and number of droplet characteristics

were investigated [Lee, 1987; Lee and Chung, 1989]. It is shown that multivaluedness

of solution occurs when the initial droplet size or droplet velocity distribution is poly-

disperse. Multivaluedness with a monodisperse spray can also occur in the interior of

the calculation domain whenever the particle paths cross each other.

22.6.6 LES AND DNS ANALYSES FOR TURBULENT REACTIVE FLOWS

(1) Comparison of LES and DNS for Non-premixed Reacting Jet

The purpose of this example is to examine the two-dimensional flowfield of a non-

premixed reacting jet and to compare the results of several SGS combustion models

for LES with DNS as reported by DesJardin and Frankel [1998]. The computational

domain for the planar jet flowfield, shown in Figure 22.6.6.1a, is 15 jet widths in the axial

direction and 10 jet widths in the transverse direction. Fuel is injected through a central

slot of width D, with oxidizer in the surrounding co-flow. The inlet velocity and scalar

profiles are specified as hyperbolic tangent functions.

For DNS calculations, the governing equations (22.2.34) are numerically integrated

using a predictor-corrector FDM approach which is second order accurate in time and

employs a fourth order accurate compact finite-difference scheme in space. For LES

analysis, the SGS turbulence dynamic model (21.4.25) and SGS combustion models

described in (22.4.65) are used.

Figure 22.6.6.1b shows an instantaneous contour plot of product mass fraction from

the LES with the SSFRRM [see (22.4.65a)], which is qualitatively (not at same times)

compared with the counterpart calculated from DNS as shown in Figure 22.6.6.1c. The

difference in appearance is attributed to the effects of the SGS model.

In Figure 22.6.6.1d,e, LES predictions of mean and rms product mass fraction are

compared to DNS results. Here, DNSc denotes a coarser grid used. The notations FRRM

and RRRM refer to SSFRRM and SSRRRM with the model coefficients K1, K2 set

equal to zero, respectively, in (22.4.65). Also, SLFDM and SLFBM are the strained
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Figure 22.6.6.1 LES and DNS analysis of non-premixed reacting jet [DesJardin and Frankel,

1998]. (a) Schematic of computational domain: LES grid and inflow conditions. (b) Product

mass fraction, LES. (c) Product mass fraction, DNS. (d) Transverse mean mass product. (e)
Transverse rms mass product.

laminar flamelet delta model and strained laminar flamelet beta model, respectively,

as related to the double delta and beta PDF models discussed in Section 22.4.2 [Cook,

Riley, and Kosary, 1997]. As seen in Figure 22.6.6.1d,e, LES model predictions appear

to be in agreement with DNS better than the flamelet models.
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Figure 22.6.6.2 LES analysis for bluff body flame stabilizer [Moller, Lundgren, and

Fureby, 1996]. (a) Geometry for bluff body flame stabilizer. (b) Temperature fluctu-

ations and CO mass fractions, Z = 0.348, Z = 0.460, Z = 0.686, measured temper-

ature (+), measured temperature fluctuations (x), measure CO mass fraction (o)

model A(—–), and model B(-----), model C(·····).

(2) LES analysis for Bluff Body Flame Stabilizer

In this example, the 3-D LES analysis for the bluff body flame stabilizer (Figure

22.6.6.2a) carried out by [Moller et al., 1996] is introduced. Combustion of C3H5 is

modeled under the following conditions:

Case1: � = 0.62, Re = 47.5 × 103, M = 0.056, u = 17 m/s, T = 288 K

Case 2: � = 0.62, Re = 31.6 × 103, M = 0.113, u = 34 m/s, T = 600 K

There are three cases for combustion modeling. Model A: the eddy viscosity model

of Fureby and Moller [1995], Model B: PDF reaction rate modeling of Dopazo and

O’Brien [1973], and Model C: MILES model by Fureby [1996]. Computed results are

compared with their own measured experimental data.

The domain is discretized with 40 × 80 × 340 mesh. The governing equations

(22.2.34) are solved using FVM with the third order accurate upwinding for convection,
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Figure 22.6.6.2 (continued ) (c) Instantaneous isocontours at x = 0.12, 0.31 ≤ Z ≤
0.87 (case 1) (2) and (3): flame surface for model B, superimposed on contours of

the spanwise vorticity at the same section for cases 1 and 2; normalized pressure

(...), normalized Rayleigh parameter are also shown.

fourth order accurate finite differencing for diffusion, and Crank-Nicolson for temporal

approximations.

In Figure 22.6.6.2b, the time-averaged temperature and its rms fluctuations together

with the time-averaged CO mass fraction and the flame front dynamics in terms of

temperature PDFs are shown for reacting cases, along with experimental and simulated

profiles. The formation of CO is restricted to the reaction zone along the flame front,

which coincides with regions of high temperature fluctuations. Note that the amount of

CO in Case 3 is larger than in Case 2. The increase of reaction rate for conversion of

C3H5 to CO in the preheated case is larger than the increase of rate of formation of CO2

from CO. Consequently, more CO is accumulated in the reaction zone in the preheated

case.

The instantaneous isocontours of the spanwise vorticity in a section between z = 0.31

and z= 0.87 at x = 0.12 are shown in Figure 22.6.6.2c. For Cases 2 and 3, the flame surface

is superimposed. An important effect of the energy release on the macroscopic features

of the flow is that the vorticity is less structured in Cases 2 and 3 compared with Case 1

and that multiple local extremes occur. Another effect of the heat release is to decrease

the magnitude of the vorticity at the center of the vortex structures.
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(3) DNS Analysis for Interaction of Isotropic Turbulence and Chemical Reactions

In this DNS analysis, the interaction of isotropic turbulence and chemical reactions

in a hypersonic boundary layer is introduced here as reported by Martin and Candler

[1998]. A simplified version of (22.2.34) and (22.2.2) is used for a three-dimensional

domain with a mesh of 96 × 96 × 96. A sixth order accurate finite difference method

based on a compact Pade scheme (see Section 6.7) and fourth order Runge-Kutta

time integration scheme (Section 4.4.3) are used. The mesh discretization provides

a resolution of k� = 1 at the end of the simulation, where k is the maximum wave

number resolvable and � is the Kolmogorov scale (21.5.1). The computational domain

is a periodic box with nondimensional length 2� in each direction.

The velocity field is initialized to an isotropic state prescribed by the following energy

spectrum:

E(k) ≈ k4 exp

(
−2

(
k
k0

)2
)

(22.6.5)

where k0 denotes the most energetic wave number. The relative heat release �H0 is

defined as the ratio of the enthalpy change to the total energy, proportional to the energy

released (positive, exothermic) or absorbed (negative, endothermic) in the formation

of product species. Thus, an increase or decrease in �H0 increases or decreases the

energy in the flowfield, respectively. This will be used as an input to determine the

various features of the flowfield. In this example, it is assumed that the reactant and

product have the same molecular weight and the same number of internal degrees of

freedom; thus the mixture gas constant and specific heats do not change as the reaction

progresses. In this case, the reaction equation is given by

S1 + M ⇔ S2 + M

In Figure 22.6.6.3a, we notice a large increase in the rms magnitude of the temper-

ature when the heat release is increased. A positive temperature fluctuation causes an

exponential increase in the reaction rate. However, because of the turbulent motion,

the heated fluid may move to a different location before the reaction progresses fur-

ther, reducing or eliminating the feedback process. Thus, the interaction between the

chemical heat release and the turbulent motion should depend on the amount of heat

released.

The energy spectrum as defined in (21.4.11–21.4.130) along with (22.6.5) may be

decomposed into its incompressible and compressible components at several different

times during the simulations. Figure 22.6.6.3b shows these spectra for the nonreacting

solution. Note that the compressible modes are about two orders of magnitude less en-

ergetic than the incompressible modes at all but the smallest scales. It is seen that there

seems to be aliasing errors near k� ≥ 1, indicating that small scales are not resolved.

As time evolves, the compressible energy spectrum decays slightly at all scales, whereas

the incompressible modes decrease at the large scales, and increase at the small scales.

Figure 22.6.6.3c plots the endothermic case and the trend is similar to the nonreact-

ing case. For the case of exothermic reaction (Figure 22.6.6.3d), however, the energy

spectrum rises about two orders of magnitude larger than in the case of the endother-

mic reaction, closer to the incompressible counterpart. It is interesting to note that, in

Figure 22.6.6.3e, the compressible mode becomes more energetic, whereas the incom-

pressible mode is not affected by the increase of the heat release.
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Figure 22.6.6.3 DNS calculations for interaction between chemical reaction and turbulence [Martin and

Candler, 1998]. (a) Time evolution of rms temperature fluctuations showing the effect of �H0. (b) Energy

spectra, nonreacting. (c) Energy spectra, endothermic, �H0 = −1. (d) Energy spectra, exothermic,

�H0 = 2. (e) Energy spectra, nonreacting and exothermic (�H0 = 2.)
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22.6.7 HYPERSONIC NONEQUILIBRIUM REACTIVE FLOWS WITH VIBRATIONAL
AND ELECTRONIC ENERGIES

In the following example problems, we introduce the work of Argyris et al. [1991] in

which the vibrational energy is included in hypersonic inviscid and viscous reactive

flows. The governing equations (22.5.1) including the vibrational enegy, but without the

electronic energy are solved using the Taylor-Galerkin finite element method.

(1) Inviscid Hypersonic Reacting Flow with Vibrational Energy

The geometry and finite element discretization for the inviscid flow around a

simple ellipse (a = 6.0 cm, b = 1.5 cm) at M∞ = 25 are shown in Figure 22.6.7.1a.

The thermal data are based on ISO standard atmosphere at the altitude of 75 km.

(�∞ = 3.99 × 10−5 kg/m3, p∞ = 2.4 N/m2, T∞ = 208.4 K.) Figure 22.6.7.1b presents

the pressure distribution for various test cases which shows that the effect of the

vibrational energy is to reduce the shock standoff distance. The perfect gas assumption

Figure 22.6.7.1 Inviscid hypersonic reacting flow with vibratonal energy [Argyris et al., 1991]. (a) Geom-

etry and finite element discretization. (b) Normalized pressure profiles along the stagnation on streamline.

(c) Normalized temperature profiles along the stagnation streamline and body surface. (d) Normalized density

profiles along the stagnation streamline and body surface. Reprinted with permission from Elsevier Science.
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without the vibrational energy provides the largest standoff distance. In Figure 22.6.7.1c,

it is clearly shown that the inclusion of vibrational energy causes the temperature to

decrease significantly as compared to the case of perfect gas without vibration. This

results in an increase in density as shown in Figure 22.6.7.1d.

(2) Viscous Hypersonic Reacting Flow with Vibrational Energy

In this example, we examine the viscous hypersonic reactive flow with vibrational

energy. The geometry and finite element discretization and schematics of the shock wave

and boundary layer are presented in Figure 22.6.7.2a,b. The effects of various conditions

including the frozen flow, equilibrium flow, and finite rate chemistry with and without

mass diffusion on the Stanton number, St = q̇w/��∞cp∞u∞(T0∞ − Tw)� are shown in

Figure 22.6.7.2c. In this case, the vibrational energy is not included. Note that the finite

rate chemistry without mass diffusion provides the lowest wall heat flux with the frozen

chemistry giving the largest magnitude. There is an indication that the thin boundary

layer is not sufficiently resolved for the case of frozen chemistry, as seen from the fact

that the peak value of Stanton number fails to occur at the stagnation point as it should.

The results with vibrational energy are shown in Figure 22.6.7.2d. We observe that the

Stanton number increases for some distance downstream of the stagnation point before

it decreases further downstream. The effect of mass diffusion is clearly evident, causing

the heat flux to be reduced. In Figure 22.6.7.2e, the influence of vibration and mass

diffusion on the species distribution is shown. Note that the mass fraction of atomic

oxygen (YO) is reduced significantly due to vibration and mass diffusion. The excitation

of vibrational energy reduces the flow temperature and subsequently decreases the

dissociation process.

(3) Thermochemical Nonequilibrium Hypersonic Flows with Two-Temperature Model

In this example, the work of Park and Yoon [1991] is introduced to illustrate an

implementation of vibrational, electronic excitation, and chemical reaction models de-

scribed in (22.5.14–22.5.24) for thermochemical nonequilibrium flows at suborbital flight

speeds. Here the nonequilibrium vibrational and electronic excitation and dissociation

are taken into account without ionization. The steady-state of the resulting system of

equations is carried out by using lower-upper factorization and symmetric Gauss-Seidel

sweeping technique through Newton-Raphson iteration, together with the Roe’s up-

winding scheme.

Sample calculations are made for flows over a circular cylinder of 1-inch diameter

with its axis perpendicular to the flow direction, placed in the test section of a shock tun-

nel as used by Hornung [1972] for interferometry experiments. The diameter of the cylin-

der is 2 inches. The freestream conditions are: nitrogen density = 5.349 × 10−3 kg/m3,

velocity = 5.59 km/s, nitrogen atom mass fraction = 0.073, and temperature = 1833 K.

The flow Mach number is 6.13, and the Reynolds number based on the body diameter

is 24,000. The nitrogen flow is calculated using the 5-species model (Table 22.5.3) by

setting the mole fraction of oxygen to be 10−6.

To compare with the experimental interferometry results of Hornung [1972], the

interferometric fringes are computed from

�� = 4160F�

�(1 + 0.28YN)
(kg/m3)



800 APPLICATIONS TO CHEMICALLY REACTIVE FLOWS AND COMBUSTION

Figure 22.6.7.2 Viscous hypersonic reacting flow with vibrational energy [Argyris et al., 1991]. (a) Geometry

and finite element discretization. (b) Schematics of shock wave and boundary layer. (c) Stanton number (St)

on the cylinder surface at 0◦ ≤ � ≤ 45◦ for different chemical models. (d) Stanton number (St) on the cylinder

at 0◦ ≤ � ≤ 45◦ for different internal degress of freedom. (e) Profiles of mass fraction of atomic oxygen normal

to the cylinder surface at an angle of � = 20◦. Reprinted with permission from Elsevier Science.
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(1) Perfect gas (2) Equilibrium gas (3) One-temperature 
      model

(4) Two-temperature 
     model

(1) One-temperature model (2) Two-temperature model

(a)

(b)

Experiment Experiment Experiment Experiment

Experiment
Experiment

Perfect gas
calculation

Equilibrium
calculation

1-temp relaxing
calculation

2-temp relaxing
calculation

multi-temperatureone-temperature

Figure 22.6.7.3 Comparison of hypersonic flows over a cylinder [Park and Yoon, 1991; Candler,

1989]. (a) Hypersonic flow analysis, 2-inch diameter cylinder. (b) Hypersonic flow analysis,

2 inch diameter cylinder.

where F is the fringe number, � is the wavelength, and � is the experiment’s geometric

path.

In Figure 22.6.7.3a(1), the calculated shock standoff distance for a perfect gas is

very much larger than the measured value [Hornung, 1972]. The calculated fringes

have no resemblance to the experimental fringes. It is interesting to note that as shown

in Figure 22.6.7.3a(2), the shock standoff distance for the equilibrium gas is shorter than

the measured value with the appearance of fringes still quite different from those of the

experiments.

In contrast, the results of the one-temperature model [Figure 22.6.7.3a(3)] become

closer to the experiment. With the two-temperature model, the shock standoff distance

and fringes match very well with the experiment as shown in Figure 22.6.7.3a(4).

(4) Thermomechanical Nonequilibrium Hypersonic Flows with Multi-Temperature Model

In this example, we compare the two-temperature model of Park and Yoon [1991]

with the multi-temperature model of Candler [1989]. Here, we consider seven species

(N2, O2, NO, NO+, N, O, e−) and six temperatures, with all other data being equal to

those of Park and Yoon. However, the vibrational temperatures of different molec-

ular species are calculated independently and the electron temperature is calculated

separately.
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Shown in Figure 22.6.7.3b(1) is the result of the one-temperature model of Candler

[1989], indicating that the shock standoff distance is much shorter than that for the one-

temperature model of Park and Yoon. When the six-temperature model is used, how-

ever, the results are improved drastically as shown in Figure 22.6.7.3b(2), matching very

well with the experiment. Such agreement is demonstrated also by the two-temperature

model of Park and Yoon [1991].

22.7 SUMMARY

In this chapter, the basic governing equations of reactive flows and combustion as well

as their applications are presented. Equilibrium chemistry and finite rate chemistry are

controlled by temporal and spatial scales which in turn dictate computational require-

ments. They constitute the unique features of the reactive flows which are different from

nonreactive flows. Complex physical properties involved in reactions and combustion

processes must be represented in the computational schemes.

Computations in reactive flows and combustion are difficult. Difficulties are mul-

tiplied when turbulence dominates in reactive flows and combustion. This is because

spatial scales in turbulence and time scales in reactive flows are coupled and the nu-

merical resolutions of these physical scales represent a formidable task. The key to

the issue is to use fine mesh, small time steps, and sophisticated numerical schemes

with controlled implicit treatments as demonstrated in numerous example problems in

Section 22.6. As pointed out in Section 21.8, the full-scale direct numerical simulation

(DNS) with high resolution and high accuracy numerical methods will lead to our goal,

hopefully when computer resources become available.

As mentioned in Chapter 21, the role of FDV theory with various variation parame-

ters, particularly in terms of the Damköhler numbers, should be investigated. Only with

the most accurate numerical schemes will DNS be fully effective.
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CHAPTER TWENTY-THREE

Applications to Acoustics

23.1 INTRODUCTION

Acoustics is the science that deals with sound waves such as in a combustion chamber,

jet noise, oceanography, meteorology, architectural acoustics, and environmental acous-

tics. Sound waves may occur in the quiescent air even with extremely small pressure

disturbances. This could lead to a noise audible to the human ear. In this case, changes

in all flow variables other than the pressure remain constant. On the other hand, the

noise level can be extremely high (thunder or explosion), but still with fluctuations of all

variables other than the pressure remaining more or less constant. This phenomenon

may be referred to as the pressure mode acoustics. When fluids undergo circulations

causing significant velocity gradients, vortical waves are generated, which then produce

pressure disturbances. The noise coming from this action (vorticity) may be catego-

rized as the vorticity mode acoustics. In many instances in nature or in engineering, we

encounter rapid changes in temperature such as in hypersonic flows over a spacecraft

creating an entropy boundary layer between the shock layer and velocity boundary

layer, subsequently leading to pressure fluctuations. Entropy waves are predominant in

this case. We may identify the noise generated by entropy waves as the entropy mode
acoustics.

The categorization suggested above was actually originated by Kovasznay [1953].

It is our intention to follow his suggestion in this chapter. However, it appears that

the research in the acoustics community in general has been centered around acoustic

waveforms (linear and nonlinear–N-waves), sound emission (radiation), and sound ab-

sorption (viscous dissipation), under which a large number of subdivided disciplines can

be identified. Selection of example problems under such vast subject areas is difficult

for the purpose of this chapter, which is concerned only with an introduction of compu-

tational acoustics. Thus, instead, in adopting the suggested categorization by pressure

mode acoustics, vorticity mode acoustics, and entropy mode acoustics, it is necessary

that appropriate governing equations be identified. For example, we may select suitable

topics for the pressure mode acoustics in which the Helmholtz equation or its variant

such as the Kirchhoff’s formula is used. For the vorticity mode acoustics, standard vor-

ticity transport equation(s), Lighthill’s acoustic analogy, or Ffowcs Williams-Hawkings

equation may be invoked. Pressure disturbances arising from the solution of these equa-

tions will contribute to the vorticity mode acoustics. Using the first and second laws of

806
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thermodynamics, the energy equation can be derived in terms of entropy in a variety

of forms. In this process, the pressure disturbances and the entropy noise from this

calculation is identified as the entropy mode acoustics. In all cases, it is useful to obtain

analytical expressions for the pressure fluctuations from the governing equations used

for each of the modes. Here, the concept of Green’s function will play a major role. In

general, however, solutions of the Navier-Stokes system of equations can provide the

most useful information. With proper filtering process (or time averages), the fluctua-

tion components of all variables including the pressure fluctuations and the root mean

squared pressure (prms) are calculated to determine the noise level.

It is quite possible that the noise level calculated may actually be the combination of

all three modes in a given physical situation, regardless of the equations being used for

the solution. Thus, the quantitative determination of the magnitude of the noise level

from the dominant mode and from the possible contributions of other less dominant

modes in the system would be of interest. This is not attempted in this chapter. Instead,

our focus will be to select suitable example problems under the suggested categorization,

discuss the governing equations and computational methods, and evaluate the results.

Some basic definitions used in acoustics are introduced below. The time-averaged

value of a fluid property, say f , is defined as

f = 〈 f 〉 = 1

�t

∫ t+�t

t
f dt (23.1.1)

where the symbols ‘---’ and ‘〈 〉’ imply time averages to be used interchangeably in what

follows. From this result, the acoustic intensity I (Watt/m2) is defined as, with f = p

I = 〈pv〉 = 1

�t

∫ t+�t

t
pv dt (23.1.2)

from which the acoustic power � can be calculated:

� =
∫

�

I · n d � = �0a0〈u2〉� (23.1.3)

where � denotes the surface area. The noise level is then determined either by the

acoustic intensity level (IL) or by the sound pressure level (SPL).

IL = 10 log10

I
Iref

in dB (decibel) (23.1.4)

SPL = 20 log10

prms

pref
in dB (decibel) (23.1.5)

where Iref = 10−12 Watt/m2 at 1000 Hz (barely audible sound to human ear) and I
is the scalar acoustic intensity normal to the surface as determined from (23.1.2). The

reference pressure (pref = 2.04 × 10−5 N/m2) corresponds almost to Iref in a plane wave,

and prms is the root-mean square pressure.

In many engineering problems, we are concerned with unstable waves rather than

the noise generation such as occur in combustion instability. They are undesirable phys-

ical phenomena in view of efficiency of the engineering performance. In this case, the
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acoustic energy tends to grow without bound in resonance, leading to an inefficient

combustion and/or severe vibrations of the system. In this chapter, we shall address this

subject as well as the acoustic noise generation.

Acoustic problems are generally classified as a function of the generating source.

For each class of problems there are standard techniques used to solve them. In the

following sections, the most commonly used equations are described along with the

solution methodology.

23.2 PRESSURE MODE ACOUSTICS

23.2.1 BASIC EQUATIONS

The most commonly used equation in acoustics is the wave equation. It is derived from

the continuity and momentum equations (in the absence of body forces and sources and

sinks of mass) by writing the variables as the sum of the freestream and a fluctuation,

p = p0 + p′

and linearizing the equations around the freestream state. This leads to

1

a2
0

∂2 p′

∂t2
− ∇2 p′ = 0 (23.2.1)

where a0 is the speed of sound. Equation (23.2.1) assumes a zero convection velocity

(i.e., v ≡ 0). For a nonzero v, the convected wave equation is given by

1

a2
0

(
∂

∂t
+ v · ∇

)2

p − ∇2 p = 0 (23.2.2)

where the prime in (23.2.1) is neglected for simplicity. Multiplying (23.2.1) by ei�t and in-

tegrating by parts over an appropriate time interval results in the well-known Helmholtz

equation[
∇2 +

(
�

a0

)2
]

p = 0 (23.2.3)

where p = p̂ei�t and � is the circular frequency. Equation (23.2.2) can also be written

in the form of (23.2.3) using a change of reference frame defined by x0 = x − v� and

� = t .
In order to study the linear acoustic wave propagation generated by a known source

(say a vibrating sphere), one can either use the various CFD methods presented in the

previous chapters or, if possible, find a close form solution. For instance, depending upon

the complexity of the source, a time domain Green’s function solution can be found

for (23.2.1) and (23.2.2) and a frequency domain one for (23.2.3) [Howe, 1998]. For

acoustic waves generated by large amplitude pressure disturbances, the nonlinear Euler

equations should be used to capture the nonlinear wave propagation phenomena. In

more complex problems involving shocks, boundary layers, and jets, the Navier-Stokes

system of equations should be used (see Section 2.2.11).
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23.2.2 KIRCHHOFF’S METHOD WITH STATIONARY SURFACES

Kirchhoff’s formula is used in the theory of diffraction of light and in other electro-

magnetic problems. It also has many applications to problems of wave propagation in

acoustics [Pierce, 1981]. The idea of Kirchhoff’s formula is to surround the region of a

nonlinear flowfield and acoustic sources by a closed surface. In the domain inside the

surface, a nonlinear aerodynamic computation is carried out, which provides the pres-

sure distribution on the surface as well as its time history. Outside this surface the acous-

tic disturbance satisfies the stationary wave equation (23.2.1). To determine p(x, t),

consider the homogeneous Helmholtz equation given by (23.2.3) whose solution is the

Green’s function G(y, x; �). It can be shown that

p(x, �) =
∮

S

{
G(x, y; �)

∂p
∂yj

(y, �) − p(y, �)
∂G
∂yj

(x, y; �)

}
nj dS(y) (23.2.4)

where n is the unit normal on S directed into the fluid. Making use of the convolution

theorem, the time domain solution can be written as

p(x, t) =
∮

S

{
−G(x, y; t − �)

∂p
∂yj

(y, �) + p(y, �)
∂G
∂yj

(x, y; t − �)

}
nj dS(y)d�

(23.2.5)

where the retarded time integration is taken over (−∞, ∞). The linearized momentum

equation gives �0
∂v j

∂�
= − ∂p

∂yj
in the absence of the body forces, which leads to

p(x, t) =
∮

S

{
G(x, y; t − �)�0

∂v j

∂�
(y, �) + p(y, �)

∂G
∂yj

(x, y; t − �)

}
nj dS(y)d�.

(23.2.6)

Using the free space Green function given by

G(x, y; t − �) = 1

4�|x − y|�(t − � − |x − y|/a0)

equation (23.2.6) becomes

p(x, t) = �0

4�

∂

∂t

∮
S

vn(y, t − |x − y|/a0)

|x − y| dS(y)

− 1

4�

∂

∂xj

∮
S

p(y, t − |x − y|/a0)

|x − y| nj dS(y). (23.2.7)

Equation (23.2.7) can be reduced to the following form:

4�p(x,t) =
∫

S

[
p
r2

∂r
∂n

− 1

r
∂p
∂n

+ 1

a0r
∂r
∂n

∂p
∂�

]
dS (23.2.8)

where |x − y| = r is the distance between the observer and the source, ∂r/∂n = cos �

where � is the angle between the normal vector and the radial direction and n the

outward normal vector. In (23.2.8), the notation “[]” is used to denote the retarded

time.
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23.2.3 KIRCHHOFF’S METHOD WITH SUBSONIC SURFACES

Hawkings [1977] proposed using the formula for predicting the noise of high-speed

propellers and helicopter rotors. His idea consisted of surrounding the rotating blades

by a closed surface, which moves at the forward speed of the helicopter. A nonlinear

computation is carried out inside the closed surface, which gives the pressure distribution

on the surface and its time history. Outside this surface, (23.2.6) is modified to account

for the motion and is written as follows:

4�p(x,t) =
∫

S1

[
p

r2
1

∂r1

∂n1

− 1

r1

∂p
∂n1

+ 1

a0r1�2

∂p
∂�

(
∂r1

∂n1

− M0

∂x1

∂n1

)]
dS1 (23.2.9)

where the subscript ‘1’ denotes the transformed coordinates. The transformation used

is that given by Prandtl-Glauret:

x1 = x, y1 = �y and z1 = �z

In (23.2.9), we have

r1 = [
(x − x′)2 + �[(y − y′)2 + (z − z′)2]

]1/2
, � = (

1 − M2
0

)1/2

and the retarded time becomes

� = [r1 − M0(x − x′)]

a0�2

where M0 is the freestream Mach number. The position of the source is given by

(x′, y′, z′). For a zero freestream velocity, (23.2.9) reduces to (23.2.8), as can be eas-

ily shown.

23.2.4 KIRCHHOFF’S METHOD WITH SUPERSONIC SURFACES

The convective wave equation (23.2.2) is still the governing equation; however, for a

supersonically moving surface the time delay � is not uniquely defined. It is given by

�± = [±r1 − M0(x − x′)]/aB2 where B = (
M2

0 − 1
)0.5

.

The radiated pressure field takes the form

4�p(x, t) =
∫

S1

[
p

r2
1

∂r1

∂n1

− 1

r1

∂p
∂n1

+ 1

a0r1 B2

∂p
∂�

(
± ∂r1

∂n1

− M0

∂x1

∂n1

)]
�±

dS1 (23.2.10)

where ± notation indicates evaluation for both retarded times �+ and �−. This equation,

however, still presents a singularity at M0 = 1. In order to overcome this difficulty,

Farassat [1996] and Farassat and Farris [1999] recently developed a Kirchhoff formula

applicable across the whole speed range, but particularly useful for supersonic surfaces.

The theories presented here allow the computation of farfield sound given the de-

tailed flow field in the vicinity of the source. The choice of theory to be used is problem

dependent. In Section 23.5.1, several examples are presented and solved.
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23.3 VORTICITY MODE ACOUSTICS

23.3.1 LIGHTHILL’S ACOUSTIC ANALOGY

The sound generated by vorticity in an unbounded fluid is generally referred to as

aerodynamic sound [Lighthill, 1952, 1954]. Most fluid flows of engineering interest are

unsteady in nature, of high Reynolds number and turbulent. These flows are known

to generate noise; that is, turbulent boundary layers, jets, and shear layers. Though

the acoustic radiation is a very small by-product of the fluid motion, which creates a

numerical challenge, it is becoming an important part of the flow solution.

The theory of aerodynamic sound was developed by Lighthill [1952], who rewrote

the Navier-Stokes equations into an exact, inhomogeneous wave equation whose source

terms are important only within the turbulent region. Furthermore, at low Mach num-

bers, the sound generation and subsequent propagation can be decoupled from the fluid

motion. The momentum equation for an ideal, stationary fluid of density �0 and sound

speed a0 subject to the externally applied stress Ti j is

∂(�vi )

∂t
+ ∂

(
a2

0(� − �0)
)

∂xi
= −∂Ti j

∂xj
. (23.3.1)

Using the continuity equation to eliminate (�vi ) results in the well-known Lighthill

acoustic analogy equation(
1

a2
0

∂2

∂t2
− ∇2

)[
a2

0(� − �0)
] = ∂2Ti j

∂xi∂xj
. (23.3.2)

In the derivation of (23.3.1) an ideal, linear fluid is assumed. In such a fluid, the mo-

mentum transfer is produced solely by the pressure. In (23.3.1) and (23.3.2), Ti j is the

Lighthill stress tensor given by

Ti j = �vi v j + (
(p − p0) − a2

0(� − �0)
)
�i j − �i j . (23.3.3)

Solution of (23.3.2) requires an accurate determination of the Lighthill stress tensor

given by (23.3.3). When the mean density and sound speed are uniform, the variation

in � produced by low Mach number, high Reynolds number velocity fluctuations are of

order �0 M2, and �vi v j ≈ �0vi v j with a relative error ∼O(M2) 
 1. Similarly, we have

p − p0 − a2
0(� − �0) ≈ (p − p0)

(
1 − a2

0

/
a2

) ∼ O(�0v2 M2).

Therefore, Ti j ≈ �0vi v j , when viscous stresses are neglected, the solution to Lighthill

equation can be written as

p(x, t) ≈ ∂2

∂xi∂xj

∫
�0vi v j (y, t − |x − y|/a0)

4�|x − y| d3y

≈ xi xj

4�a2
0 |x|3

∂2

∂t2

∫
�0vi v j (y, t − |x − y|/a0)d3y, |x| → ∞ (23.3.4)

where p(x, t) = a2
0(� − �0) is the perturbation pressure in the far field. In general, in

order to compute farfield noise from a jet, a shear layer or turbulent boundary layer; it

is necessary to carry out an accurate CFD computation in the near field to determine
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the Reynolds stresses and then use (23.3.4) for the farfield computations. Examples of

accurate CFD computations include Direct Numerical Simulation (DNS), Large Eddy

Simulation (LES), or even a well-resolved Unsteady Reynolds Averaged Navier-Stokes

(URANS).

23.3.2 FFOWCS WILLIAMS-HAWKINGS EQUATION

When Lighthill’s acoustic analogy is used in flows with moving boundaries, moving

sources or in turbulent shear layers separating a quiescent medium from a high-speed

flow, it is necessary to introduce control surfaces. These surfaces can coincide with

existing physical surfaces or correspond to a convenient interface between fluid regions

of widely differing mean properties. Suitable boundary conditions are applied on these

surfaces.

Let f (x, t) be an indicator function that vanishes on the surface S and satisfies

f (x, t) > 0 in the fluid where Lighthill’s equation is to be solved, and f (x, t) < 0 else-

where. Multiply (23.3.1) by H( f ) and rearrange into the form

∂

∂t
(�vi H( f )) + ∂

∂xi

(
H( f )a2

0(� − �0)
)

= − ∂

∂xj
(H( f )Ti j ) + (�vi (v j − v j ) + (p − p0)�i j − �i j )

∂ H
∂xj

( f ). (23.3.5)

A similar process can be applied to the continuity equation to obtain

∂

∂t
(H( f )(� − �0)) + ∂

∂xi
(H( f )�vi ) = (�(vi − vi ) + �0vi )

∂ H
∂xi

( f ). (23.3.6)

Elimination of H�vi between the two equations above leads to the well-known Ffowcs

Williams-Hawkings equation(
1

a2
0

∂2

∂t2
− ∇2

)[
H( f )a2

0(� − �0)
]

= ∂2(H( f )Ti j )

∂xi∂xj
− ∂

∂xi

(
[�vi (v j − v j ) + (p − p0)�i j − �i j ]

∂ H
∂xj

( f )

)

+ ∂

∂t

(
[�(v j − v j ) + �0v j ]

∂ H
∂xj

( f )

)
. (23.3.7)

This equation is valid throughout the whole space. Using Green’s function, one can

write down a formal outgoing wave solution. Written in an integral form, the Ffowcs

Williams-Hawkings equation [1969] is

H( f )a2
0(� − �0) = ∂2

∂xi∂xj

∫
V(�)

[Ti j ]
d3y

4�|x − y|

− ∂

∂xi

∮
S(�)

[�vi (v j − v j ) + p′
i j ]

dSj (y)

4�|x − y|

+ ∂

∂t

∮
S(�)

[�(v j − v j ) + �0v j ]
dSj (y)

4�|x − y| , (23.3.8)
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where p′
i j = (p − p0)�i j − �i j , and the square bracket “[]” denotes the retarded time

(� = t − |x − y|/a0). The surface integrals indicates a monopole and a dipole source

contribution from the surface while the volume integral indicates a quadripole source.

When v is zero in (23.3.5) (i.e., stationary surface), the generalized Kirchhoff formula

is recovered.

23.4 ENTROPY MODE ACOUSTICS

23.4.1 ENTROPY ENERGY GOVERNING EQUATIONS

If temperature gradients are high, the fluctuation components of temperature can be

very large, leading to entropy waves. In this case, we invoke the first and second laws of

thermodynamics. At equilibrium in a continuous flowfield domain, the combined first

and second laws of thermodynamics and Maxwell’s relations lead to [Chung, 1996]

T
DS
Dt

= Dε
Dt

+ p
D
Dt

(
1

�

)
(23.4.1)

T
DS
Dt

= DH
Dt

− 1

�

Dp
Dt

(23.4.2)

T
DS
Dt

= cp
DT
Dt

− �T
�

Dp
Dt

(23.4.3)

where S is the specific entropy, � is the thermal expansion coefficient,

� = − 1

�

∂�

∂T

and other variables are defined in Section 2.2 and Section 22.2. It can be shown that the

equations of momentum, energy, continuity, and vorticity transport for 3-D compress-

ible flows are of the form

Momentum

∂v
∂t

+ ∇ Ĥ − v × � = T∇S + 	

(
∇2v + 1

3
∇(∇ · v)

)
(23.4.4)

Energy

�cp
DT
Dt

− �T
Dp
Dt

− � i j v j,i − k∇2T = 0 for sound emission (23.4.5a)

� T
DS
Dt

= � i j v j,i − k∇2T = 0 for sound absorption (23.4.5b)

Continuity

1

�a2

Dp
Dt

+ ∇ · v = �T
cp

DS
Dt

(23.4.6)

Vorticity Transport

∂�

∂t
+ (v · ∇)� + �∇ · v − (� · ∇)v = ∇T × ∇S + 	∇2� (23.4.7)



814 APPLICATIONS TO ACOUSTICS

where Ĥ denotes the total enthalpy. Taking a time derivative of (23.4.5) and combining

with (23.4.4), we obtain the acoustic analogy equation which may be used for determin-

ing unstable entropy waves,

∂

∂t

(
1

�a2

∂p
∂t

)
− ∇ ·

(
1

�
∇ p

)
= (vi v j ),i j + ∂

∂t

(
�T
cp

DS
Dt

)
(23.4.8)

Although unstable entropy waves can be calculated from (23.4.8), it is more con-

venient to use a form in which the entropy term is replaced by thermodynamic rela-

tionships. This approach, known as the entropy-controlled instability (ECI) method, is

intended to include pressure and vorticity modes as well as the entropy mode. Following

Yoon and Chung [1994], the mathematical formulation is described below.

23.4.2 ENTROPY CONTROLLED INSTABILITY (ECI) ANALYSIS

In this approach, the energy equation is first written in conservation form. Upon dif-

ferentiation of the convective terms, we isolate the derivative of total energy in terms

of pressure gradients and subsequently in terms of entropy gradients. All variables are

replaced by the sum of their mean and fluctuating parts. Furthermore, the logarith-

mic form of entropy changes is replaced by truncated infinite series to retain highly

nonlinear physical aspects of the system. The energy equation is then integrated by

parts spatially, resulting in both domain and boundary surface integrals. These surface

integral terms constitute the nonlinear, nonisentropic acoustic intensity acting on the

solid boundaries. These terms are driven by the fluctuation of the enclosed fluid. The

next step is to take time averages of all terms of the time-dependent domain integrals

and time-independent surface integrals. These processes convert the partial differen-

tial equation of energy into a nonlinear ordinary differential equation, characterizing

the stability or instability of wave motions with the energy growth factor as the main

dependent variable.

For a nonisentropic flow, the pressure gradient is written as

p,i = a2�,i + (
�a2/cp

)
S,i (23.4.9)

The spatial derivative of the stagnation energy E is given by

E,i =
(

cpT − p
�

+ 1

2
v j v j

)
,i

= cv

R�
P,i − cv

R
p

� 2
�,i + v j v j,i (23.4.10)

where R is the specific gas constant. Substituting (23.4.9) into (23.4.10) yields

�E,i = p
�

�,i + p
R

S,i + �v j v j,i (23.4.11)

Consider now the energy equation written in the conservation form

∂

∂t
(�E) + (�Evi − 
i j v j + qi ),i = 0 (23.4.12)
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Substituting (23.4.11) into (23.4.12) yields

∂

∂t
(�E) + (�Evi ),i + vi

[
p
�

�,i + p
R

S,i + �v j v j,i

]
− �vi Eji − (
i j v j ),i + qi,i = 0

(23.4.13)

It is interesting to note that for large entropy gradients, (23.4.13) will be dominated

by the term vi (p/R)S,i , instrumental in nonlinear, nonisentropic wave oscillations.

The most general form of the nonlinear, nonisentropic wave equation may be ob-

tained by integrating (23.4.13) by parts spatially and taking a time average of the re-

sulting equation.〈∫
�

∂

∂t
(�E) d�

〉
−

〈∫
�

[
E,i �vi + �

(
vi

p
�

)
,i

+
(

vi
p
R

)
,i

S + (�vi v j ),i v j

]
d�

〉

+
〈∫

�

[
�Evi ni + vi

(
p
�

�ni + p
R

Sni + �v j v j ni

)
− 
i j v j ni − k T,i ni

]
d �

〉
= 0

(23.4.14)

where � and � represent the domain and boundary surface, respectively, 〈·〉 implies time

averages and ni denotes the ith component of the outward normal vector to the surface.

Physically, the time derivative term (first term) and spatial derivative terms (next five

terms) represent the temporal growth and spatial growth of waves, respectively. The

last six terms of boundary integrals imply the so-called acoustic intensity on the solid

boundaries.

From thermodynamic relations for an ideal gas, we may write the entropy difference

in the form

S − So = R ln

[(
1 + p′

p

) 1
(�−1)

(
1 + � ′

�

) −�
(�−1)

]
(23.4.15)

Expanding the right-hand side of (23.4.15) in infinite series we obtain

S = R
[
S(1) + S(2) + S(3) + S(4) + · · · ] + SO (23.4.16)

with

S(1) = 1

(� − 1)

p′

p
− �

(� − 1)

� ′

�

S(2) = −1

2

[
1

(� − 1)

(
p′

p

)2

− �

(� − 1)

(
� ′

�

)2
]

S(3) = −1

3

[
1

(� − 1)

(
p′

p

)3

− �

(� − 1)

(
� ′

�

)3
]

S(4) = 1

4

[
1

(� − 1)

(
p′

p

)4

− �

(� − 1)

(
� ′

�

)4
]
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Note that the higher order terms (fifth order or higher) are neglected as they are small

in comparison with lower order terms.

23.4.3 UNSTABLE ENTROPY WAVES

At this point, all variables may be written as

p = p + ε p′, vi = vi + ε v′
i , � = � + ε� ′, T = T + ε T′ (23.4.17)

where the symbols, bar and prime, denote the spatial or temporal mean and fluctuating

parts, respectively; and ε signifies the energy growth factor (0 ≤ ε ≤ ∞) which is tem-

porally dependent but spatially independent. Notice that ε = 0 indicates vanishing of

the fluctuating parts whereas ε = ∞ implies an unbounded growth of fluctuations as a

function of time.

Substituting (23.4.16) and (23.4.17) into (23.4.14) yields

∂

∂t
(ε2 E1 + ε3 E2 + ε4 E3) − ε2 I1 − ε3 I2 − ε4 I3 = 0 (23.4.18)

where

E1 =
〈∫

�

a(1)d�

〉
, E2 =

〈∫
�

a(2)d�

〉
, E3 =

〈∫
�

a(3)d�

〉
(23.4.19a–c)

I1 =
〈∫

�

b(1)d�

〉
−

〈∫
�

c(1)
i ni d�

〉
(23.4.20a)

I2 =
〈∫

�

b(2)d�

〉
−

〈∫
�

c(2)
i ni d�

〉
(23.4.20b)

I3 =
〈∫

�

b(3)d�

〉
−

〈∫
�

c(3)
i ni d�

〉
(23.4.20c)

where a(i), b(i), and c(i) (i = 1, 2, 3) consist of mean and fluctuating parts of variables.

A glance at (23.4.18) indicates that the zeroth-order terms in ε are canceled and first

order terms vanish due to time averages, and E(i) is no longer an explicit function of

time because of its time averages. Thus, the partial derivative with respect to time in

(23.4.18) involves only ε, not E(i), so that

dε
dt

= ε2 I1 + ε3 I2 + ε4 I3

2εE1 + 3ε2 E2 + 4ε3 E3

(23.4.21)

or

dε
dt

= (εI1 + ε2 I2 + ε3 I3)
1

2E1

[
1 − ε

3E2

2E1

+ ε2

(
9E2

4E1

− 2E3

E1

)]
(23.4.22)

where higher-order terms and those terms much smaller than unity have been neglected.

With some algebra we arrive at the nonlinear, ordinary differential equation, known as

the stability equation, of the form

dε
dt

− �1ε − �2ε2 − �3ε3 = 0 (23.4.23)
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with the energy growth rate parameters �i (i = 1, 2, 3) defined as

�1 = 1

2E1

I1, �2 = 1

2E1

(
I2 − 3E2

2E1

I1

)

�3 = 1

2E1

{
I3 − 3E2

2E1

I2 +
[

9

4

(
E2

E1

)2

− 2E3

E1

]
I1

}

Notice that (23.4.23) is identical in form to Flandro [1985], although the basic approach

to the formulation and the solution procedures differ, resulting in the energy growth

rate parameters �(i) entirely different from those in [Flandro, 1985]. For the case of

linear and isentropic acoustic behavior, (23.4.23) is reduced to the results of Cantrell

and Hart [1964] as demonstrated in Chung and Yoon, 1991 and Yoon and Chung, 1994.

The energy growth factor ε and energy growth rate parameters �i are so named

because they both represent energy growth. However, ε is devised such that it changes

only as a function of time, which determines the stability of the entire domain as solved

from the ordinary differential equation, (23.4.23). It does not change from point to point

in the domain. On the other hand, the energy growth rate parameters �i are spatially

dependent, calculated through numerical integrations of quantities a(i), b(i), and c(i) in

(23.4.19) and (23.4.20) as a result of the time-dependent flowfield solutions of Navier-

Stokes system of equations. Through these combined processes, both ε and �i can now

be considered to depend on time and space, because (23.4.23) cannot be solved without

the updated spatially dependent �i .

It is seen that for linear stability (�2 = �3 = 0), we have

dε
dt

− �1ε = 0 (23.4.24)

This is a special case of (23.4.23) for linear and isentropic waves which Cantrell and Hart

[1964] obtained from the integral method. Since the solution of (23.4.24) is ε = e�1t , given

the initial condition, ε(0) = 1, this condition is satisfied as follows:

stable when ε = 0, for �1 = −∞ (23.4.25a)

neutrally stable when ε = 1, for �1 = 0 or t = 0 (23.4.25b)

unstable when ε = ∞, for ε = 0, for �1 = ∞ (23.4.25c)

From (23.4.25a) and (23.4.25b) we have

0 ≤ ε < l with −∞ ≤ �1 < 0 (23.4.25d)

and from (23.4.25b) and (23.4.25c), we obtain

l < ε ≤ ∞ with 0 < �1 ≤ ∞ (23.4.25e)

Stability is assured with −∞ ≤ �1 < 0 which implies that 0 ≤ ε < 1. This criterion ap-

plies only to linear and isentropic waves.

The linear stability criteria discussed above do not hold true for nonlinear and

nonisentropic waves with �2 = 0 and �3 = 0. The initial condition for ε for the case of

�2 = 0 and �3 = 0 is unknown at t = 0. The magnitude of ε is no longer the measure

of stability. Instead, the time rate of change of ε determines the state of instability

regardless of initial conditions for ε at t = 0. Thus the stability criteria for nonlinear and
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nonisentropic waves are determined by the time rate of change of ε (energy growth or

decay) as follows:

stable when
dε
dt

< 0 (23.4.26a)

neutrally stable when
dε
dt

= 0 (23.4.26b)

unstable when
dε
dt

> 0 (23.4.26c)

The variables involved in the energy growth parameters �1, �2, and �3 are obtained

from the numerical solution of Navier-Stokes system of equations. For this purpose

the energy growth factor ε becomes a scaling factor at a neutral state (ε = 1) which

corresponds to the standard definition such that, for any variable f , we write for ε = 1

f = f + f ′ (23.4.27)

This is in contrast to (23.4.7) in which fluctuations of all variables were scaled by the

energy growth factor ε. Once the Navier-Stokes solution for f and its time average

f is obtained, then the difference between the two represents the fluctuating part f ′.
The scaling of f ′ (or ε f ′) is then required in the sense of (23.4.7) so as to determine

whether the fluctuations may have a tendency to grow or decay. Thus f ′ = f − f for

ε = 1, initially, allows us to provide data to compute �1, �2, and �3 so that (23.4.23)

can be solved. The initial values of ε at t = 0 are independent of the stability criteria

of (23.4.26a), (23.4.26b), and (23.4.26c). A numerical example using this concept of

entropy-controlled instability (ECI) method will be presented in Section 23.5.3.

23.5 EXAMPLE PROBLEMS

23.5.1 PRESSURE MODE ACOUSTICS

(1) Fluid-Structure-Acoustic Interaction

Kirchhoff’s equations are widely used in the theory of light diffraction and other

electromagnetic problems, boundary elements [Morino and Tseng, 1990], as well as in

problems of wave propagation in acoustics [Pierce, 1981]. The example presented in

this section deals with the special case of acoustic radiation from a vibrating structure

[Frendi, Mastrello, and Ting, 1995]. The goal of the study is to establish the efficiency

of Kirchhoff’s equation for the computation of acoustic radiation from vibrating struc-

tures. In order to do this, two models are used: one in which the acoustic field is fully

coupled to the structural vibration, and in the other, the two are decoupled. In the

fully coupled model, the nonlinear Euler equations are used to describe the acoustic

wave propagation and the nonlinear plate equations are used to describe the structural

vibrations. These vibrations are excited using a harmonic plane wave acoustic source

placed on the opposite side of the propagation domain.

In addition to (23.2.4) and (23.2.5), the ideal gas law given by p = � RT is used,

where p is the pressure, R the gas constant, and T the temperature. The initial con-

ditions in the acoustic fluid are: u = v = w = 0, p = p0 and � = �0. The boundary
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conditions on the rigid and flexible structure are: v(x, 0, z, t) = 0 on the rigid surface

and v(x, 0, z, t) = t (x, z, t) on the flexible part with t (x, z, t) being the transverse

velocity of the surface. The motion of the flexible surface is described by a system of

three-dimensional, nonlinear partial differential equations, given by

D∇4 + � pht t + �t = �p + Eh
1 − 	2

[(
u0

x + 1

2
2

x

)
(xx + 	zz) +

(
w0

z + 1

2
2

z

)

×(zz + 	xx) + (1 − 	)xz
(
u0

z + w0
x + xz

)]
,

u0
xx + d1u0

zz + d2w
0
xx = −x(xx + d1zz) − d2zxz,

(23.5.1.1)
w0

zz + d1w
0
xx + d2u0

xz = −z(zz + d1xx) − d2xxz

where ∇4 = xxxx + 2xxzz + zzzz, d1 = (1 − 	)/2, d2 = (1 + 	)/2 and D = Eh3/

12(1 − 	2). In (23.5.1.1) u0 and w0 are the in-plane displacements, and  is the transverse

displacement. The physical constants appearing in (23.5.1.1) are the stiffness, D, the

density, � p, the thickness, h, the physical damping, � , the modulus of elasticity, E, and

the Poisson ratio, 	. Equations (23.5.1.1) are solved subject to the initial and boundary

conditions,

t = 0, u0 = w0 =  = t = 0,

x = x0, x0 + L, u0 = w0 =  = x = 0, (23.5.1.2)

z = z0, z0 + W, u0 = w0 =  = z = 0.

In (23.5.1.1), the load �p is defined by �p = 2p(t) − [p(i) + p(r)], where p(t), p(i) and

p(r) are the transmitted, incident and reflected pressures, respectively. The sum [p(i) +
p(r)] represents the loading and is chosen to be of the form p(i) + p(r) = [ε sin(�t) +
ε∗ sin(2�t)]H(t), where ε, ε∗ and � are the amplitudes and frequency of the wave, and

H(t) denotes the Heaviside unit step function. For small values of ε, ε∗ = 0 (linear),

while for large values of ε, ε∗ = ε/2 (nonlinear).

In the uncoupled model, the velocity potential �(t, x, y, z) is governed by the simple

wave equation given in (23.2.1) and the acoustic pressure and velocity are related to

the potential by p = −�0
∂�
∂t and v = ∂�

∂y . To produce the incident excitation given above,

the incident potential should be of the form

�(i)(t, x, y, z) = ε
2�0�

[
cos

[
�

(
t + y

a0

)]
+ 2

ε∗

ε
cos

[
2�

(
t + y

a0

)]]
H

(
t + y

a0

)
(23.5.1.3)

which is a solution to (23.2.1). In the case of a rigid surface �(r)(t, x, y, z) = �(i)(t, x,

−y, z), the total potential on the incident side is � = �(i) + �(r) + �(s) and that on the

transmitted side is � = �(t), with both �(s) and �(t) satisfying (23.2.1). Since the ambi-

ent fluid above and below the flexible structure is the same, the velocity potential in-

duced by the structural vibration is anti-symmetric in y, in other words, �(t)(t, x, y, z) =
−�(s)(t, x, −y, z); this leads to a pressure difference across the structure of

�p = 2�0

[
∂�(i)

∂t
+ ∂�(s)

∂t

]
.
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Solving the wave equation for �(s) subject to the initial and boundary conditions given

above we obtain Kirchhoff’s equation

�(s)(t, x, y > 0, z) = − 1

2�

∫ ∫
[t (t, x′, z′)]

R
dx′dz′ (23.5.1.4)

where the R = [(x − x′)2 + y2 + (z − z′)2]1/2 denotes the distance from a point (x, y >

0, z) to a source located at (x′, 0, z′) and [·] denotes the retarded value as defined in

earlier sections. Since the time derivative of �(s) is needed in the pressure difference

equation, one can differentiate the above equation to obtain

�
(s)
t (t, x, y > 0, z) = − 1

2�

∫ ∫
[t t (t, x′, z′)]

R
dx′dz′. (23.5.1.5)

Equations (23.5.1.1) and (23.5.1.5) are solved together to obtain the structural response

and acoustic radiation. These equations form the decoupled model.

The nonlinear Euler equations are solved using an FDM scheme developed by Got-

tlieb and Turkel [1976], which is a modified version of the McCormack scheme, while the

plate equations are solved by an FEM method [Robinson, 1990]. The integral given by

(23.5.1.5) is computed by a combination of Simpson’s and the trapezoidal rule. Results

are obtained using both models for an excitation frequency of 751 Hz which corre-

sponds to a natural frequency of the structure. At high levels of excitation, a harmonic

is used (1502 Hz) in addition to the fundamental (751 Hz), in order to simulate an ex-

perimental study. The structural parameters are considered to be uniform and are given

by: density � p = 4450.15 kg/m3, modulus of elasticity E = 1.013 × 105 N/m2, Poisson

ratio 	 = 0.33, and a damping ratio of 0.01 is used. The acoustic fluid properties are:

temperature T0 = 288.33 K, density �0 = 1.23 kg/m3, pressure p0 = 1.013 × 105 N/m2,

sound speed a0 = 340 m/s, specific heat at constant volume cv = 1.004 kJ/(kg K), and

the ratio of specific heats is � = cp/cv = 1.4.

For a small amplitude excitation, 130 dB or 6.8 × 10−4 atm, the structural response

is linear as shown by Figures 23.5.1.1 and 23.5.1.2. The nondimensional time histories

of the displacement and near-field radiated pressure are shown in addition to their

respective power spectra. The displacement is nondimensionalized with respect to the

thickness, while the pressure is nondimensionalized with respect to �0a2
0 . Both the power

spectra and the time histories show the presence of a single frequency indicative of a

linear behavior. When the excitation level is increased to 174 dB, 0.22 atm, the response

of the flexible structure becomes nonlinear as shown by both the time history and the

power spectra (Figure 23.5.1.3). The response predictions obtained using both models

are in agreement. In addition, both the near-field and far-field acoustic pressure results

obtained using both models compare well (Figures 23.5.1.4 and 23.5.1.5). This is an

important result since the cost, in terms of CPU time, is an order of magnitude lower

in the uncoupled case. One can use the uncoupled model to predict, with reasonable

accuracy, the structural response and the resulting acoustic radiation.

(2) Blade-Vortex-Interaction Hover Noise

Xue and Lyrintzis [1994] carried out three-dimensional computations of the noise

generated by the blade-vortex-interaction (BVI) in a transonic regime. The near field
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Figure 23.5.1.4 (a) The time history and (b) power spectral density of

the transmitted near-field pressure, 2.54 cm from the panel center, ex-

citation amplitude 174 dB (nonlinear) [Frendi et al., 1995]. Reprinted

with permission from Academic Press.

surface (i.e., hover)

M = 1

a0

(� × X), M∗ = 1

a0

(� × X∗) �̂ = r(1 − Mr ). (23.5.1.12)

The location having the subscript ‘*’ represents the observer’s location, the other rep-

resents the source. The symbol � in (23.5.1.10) is given by � = �∗ − t∗, with �∗ being the

source emission time and is the solution to

� − t∗ + |X∗(t∗) − X(�)|
a0

= 0 (23.5.1.13)

where � represents the source time.

Farassat and Myers [1988] derived a rotating Kirchhoff formula for a stationary

observer and a rotating control surface. Their formulation is mathematically identical

to that of Morino (above) after making a coordinate transformation. The advantage of

Farassat and Myers’ formula is that it allows direct comparison with experiments.

The model and numerical techniques were tested using a problem with a known an-

alytical solution. The results showed good agreement between all the solutions. Results

were then obtained for a nonlifting rotor with the NACA 0012 airfoil section shown
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Figure 23.5.1.5 (a) The time history and (b) power spectral density of the

transmitted far-field pressure, 203.2 cm from the panel center, excitation

amplitude 174 dB (nonlinear) [Frendi et al., 1995]. Reprinted with per-

mission from Academic Press.

in Figure 23.5.1.6. An 80 × 25 × 25 grid was used, and 600 time-steps were taken. Each

time step corresponds to a 0.3-deg rotor azimuth per time step. It should be noted that

to get better results for lift coefficient versus blade rotation �, 0.125 deg should be used

for ��. The observer position is defined using distance d and angles � and � shown in

Figure 23.5.1.7. Figure 23.5.1.8 shows the noise signal for � = 60 and � = −30. It can be

seen that with increased tip Mach number the two disturbances increase proportionally.

Figure 23.5.1.9 shows the effect of vortex strength and location. Both parameters have

a significant effect in the resulting noise as shown in Figure 23.5.1.9. A higher vortex

strength increases both disturbances, while a higher distance decreases both of them

and especially the second one. A low vortex strength and a higher distance are desirable

for low BVI noise.

(3) Noise Level in Rocket Nozzle Exhaust

To illustrate, let us consider the rocket nozzle investigated by Carofano [1984]

using FDM/TVD and subsequently by Chung and Yoon [1993] with FEM/FDV. The

geometry, initial and boundary conditions shown in Figure 23.5.1.10a, along with the

shock positions of both computations at t = 0.0012 sec favorably compared in
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Rotating Kirchhoff surface S  
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ω
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Γv

Figure 23.5.1.6 Hover parallel blade-vortex interaction and rotating Kirchhoff surface S [Xue

and Lyrintzis, 1994].

Figure 23.5.1.10b. The noise level variations as a function of time at points A and B

are shown in Figure 23.5.1.10c,d. Note that the initial discontinuities are indicative of

the secondary shock and adjacent vorticity formation. The noise level reaches the con-

stant value of approximately 193 dB at t = 0.00045 sec for A, with some delay (0.0005

sec) at point B.

Figure 23.5.1.11a shows the density distribution at t = 0.0012 sec in which the pri-

mary shock wave dominates the front, followed by slip (contact) surface and by the

secondary shock. Vorticity develops at the upstream region. Expansion waves start at

Z axis

X axis

Y axis

NACA0012

Tip path plans

Figure 23.5.1.7 Observer’s position for a rotating blade [Xue and

Lyrintzis, 1994].
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Figure 23.5.1.8 Different Mach numbers for hover parallel BVI, M =
0.8, 0.75, 0.7, and 0.6, �v = 0.2, Zv = −0.26 at position d = 3R, � = 60,

� = −30 [Xue and Lyrintzis, 1994].

the exit separation points, which are connected to the secondary and slip surface. These

physical phenomena are consistent with a typical plume flowfield. The corresponding

pressure, temperature, and Mach number distribution are shown in Figures 23.5.1.11b–d.

In Figure 23.5.1.11e, the two-dimensional distributions of noise level at t = 0.0012 sec

are shown. Note that beyond regions of vorticity and second shock, the noise level

once again becomes constant, reflecting the flowfield. Similar plots are shown in Figure

23.5.12a–e for t = 0.0025 sec, demonstrating the progress of flowfield and noise level.

(4) Noise Control in Perforated Muzzle Brake

The geometry of flow through a vent hole in a perforated muzzle brake is shown

in Figure 23.5.1.13a initially investigated by Carofano [1987] using FDM/TVD and
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Gamm_v=1, Z

v
=0.5
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Figure 23.5.1.9 Different Mach numbers for hover parallel BVI, M =
0.75 at position d = 3R, � = 60, � = −30 [Xue and Lyrintzis, 1994].
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(e)

(a) (b)

(c) (d)

Figure 23.5.1.11 Noise level (dB) distribution and correspond-

ing flowfields at t = 0.0012 sec. (a) Density distribution. (b) Pres-

sure distribution. (c) Temperature distribution. (d) Mach num-

ber distribution. (e) Noise level (dB).
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(c)

(b)

(e)

(a)

(d)

Figure 23.5.1.12 Noise level (dB) distribution and corresponding flowfields

at t = 0.0025 sec. (a) Density distribution. (b) Pressure distribution. (c) Tem-

perature distribution. (d) Mach number distribution. (e) Noise level (dB).
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T=767.7k
Ma=1.23
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Figure 23.5.1.13 Geometry and flowfields in a perforated muzzle break at steady-state. (a) Geometry and

initial boundary conditions. (b) Density. (c) Pressure. (d) Temperature. (e) Mach number.

heat exhaust. Thus, the proper sizes and geometries of the vent can serve as an excellent

noise control device.

For the purpose of comparison of these results with the experimental data of

Carofano, we examine the pressure ratios at various locations (Figure 23.5.1.15a). At

x/D = 0.0 the pressure ratio (p/po) vs. y/D are shown in Figure 23.5.1.15b. The re-

sults of FEM/FDV (solid line) are identical to the experimental results (solid circle)

at y/D < 0.3. Some deviations of the Carofano calculations (dotted line) from the

FEM/FDV solution are noted. For the rest of the locations (Figure 23.5.1.15c–g) the re-

sults of the FEM/FDV are compared favorably with the experiments. It should be noted



832 APPLICATIONS TO ACOUSTICS

(a) (b) 

(c) (d)

Figure 23.5.1.14 Flowfields through a vent hole in a perforated muz-

zle break at steady-state. (a) Density distribution. (b) Pressure distri-

bution. (c) Temperature distribution. (d) Mach number distribution.

that Carofano used the low-resolution TVD scheme. Had the high-resolution scheme

been used, however, it is anticipated that a closer agreement with the experiments and

FEM/FDV would have been achieved.

23.5.2 VORTICITY MODE ACOUSTICS

(1) Isotropic Turbulence

Applications of the Lighthill acoustic analogy are numerous. Recently, Sarkar and

Hussaini [1993] developed a Hybrid Direct Numerical Simulation for the computation

of sound radiated from isotropic turbulence. This method consisted of using DNS to

resolve the turbulent flow together with the Lighthill acoustic analogy for the farfield

sound. They suggested that using the first form of (23.3.1.4) would be more advantageous
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Figure 23.5.1.15 Comparison of pressure rations (P/PO) with experiments, ——— TGM [Yoon and

Chung, 1994], ------- TVD [Carofano, 1987], • • Experiment [Carofano, 1987]. (a) Locations of data.

(b) X/D = 0.0. (c) X/D = 0.5. (d) X/D = 1.0. (e) Y/D = 2/3. (f) Y/D = 4/3. (g) Y/D = 8/3.
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computationally because it requires less storage. Due to the retarded time effect in the

acoustic analogy, the velocity field at time � is associated with the observer point at time

t = � + r/a0 where r is the distance between the source and the observer. Two methods

are used to account for the effect of retarded time: time accumulation and spatial

interpolation. In the time accumulation method, the observer time t was approximated

by t = [(� + r/a0)/�t]�t where the quantity between brackets is an integer and �t
denotes the time step used for time advancement of the flow. The advantage of this

method is that it doesn’t add to the memory requirements of the computation. Its

disadvantage is that it is a zeroth order interpolation in time and causes errors of order

�t. In the spatial interpolation method, one finds the surfaces in the computational

volume that lie at distances na0�t from the observer, computes the source at these

points by spatial interpolation of the fluid velocity on the computational grid, and then

obtains the contribution from these source points with appropriate time delays at the

observer point.

In order to test these numerical techniques, known monopole and quadrupole

sources located at the center of the computational domain were used. Exact solutions

for the radiated acoustic field can be obtained in these cases and are given by

p(x, t) = c
4�r

cos[�(t − r/a0)] (23.5.2.1)

for the monopole and

p(x, t) = 2c�2d2

4�ra2
0

sin 2� sin �(cos[�(t − r/a0)]) (23.5.2.2)

for the quadrupole. In (23.5.2.2), (r, �, �) are the spherical coordinates of the observer

point with respect to the source and 2d is the length of a small square at the center of the

computational domain at the vertices of which the monopoles are placed to simulate a

quadrupole. The quadrupole is located at the cartesian coordinates (�, �, �), while

the sound source is measured at (100, 100, 100). The nondimensional values used are

� = 2, d = 0.78, and a0 = 25. For the monopole case, the computed solution, which was

obtained with 6 points per time period of the oscillation, has the correct amplitude but

had a phase error of the order of ��t . For the quadrupole case, a time step of 0.1 was

used (i.e., 30 points per time period), the computed acoustic pressure was zero; it took

3,000 points per time period to obtain a good agreement with the analytical result. The

phase error has disastrous consequences in the case of a quadrupole, because the sound

amplitude is very sensitive to phase cancellation, unlike the case of a monopole. It is

shown that in the case of turbulent flow, the number of time points needed per oscillation

of the source is of the order of 1/M2
t where Mt is the turbulent Mach number.

In the quadrupole case, when a spatial interpolation technique is used to account for

the retarded time effects, the number of points needed to resolve the smallest acous-

tically important scale of the turbulent flow must be of the order M−2/(�+1)
t where �

is the order of the interpolation scheme. This implies that a high order interpolation

scheme is needed for low Mach number turbulence (third order or higher). Because of

the severe time step restrictions in low Mach number turbulence, the second form of

(23.3.1.4) is used in the following example.
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Once these initial tests were completed, the actual problem of sound radiation from

an isotropic turbulence is addressed. The turbulent flow inside a cubical domain is com-

puted by solving the Navier-Stokes equations numerically. Since the turbulence is ho-

mogeneous, periodic boundary conditions are used in all three directions. A Fourier

collocation method for the spatial discretization of the governing equation is used

together with a third order low storage Runge-Kutta scheme for time advancement.

Initial conditions are needed for v′
i , � , p, and T. The initial velocity field is divided into

two components: solenoidal and compressible velocity fields. The solenoidal velocity

field which satisfies ∇ · vI ′ = 0 is chosen to be a random Gaussian field with the power

spectrum E(k) = k4 exp(−2k2/k2
m) where km corresponds to the peak of the power

spectrum. The compressible velocity field which satisfies ∇ × vC′ = 0 is also chosen

to be a random Gaussian field satisfying the same power spectrum. The power spec-

tra of the two velocity components are scaled so as to obtain a prescribed vrms and a

prescribed � = vC
rms/vrms which is the compressible fraction of kinetic energy. The pres-

sure associated with the incompressible velocity is evaluated using the Poisson equation

∇2 pI ′ = − �vI ′
i, j v

I ′
j,i . The mean density � is chosen to be unity, p is chosen so as to obtain

a prescribed Mach number characterizing the turbulence (≈ vrms/
√

� p/�). The fluc-

tuating density and compressible pressure are chosen as random fields with the same

power spectrum as that given above.

The results are obtained for a Lighthill tensor of the form Ti j = �vi v j . Two com-

putations are carried out using two different time steps, the second case having half

the time step of the first, that is, �tε0/K0 = 0.00375. The spatial discretization used

is a uniform 643 grid, while the initial parameters are: viscosity 	0 = 1/225, the tur-

bulent Mach number Mt,0 = 0.05, and the Taylor microscale Reynolds number R�,0 =
38 (R�,0 = q�/	, q =

√
v′

i v
′
i , � = q/

√
�′

i �
′
i while Mt = q/a where a is mean speed of

sound). Figure (23.5.2.1a) shows the evolution of the acoustic pressure at a far-field

point as a function of eddy turnover time. The acoustic pressure decreases with time

Figure 23.5.2.1 Acoustic pressure at a farfield point. [Sarker and Hussaini, 1993]. (a) Case 1, �tε0/k0 =
0.00375. (b) Case 2, �tε0/k0 = 0.0075.
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because of the decay in turbulence. Reducing the time step by half leads to the far-field

acoustic pressure shown on Figure 23.5.2.1b. A small difference in the details of the

time history can be seen.

(2) The Ffowcs Williams-Hawkings Equation

Singer et al. [1999] examined the difficulties involving the use of a hybrid scheme

coupling a CFD flow computation with the Ffowcs Williams-Hawkings equation to

predict noise generated by vortices passing over a sharp edge. Three sound radiation

model problems are studied: a circular cylinder in a cross flow, a two-dimensional vortex

filament moving around the edge of a half plane, and vortices convecting past the trailing

edge of an airfoil. Following Brentner and Farassat [1998], the differential form of the

Ffowcs Williams-Hawkings equation (23.3.7) is used. An integral representation of this

equation can be written directly by utilizing formulation 1A of Farassat and Myers

[1988] and Brentner [1986]:

p(x, t) = pT(x, t) + pL(x, t) + pQ(x, t) (23.5.2.3)

where

4�pT(x, t) =
∫

f =0

[
�0(U̇n + Uṅ)

r(1 − Mr )2

]
dS +

∫
f =0

[
�0Un(r Ṁr + a0(Mr − M2))

r2(1 − Mr )3

]
dS

(23.5.2.4)

and

4�pL(x, t) = 1

a0

∫
f =0

[
L̇r

r(1 − Mr )2

]
dS + 1

a0

∫
f =0

[
Lr (r Ṁr + a0(Mr − M2))

r2(1 − Mr )3

]
dS

+
∫

f =0

[
Lr − LM

r2(1 − Mr )2

]
dS. (23.5.2.5)

Here the dot indicates a time derivative, LM = Li Mi where Mi is the Mach number in

the i-direction, r is the distance from a source point on the surface to the observer, and

the subscript r indicates the projection of a vector quantity in the radiation direction.

The quadrupole term pQ(x, t) can be determined using a method developed by Brent-

ner [1997] (or some other technique). However, in the examples presented here, it is

neglected.

The Navier-Stokes system of equations is solved using a Finite Volume Method

implemented in a code known as CFL3D [1997]. Results from the CFD code are inter-

polated onto the integration surface used in the Ffowcs Williams-Hawkings equation.

Equations (23.5.2.6) and (23.5.2.7) are integrated using a code developed by Xue and

Lyrintzis [1994].

(3) Circular Cylinder

The first example problem considered is that of a circular cylinder in a cross flow.

The diameter Dof the cylinder is 0.019 meters and a span of 40D is used. The freestream

Mach number is 0.2. Viscous two-dimensional computations are performed with a

Reynolds number of 1000 based on freestream velocity and cylinder diameter. The

acoustic signal is observed at a position 128D from the cylinder center along a line
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Figure 23.5.2.3 Acoustic pressure squared at r =
50a for line vertex moving around semi-infinite

plate with M = 0.01 [Singer et al., 1999].

of cells or a significant shortening of the domain will result in a degradation of the

results. The good agreement between the numerical and analytical solutions shown by

Figure 23.5.2.3 is obtained using a large z-direction domain. This is due to the no-

penetration boundary condition used which makes much of the plate appear to radiate.

Therefore, the domain must be made large enough to contain all the acoustic sources.

(5) Airfoil Trailing Edge

The next model problem studied is that of vortices convecting past the trailing edge

of an airfoil. In order to avoid the Reynolds number variation for different Mach num-

bers, inviscid computations are carried out. The small amount of numerical dissipation

was thought to be enough to produce vortex roll-up shortly downstream of the vortex

generator plate. A 2.6% thickness NACA 00 series airfoil was used. The chord C is

chosen to be 1 meter. For purposes of the acoustic calculation, the span of the airfoil is

twice the chord. The flat plate (or vortex generator) is introduced at 98% of the chord

and extends from 0.0015C to 0.0025C above the airfoil chordline. In the presence of

flow, vortices roll up just downstream of the flat plate, alternately near the plate’s top

and bottom edges. The dominant shedding frequency fs is related to the plate height

via the Strouhal number St = Lfs/U0 where U0 is the freestream velocity.

Figure 23.5.2.4 shows the seven-zone patched grid computational domain used. This

partition is chosen so as to capture the relevant physics. The computational domain

extends 2C upstream of the leading edge, 2C downstream of the trailing edge, and 2C

above and below the airfoil chordline. The boundary conditions used are freestream

conditions upstream, farfield conditions above and below the airfoil, and extrapolation

at the downstream boundary. The effect of time and grid resolution on the CFD results

is shown on Figure 23.5.2.5 where the spectra of the pressure coefficient at a location

directly under the vortex generator are shown. Increasing the resolution makes the

spectrum fuller and shifts the dominant frequencies to slightly lower values. In order

to calculate the acoustic field using the Ffowcs Williams-Hawking equation, two inte-

gration surfaces are considered, one on the airfoil and the other 1% of the chord off
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Figure 23.5.2.4 Grid resolution in the various com-

putational zones [Singer et al., 1999].

the airfoil. Far-field acoustic signals are obtained at several locations 10C away from

the trailing edge of the airfoil. Figure 23.5.2.6 shows spectra of the acoustic signal for

several observer positions. The angular measurements are increasing conterclockwise

from the 0 degrees position pointing directly upstream of the trailing edge. The figure

shows much reduced noise levels directly upstream and downstream from the trailing

edge.

23.5.3 ENTROPY MODE ACOUSTICS

(1) Entropy Controlled Instability (ECI) Analysis Rocket Motor Combustion

We have shown that the thermodynamic formulation of unstable wave phenomena

characterized by the pressure, vorticity, and entropy modes leads to the nonlinear or-

dinary differential equation in Section 23.4. However, to determine the energy growth

rate parameters �1, �2, and �3, it is necessary that the mean and fluctuating parts of all
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Figure 23.5.2.5 Spectra of pressure coefficient under vortex-

generator plate for different grid resolutions M = 0.2 [Singer

et al., 1999].
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Figure 23.5.2.6 Spectra of acoustic signals (referenced to

20 �Pa) for various observers all located 10C from trailing

edge of airfoil. On-airfoil-body integration surface used,

M = 0.2 [Singer et al., 1999].

variables be calculated. Toward this end, we must first solve the Navier-Stokes system

of equations using any of the CFD methods discussed in Parts Two and Three. In this

analysis, the finite element Taylor-Galerkin scheme is used. The initial time-dependent

oscillatory pressure (initial condition at boundaries) is assumed to be of the form

p = p (1 + d sin �t) (23.5.3.1)

where p is the mean pressure, d is the percent disturbance from the mean pressure, and

� is the fundamental driving frequency. The fluctuating part is obtained from

p′ = p − p (23.5.3.2)

where p and p are the Navier-Stokes solutions with and without the disturbances,

respectively. Similar calculations are carried out for all other variables to determine the

fluctuating parts of density, temperature, and velocity components.

Once the fluctuation parts of all variables are calculated, we then evaluate all do-

main and boundary integrals of (23.4.19) and (23.4.20) to compute the energy growth

parameters in (23.4.23). Now it is a simple matter to solve the nonlinear ordinary differ-

ential equation (23.4.23) using a standard method such as the fourth order Runge-Kutta

scheme. At this point, since (23.4.23) is nonlinear and the initial condition for the en-

ergy growth factor, ε, is unknown, we begin with ε equal to a very small number. As the

solution process continues with small discrete computational steps (�t), ε may either

increase or decrease, resulting in limiting or triggering behavior, regardless of initial

values of ε used for the analysis.

The procedure described above is based on the assertion that the linear stabil-

ity criteria for (23.4.24) may not be applied to the nonlinear stability as predicted by

(23.4.23), contrary to the earlier analysis of Chung and Yoon [1991]. Thus, it is expected

that, with certain combinations of the energy growth rate parameters �1, �2, and �3

which are dictated by the solution of the full Navier-Stokes system of equations, two

prominent stability phenomena can be identified: limit cycles and triggering toward an
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Figure 23.5.3.1 State flowfield for side-burning rocket motor, burning surface boundary conditions: � =
29.7 kg/m3, V = 1.22 m/s, T = 1134 K, P = 1400 psi, Mach no. = 0.0018, laminar calculations [Yoon and

Chung, 1994]. (a) Geometry. (b) 0% disturbance. (c) 6% disturbance.

unbounded instability as discussed by Flandro [1985]. We shall examine these physical

aspects through oscillations of a typical rocket combustion chamber, based on Yoon

and Chung [1994].

Consider an axisymmetric typical side-burning rocket shown in Figure 23.5.3.1a. The

bottom face represents the axisymmetric centerline. The initial and boundary conditions

are: On the burning surface the tangential and axial velocity components are zero, with

M = 0.0018, P = 1400 psi, � = 29.6742 kg/m3, T = 1095 K, and � = 1.4.
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The time-dependent solutions of the Navier-Stokes system of equations using the

Taylor-Galerkin methods together with pressure corrections for low Mach number flow

are obtained first without disturbances and subsequently with disturbances of 4%, 6%,

and 8%. With the integration time increments �t = 0.0005 s, calculations are carried

out until a steady state is reached. Thus, the fluctuation parts of any variable f are

calculated from (23.4.27) as the difference between the Navier-Stokes solution and its

time average. Turbulent flow calculations with the K–ε model as well as laminar flows

have been carried out.

The steady-state Navier-Stokes solutions for streamlines, Mach number, pressure

temperature, and density without disturbance are shown in Figure 23.5.3.1b for the

laminar flow. They represent typical side-burning rocket flowfields in which low ve-

locities and high pressure prevail in the combustion chamber, but high velocities and

shock waves combined with turbulent flows dominate toward downstream. Note that

the isocontours are shown only for the downstream edge of propellant.

Figure 23.5.3.1c shows the same analysis as in Figure 23.5.3.1b except that the 6%

pressure disturbance is applied to the system. Note that spatial oscillatory motions of

pressure, temperature, and density appear even at the steady state due to the distur-

bance applied at the burning surface. With fluctuation parts v′
i , p′, T′, and � ′ together

with the mean quantities vi , p, T, and � now available, we then calculate the energy

growth rate parameters �1, �2 and �3 via a(i), b(i), and c(i) in equations (23.4.19 through

23.4.20).

In Figure 23.5.3.2, the energy growth factors versus nondimensionalized time for

the laminar flow with 4% disturbances are shown. Here the nondimensionalized time is

referenced to the time period used to solve (23.4.23), with t = 0 and t = 1 corresponding

to the start and end (steady state) of Navier-Stokes solutions, respectively. For various

initial values (0.001 < ε < 0.01), the energy growth factors converge to zero as time

increases. For the turbulent flow, however, the energy growth factors approach a sta-

ble limit cycle with ε ∼= 0.0004 as shown in Figure 23.5.3.2a(2). It is interesting to note

that, if disturbances are increased to 6% for the laminar flow [Figure 23.5.3.2b(1)],

then the initial value of ε = 0.001 increases toward ε = 0.006. Note that all other

higher initial values of ε move downward and converge toward ε = 0.006 as shown in

Figure 23.5.3.2b(1). On the contrary, in Figure 23.5.3.2b(2) for turbulent flows, all values

of ε move toward instability regardless of their initial values of ε. For 8% disturbances

(Figure 23.5.3.2c), the trend toward instability is drastic with the turbulent flow being

much more severe. These results indicate that, although the initial values of ε are ar-

bitrarily chosen, the stable limit cycles prevail for smaller disturbances, but they are

triggered into an unbound instability for larger disturbances.

In Figure 23.5.3.3, the time rates of change of ε, (dε/dt) vs. ε itself are shown for both

laminar and turbulent flows at various disturbance percentages. These results confirm

the trend observed in the previous figures. It is seen that turbulence induces instability

otherwise stable in laminar flows, and that the increase of percent disturbances drives

the system toward instability.

In order to demonstrate the role of nonlinearity in (23.4.23) with �2 = 0, �3 = 0 in

comparison with the linear analysis (23.4.24) with �2 = 0, �3 = 0, various cases of dε/dt
vs. energy growth factors are shown in Figure 23.5.3.4. It should be noted that most

of the nonisentropic properties are associated with �2 and �3 and that they are zero
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Figure 23.5.3.2 Energy growth factors vs. nondimensionalized time [Yoon and Chung, 1994]. (a) 4% distur-

bance. (b) 6% disturbance. (c) 8% disturbance.

for the linear analysis. Non-isentropy is involved in energy dissipation and in nonlinear

waves. Solutions of the linear equation (23.4.24) are, therefore, expected to overestimate

the instability behavior. This prediction is clearly evident in Figure 23.5.3.4. As the

% disturbances increase and the laminar flow changes to turbulence, the difference
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between the linear and nonlinear analyses becomes smaller. The nonlinear analysis with

nonisentropic properties becomes more critical when the % disturbances are small.

Overall, the roles of acoustic, vortical, and entropy modes are clearly exhibited in

Figures 23.5.3.3 and 23.5.3.4. For low Mach number flows such as at the head end, no

pressure discontinuities (no shocks) occur. The pressure fluctuations are linear, sinu-

soidal, and isentropic. For high Mach number flows such as prevalent at the throat and

nozzle, the acoustic mode changes into entropy mode due to shock waves, irreversibil-

ity, high temperature, or low density. For regions of recirculation or vortical motions

such as at converging and diverging sections, the vortical mode dictates wave motions.

The wave instability determined by (23.4.23) is associated with the wave motions due

to the combination of all modes of acoustics. This is particularly true for a side-burning

rocket motor such as examined here. However, because of high speeds downstream, the

entropy mode eventually dominates. This is evident from the comparison of the results

of linear and isentropic analysis with those of nonlinear and nonisentropic analysis as

shown in Figure 23.5.3.4. It is seen that the linear and isentropic analysis greatly overes-

timates the instability. As to the trends of the vortical mode evidenced in Figure 23.5.3.3

by turbulent flows (large vortical mode effect) versus laminar flows (small vortical mode

effect), it is seen that the effect of turbulence or vortical mode is reflected by higher

energy growth rate (greater instability). The effect of acoustic mode is embedded in

both Figures 23.5.3.3 and 23.5.3.4 and to the cases of laminar flows and linear waves

as well.

(2) Unstable Waves of Flame Propagation in a Closed Tube

In this analysis, an acoustic instability problem associated with the premixed flame

propagation in a closed tube is described as reported by Gonzales [1996]. It is shown that

the flame front displays a cellular structure that has a close connection with the acoustic

waves. First pressure oscillations are triggered as the flames reach the lateral walls

and suddenly decelerate. Then, a slender cusp appears which subsequently collapses

due to the periodic acceleration driving the flames to display a cellular pattern. This

eventually leads to the total heat release (temperature fluctuations) oscillating in phase

with pressure, causing a violent instability. For this reason, this example is identified as

the entropy mode acoustics.

The Navier-Stokes system of equations for reactive flows given by (22.2.34) is used

with a single species reactant (Y, hydrocarbon) with all variables given by the nondi-

mensional quantities. The standard FVM with predictor-corrector semi-implicit scheme

is employed. Calculations cover a plane tube with the aspect ratio of 6. The reaction

rate is given by

� = −Y
[

Y −
(

1 − 1

�

)]
exp

[
−T A

(
1

T
− 1

Tb

)]

with �(equivalence ratio) = 0.97, TA (activation temprature) = 33, Tb (burned gas-temp)

= 7.67.

Here, the Damköhler number is set equal to 1.1 × 104 with Re = 25 and M = 3 × 10−3

which ensures that the acoustic time has the same order of magnitude as the transit time

of the flame. The time step (�t) satisfying the CFL condition is used.

Figure 23.5.3.5a shows the various stages of flame propagation. The first stage is

identified by the initially curved, flat, and cusped [Figure 23.5.3.5a(i) through (vi)] flame
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Figure 23.5.3.5 Unstable waves in flame propagation in a closed tube [Gonzales, 1996]. (a) Isolines

of fuel mass fraction, 2500�t ≤ t ≤ 15500�t . (b) Flowfield in the vicinity of the flame t = 3000�t .
(c) Temporal evolution of pressure at the unburned end of the tube. (d) Temporal evolution of total

reaction rate. (e) Temporal evolution of longitudinal velocity on the plane of symmetry at x/L = 0.9.
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shapes which are clearly evident as verified in experiments. A snapshot of a cusp at

t = 3000�t is shown in Figure 23.5.3.5b. The second stage begins with the collapse of

the primary cusp and the formation of the cellular flame (Figure 23.5.3.5c). This is

then followed by the third stage where the cellular shapes are severely distorted before

vanishing at the end.

The temporal evolution of pressure and total reaction rate are presented in

Figures 23.5.3.5c,d. Unstable pressure oscillations and diminishing reaction rates are

evident in these figures. Finally, Figure 23.5.3.5e displays the time evolution of the log-

itudinal component of the gas velocity in the unburned medium at a point located on

the plane of symmetry, close to the bottom wall. It is shown that velocity oscillations are

triggered as the flames reach the lateral walls, around t = 3000�t . Corresponding to

the pressure variations, velocity oscillations become sharper and increase in amplitude

as the flame approaches the end wall.

(3) Unstable Waves in Combustion Dynamics

Wave instabilities in combustion dynamics were investigated using perturbation ex-

pansions of the conservation equations with all excited frequencies calculated by the

eigenvalue analyses [Kim, 1985; Chung and Kim, 1985]. Unsteady oscillatory combus-

tion waves were examined for the high-frequency responses across the long flame such

as in the double-base propellants [Park and Chung, 1987; Park, 1988]. Another aspect

of the combustion dynamics is the unstable waves due to the coupling of pressure and

vortical modes. The Orr-Sommerfeld equation was solved to determine the wave num-

bers and unsteady stream functions from which vortically coupled acoustic instability

growth constants were calculated [Sohn, 1986; Chung and Sohn, 1986]. It is found that

stability boundaries for coupled pressure and vorticity mode oscillations are similar to

the classical hydrodynamics stability boundaries, but they occur in the form of multiple

islands [Chung and Sohn, 1986].

23.6 SUMMARY

In this chapter, it is shown that the subject of acoustics may be categorized into three

areas: the pressure mode acoustics, the vorticity mode acoustics, and the entropy mode

acoustics. The reason for this categorization is that the acoustic fields can be computed

by the wave equation with the Kirchhoff’s formula, the momentum equations with the

Lighthill’s stress tensor, or by the entropy energy equation with the first and second

laws of thermodynamics.

The pressure mode acoustics includes the Kirchhoff’s method with stationary sur-

faces, subsonic surfaces, and supersonic surfaces. It is shown that the basic idea of the

Kirchhoff’s formula is to surround the region of a nonlinear flowfield and acoustic

sources by a closed surface. In the domain inside the surface, a nonlinear aerodynamic

computation is carried out, which provides the pressure distribution on the surface as

well as its time history. Hawkings surface pressure modifications are used for subsonic

and supersonic flows.

The vorticity mode acoustics is based on the aerodynamic sound theory of Lighthill’s

acoustic anology as applied to the turbulent jet and shear boundary layers. The
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governing equations are shown to be derived from the Navier-Stokes system of equa-

tions, resulting in an exact, nonhomogeneous wave equation with Ffowcs Williams-

Hawkings modifications for moving boundaries.

For high temperatures and high temperature gradients coupled with pressure mode

and vorticity mode acoustics, unstable waves are likely to dominate the flowfield. In this

case, it is shown that implementation of the first and second laws of thermodynamics

into the energy equation leads to the nonlinear, nonisentropic wave equation in terms of

entropy. Integration of this equation results in a total of six terms of the acoustic intensity

on solid surface boundaries, representing the sources of acoustic intensity due to total

energy, pressure oscillations, entropy changes, vortical oscillations, viscous dissipation,

and temperature changes.

Representative examples of numerical calculations for the pressure mode acoustics,

vorticity mode acoustics, and entropy mode acoustics have been demonstrated. A cover-

age of the entire field of acoustics is beyond the scope of this chapter, but the suggested

categorization of acoustics into the three areas has been adequately represented by a

limited number of examples.
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CHAPTER TWENTY-FOUR

Applications to Combined Mode Radiative

Heat Transfer

24.1 GENERAL

In heat transfer, there are three different modes – conduction, convection, and radiation.

We have included conduction and convection in the Navier-Stokes system of equations

discussed in the previous chapters. Radiative heat transfer is another mode of heat

transfer to be examined in this chapter. Heat transfer by radiation occurs in many

engineering applications of nonparticipating and participating media. In this chapter,

we study this subject as a separate mode of heat transfer first and then as a combined

mode integrated into other modes.

In nonparticipating media, conduction and convection are absent. Here we are con-

cerned with view factors, radiative boundary conditions, and radiative heat transfer in

absorbing, emitting, and scattering media. Radiative heat transfer is associated with

the radiative heat flux which involves integrals with respect to the wavelength, solid

angle, and optical depth. The governing equation for radiative heat transfer, then, takes

the form of integrodifferential equations. This aspect of the radiative heat transfer is

unique and requires a special computational treatment.

Participating media combines the radiative heat transfer with conduction and/or

convection. The most significant feature in the combined mode heat transfer is the

fact that the radiative heat flux is always three-dimensional, even if the computational

domain is chosen to be one- or two-dimensional. For this reason, special mathematical

formulations and computational schemes must be developed. We discuss this subject in

Sections 24.2.4 and 24.3.3.

For the sake of completeness and future reference, some basic definitions and for-

mulas in radiative heat transfer are summarized below.

Planck’s Law

Monochromatic (spectral) emissive power of black body is given by

eb�(T) = 2��3n2

c2
0

[
exp

(
h�

KT

)
− 1

] (24.1.1)

with � = frequency of radiation, c0 (speed of light in vacuum) = 2.998 × 1010 cm/s,

n = index of refraction (n = 1 for vacuum), T = absolute temperature, K (Boltzmann’s

851
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constant) = 1.38 × 10−16 erg/◦K, h (Planck’s constant) = 6.625 × 10−27 cm/s. If n is in-

dependent of frequency � or wavelength �, then � = c0/n�, d� = −c0d�/n�2. This gives

eb� = −eb�d�, and

eb�(T) = C1

n2�5
0

[
exp

(
C2

KT

)
− 1

] (24.1.2)

where eb�(T) is known as the Planck’s function and C1 = 2�c2
0h = 3.74 × 10−5 erg cm2/s

and C2 = hc0/K = 1.4387 cm ◦K.

Stefan-Boltzmann Law

The black-body emissive power per unit time and area over all frequencies is given by

eb(T) =
∫ ∞

0

eb�(T)d� = n2�T 4 (24.1.3)

where the integral is evaluated using (24.1.1) and � is the Stefan-Boltzmann constant,

� = 2�5 K4

15c2
0h3

= 5.668 × 10−5 erg/s cm2 ◦K4

Intensity of Radiation

The amount of energy passing in a given direction is described in terms of the

intensity of radiation ib as shown in Figure 24.1.1a,

ib = d�

d� cos �
(24.1.4)

where � is the radiant energy per unit time and unit area leaving a given surface in the

direction � (polar angle) from the normal and contained within a solid angle d�. The

energy flux passing from the surface into the hemispherical space above the surface is

then

� =
∫

ib cos �d�

Figure 24.1.1 Basic geometry for radiation. (a) The intensity of radiation. (b) Integration of

intensity over solid angle.
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The solid angle is defined as the surface element on the hemisphere divided by the

square of the radius

d� = sin �d�d� (24.1.5)

where � is the azimuthal angle as shown in Figure 24.1.1b. Thus,

� =
∫ 2�

0

∫ �/2

0

ib cos � sin �d�d� (24.1.6)

If the intensity of radiation is independent of direction, then,

� = �ib (24.1.7)

Note that this definition is limited to the case of radiation leaving a surface. For radiation

through absorbing, emitting, and scattering media, the net rate at which energy is locally

transferred within the medium must be considered.

Absorption and Scattering

Let a� be the monochromatic absorption coefficient for radiation of wave length �

and intensity I�. The local monochromatic absorption per unit time and unit volume

within the isotropic medium due to an incident beam is

Qa = a�

∫
4�

I�d� (24.1.8)

Similarly, the monochromatic energy that is scattered per unit time, per unit area normal

to the pencil of rays, per unit solid angle, and per unit volume is

Qs = 	�

∫
4�

I�d� (24.1.9)

where 	� is the monochromatic scattering coefficient. We define 
� as the monochro-

matic extinction coefficient


� = a� + 	� (24.1.10)

which is related to the mean free path �p for photons of wavelength � as

�p = 1


�
(24.1.11a)

For nonscattering media, we have

�p = 1

a�
(24.1.11b)

Emission

The local monochromatic emission of radiant energy J � is expressed as (Kirchhoff’s

law)

J � = a� I� = a�

�
eb�(T) (24.1.12a)
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The total monochromatic emission per unit time and per unit volume is obtained by

multiplying (24.1.12a) by the total solid angle 4�,

Ĵ � = 4a�eb�(T) (24.1.12b)

If a′
� denotes the absorption coefficient characterizing true absorption including induced

emission, then we have

J ′
� = a′

�

�

(
1 − e−h�/KT)

eb�(T) (24.1.12c)

The total emission of radiation locally within a medium is obtained through integration

of (24.1.12b) over all wavelengths,

J = 4a peb(T)

where

a p =

∫ ∞

0

a�eb�(T)d�

eb(T)
(24.1.13)

which is known as the Planck mean absorption coefficient, a property of the medium in

local thermodynamic equilibrium.

Similarly, in view of (24.1.8) and (24.1.9), the total absorption and scattering coeffi-

cients are defined as, respectively,

a =

∫ ∞

0

a�

∫
4�

I�d�d�∫
4�

Id�

(24.1.14)

	 =

∫ ∞

0

	�

∫
4�

I�d�d�∫
4�

Id�

(24.1.15)

Note that a and 	 are not equilibrium properties because I� is a function of the medium

and the surfaces.

Surface Radiation

In general, the monochromatic hemispherical emittance ε� is a function of both

wavelength and temperature,

ε� = e�

eb�
(24.1.16)

The monochromatic hemispherical absorptance �� is given by

�� = H�,a

H�,i
(24.1.17)

where H�,a is the energy absorbed and H�,i is the spectral energy density of the radiation

incident per unit area and time.

A portion of the incident radiation, H�,r , may be reflected back into the hemispher-

ical space, characterized by the monochromatic hemispherical reflectance ��,

�� = H�,r

H�,i
(24.1.18)



24.2 RADIATIVE HEAT TRANSFER 855

which satisfies the relation for an opaque material,

�� + �� = 1 (24.1.19)

On diffuse surfaces, Kirchhoff’s law states that

�� = ε� (24.1.20)

The total hemispherical emittance ε is given by

ε = e
eb

=

∫ ∞

0

ε�eb�d�∫ ∞

0

eb�d�

=

∫ ∞

0

ε�eb�d�

�T4
(24.1.21)

This gives

e = ε�T 4 (24.1.22)

The total hemispherical absorption � is defined as

� =

∫ ∞

0

�� H�,i d�∫ ∞

0

H�,i d�

(24.1.23)

The total hemispherical reflectance � is given by

� =

∫ ∞

0

�� H�,i d�∫ ∞

0

H�,i d�

(24.1.24)

The following relationships hold for an opaque material and gray material, respectively,

� = 1 − �, � = 1 − ε (24.1.25a,b)

With these definitions, the governing equations and computational procedures

involved in radiative heat transfer of nonparticipating media will be presented in

Section 24.2 and the combined mode heat transfer of participating media in Section

24.3. Numerical solutions can be carried out using a variety of methods (FDM, FEM,

and FVM) presented in Parts Two and Three. For simplicity, however, finite element

and finite volume formulations will be used to demonstrate numerical aspects of ra-

diative heat transfer. In Section 24.4, we include and discuss example problems solved

with various numerical schemes using FDM, FEM, and FVM. Although Monte-Carlo

methods and discrete ordinate methods have been used extensively in radiative heat

transfer in the past, they are not included in this chapter since they are unrelated to the

CFD methods discussed in this book.

24.2 RADIATIVE HEAT TRANSFER

24.2.1 DIFFUSE INTERCHANGE IN AN ENCLOSURE

Nonparticipating media include most monatomic and diatomic gases as well as air and

vacuum. Consider a region within which there is a black-body radiation on an enclosed

space whose walls have a uniform temperature Te. In view of (24.1.22), if there is a

body with surface area Aat temperature T within the enclosure, the net rate of radiant
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outflow Q can be written as

Q
A

= ε�T 4 − ��T 4
e (24.2.1)

Note that the first and second terms of the right-hand side denote, respectively, the

radiant energy emitted per unit time and unit area by the body and the corresponding

radiant flux. For the gray-body condition (ε = �),

Q
A

= ε�
(
T 4 − T 4

e

)
(24.2.2)

The view factor provides information on the fraction of the diffusely distributed radiant

energy leaving one surface, Ai , that arrives at a second surface, Aj , denoted by FAi −Aj ,

having the following relationships:

Ai FAi −Aj = Aj FAj −Ai (24.2.3)

N∑
j=1

FAi −Aj = 1 (24.2.4)

where FAi −Ai = 0 for convex surface, F Ai −Ai �= 0 for concave surface.

Let us consider the surfaces Ai and Aj of the enclosure in Figure 24.2.1. The net

radiative heat flux qi at the surface Ai is equal to the difference between the leaving

(Bi ) and incident (Hi ) fluxes

qi = Bi − Hi

where Bi , known as the radiosity, is given by the sum of radiative flux emitted at Ti and

incident radiative flux reflected by the surface,

Bi = εi �T 4
i + �i Hi

From the relation (24.2.3) the total radiative energy leaving all the zones of the enclosure

and incident upon the surface Ai

Hi = 1

Ai

N∑
j=1

Bj Ai Fi− j

iA  

iT  

iρ  

iε  

Bi

jA  

jT  

jρ  

jα  

jεBj  

iα  
Hi  

Figure 24.2.1 Enclosure filled with nonparticipating

medium.
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thus

qi = Bi −
N∑

j=1

Bj Fi− j (24.2.5a)

Bi = εi �T 4
i + �i

N∑
j=1

Bj Fi− j (24.2.5b)

Substituting (24.2.5b) into (24.2.5a) yields

qi = εi �T 4
i − (1 − �i )Bi

�i
= εi

�i

(
�T 4

i − Bi
)

(24.2.6a)

The radiosities Bi may be calculated by rearranging (24.2.5a–24.2.6a)

M�
 R
 = D� (1 ≤ �, 
 ≤ N) (24.2.6b)

with N being the number of surfaces of the enclosure, and

M�
 = �
 + �	 A	
ε


� (
)

− A� F (�)−


D� = A�

ε(�)

� (�)

�T 4
(�)

where the subscript within the parenthethesis is not an index, not subject to summation.

Solving the radiosities from (24.2.6b) and substituting into (24.2.6a) yield the heat flux qi

at the surface Ai . The unknowns in this process are the view factors (Table 24.2.1) which

are described next.

Table 24.2.1 View Factors FA−B for Two Square Planes, Two-Point Gaussian Quadrature

Geometries

Two Intersecting Planes
Solution

Schemes

Two

Parallel

Planes 30 60 90 120 150

0.19983 0.62020 0.37120 0.20004 0.08700 0.02151

3 × 3 0.19980 1.53905 0.51115 0.23359 0.09541 0.02299

Analytic 1.09247 0.45421

Solution 5 × 5 0.19982 1.17043 0.45474 0.22015 0.09196 0.02236

Finite 8 × 8 0.19982 0.96347 0.42319 0.21561 0.08998 0.02199

Elements 0.79660 0.40214

20 × 20 — 0.75673 0.39177 0.20506 0.08797 0.02160

30 × 30 — 0.71082 0.38481 0.20339 0.08751 0.02152

40 × 40 — 0.68786 0.38133 0.20255 0.08729 0.02147
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where �1 and �2 are the angles between the normal and the line L separating the two

surfaces dA1 and dA2.

Consider two diffusely reflecting, small gray bodies. The radiant interchange be-

tween the two bodies is

Q = AF�
(
T 4

1 − T 4
2

)
(24.2.9a)

where the reciprocity between the surfaces is given by

AF = A1 F1−2 = A2 F2−1

For radiation interchange between large parallel gray plates, all reflected radiation

is returned to the emitter. Here we note that the view factor is unity. Thus

Q = 1

1

ε1

+ 1

ε2

− 1

A�
(
T 4

1 − T 4
2

)
(24.2.9b)

View factors for simple geometries can be analytically integrated. For complicated

and arbitrary geometries, however, numerical integrations are required. There are

numerous numerical methods available, as detailed in the open literature. One such

method is the finite element calculations, described below.

Evaluation of integrals involved in (24.2.7) can be carried out via Gaussian quadra-

ture (Chapter 9). To this end, we first establish the coordinate systems as depicted in

Figure 24.2.2b for isoparametric coordinates (�, �), local three-dimensional cartesian

coordinates (x, y, z) with the origin at the node 1, the x-axis along the nodes 1-2, and

x-y plane on the surface element 1-2-3-4, and the global coordinates (X, Y, Z). Let us

now consider the normal vectors on the surface to calculate the angles �A and �B and

coordinate transformations between the local and global coordinates (Figure 24.2.2b),

Surface A

The unit vector eA12 in the direction from node 1 to node 2 is of the form

eA12 = �Ai ii (24.2.10)

where

�A1 = XA21

LA12

, �A2 = YA21

LA12

, �A3 = ZA21

LA12

LA12 =
√

(XA2 − XA1)2 + (YA2 − YA1)2 + (ZA2 − ZA1)2

XA21 = XA2 − XA1, etc.

Similarly, the unit vector in the direction from node 1 to node 4 is written as

eA14 = �Ai ii (24.2.11)

where

�A1 = XA41

LA14

, �A2 = YA41

LA14

, �A3 = ZA41

LA14

LA14 =
√

(XA4 − XA1)2 + (YA4 − YA1)2 + (ZA4 − ZA1)2

XA41 = XA4 − XA1, etc.
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The unit normal vector out of the surface A is

nA = eA12 × eA14 = �Ai ii

where

�A1 = �A2�A3 − �A3�A2

�A2 = �A3�A1 − �A1�A3

�A3 = �A1�A2 − �A2�A1

Surface B

The unit vectors eB12, eB14, and nB for the Surface B can be derived similarly as the

Surface A.

eB12 = �Bi ii (24.2.12)

eB14 = �Bi ii (24.2.13)

nB = eB12 × eB14 = �Bi ii (24.2.14)

Angles �A and �B

Let L be the length of the line connecting the two surfaces A and B at arbitrary

points. The angles �A and �B are measured from their normals to the surfaces of the line

L. The unit vector along this line is

eAB = �ABi ii (24.2.15)

where

�AB1 = XBA

L
, �AB2 = YBA

L
, �AB3 = ZBA

L

L =
√

(XB − XA)2 + (YB − YA)2 + (ZB − ZA)2

XBA = XB − XA, etc.

The angles �A and �B can be determined from the relationships

cos �A = nA · eAB

|nA||eAB| (24.2.16a)

and

cos �B = nB · eBA

|nB||eBA| (24.2.16b)

The local and global coordinates for the Surface Aare related by

xA
i = a A

i j XA
j (24.2.17)

where

a A
11 = �A1, a A

12 = �A2, a A
13 = �A3

The unit vector in the direction of y on the Surface A is obtained by

eA
y = nA × eA12 = 	A

i ii (24.2.18)
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Thus

a A
21 = 	 A

1 , a A
22 = 	A

2 , a A
23 = 	A

3

and

a A
31 = �A1, a A

32 = �A2, a A
33 = �A3

Similarly for the surface B,

xB
i = aB

i j XB
j (24.2.19)

aB
11 = �B1, aB

12 = �B2, aB
12 = �B3

eB
y = nB × eB12 = 	 B

i ii (24.2.20)

aB
21 = 	 B

1 , aB
22 = 	 B

2 , aB
23 = 	 B

3

aB
31 = �B1, aB

32 = �B2, aB
33 = �B3

The transformation between the isoparametric coordinates and the local cartesian

coordinates is related by

dxdy = |J |d�d� (24.2.21)

where

|J | =

∣∣∣∣∣∣∣∣
∂x
∂�

∂y
∂�

∂x
∂�

∂y
∂�

∣∣∣∣∣∣∣∣
(24.2.22)

At this point, we introduce isoparametric finite element functions to relate the variation

of the global coordinates with nodal values,

XA
i = �A

N(�A, �A)XA
Ni (24.2.23a)

or

XB
i = �B

N(�B, �B)XB
Ni (24.2.23b)

where �A
N and �B

N may be chosen as linear isoparametric interpolation functions. It

follows from (24.2.17) that

xA = a A
11 XA + a A

12YA + a A
13 ZA

yA = a A
21 XA + a A

22YA + a A
23 ZA

and from (24.2.23),

∂xA

∂�A
= a A

11

∂ �A
N

∂ �A
XA

N + a A
12

∂ �A
N

∂ �A
YA

N + a A
13

∂ �A
N

∂ �A
ZA

N

∂yA

∂�A
= a A

21

∂ �A
N

∂ �A
XA

N + a A
22

∂ �A
N

∂ �A
YA

N + a A
23

∂ �A
N

∂ �A
ZA

N

etc., and similarly for the surface B.
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From (24.2.21) for the surfaces Aand B, we have

dAA = dxAdyA = |J |Ad�Ad�A (24.2.24a)

dAB = dxBdyB = |J |Bd�Bd�B (24.2.24b)

Let us consider two finite surfaces A and B, each discretized into M and N numbers

of isoparametric elements, respectively (Figure 24.2.2c). The view factor FA−B is

obtained as

FA−B =
M∑

�=1

N∑

=1

FA�−B
 = 1

AA

M∑
�=1

N∑

=1

F̂ A�−B
 (24.2.25a)

where

AA =
M∑

�=1

AA� (24.2.25b)

F̂A�−B
 =
∫

AA�

∫
BB


cos �A� cos �B


�L2
A�−B


dAA� dAB
 (24.2.25c)

To utilize the Gaussian quadrature integration, we write

F̂A�−B
 =
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

C |J |A�|J |B
d�A�d�A�d�B
d�B


where

C = cos �A� cos �B


�L2
A�−B


which is determined by combining (24.2.23) with (24.2.15) and (24.2.16). Thus

FA−B =
∑M

�=1

∑N

=1

∑
i

∑
j

∑
k

∑
l Wi Wj WkWl f

(
� A�

i , �A�
j , �

B

k , �

B

l

)
∑M

�=1 AA�

(24.2.26)

The function f contains the integrand C |J |A�|J |B
 and the routine Gaussian quadrature

integration may be carried out [Chung and Kim, 1982]. An example problem for view

factor calculations are shown in Section 24.4.1(1).

Radiation Boundary Conditions with View Factors

Radiation boundary conditions in nonparticipating media can be implemented in

the energy equation of the form,

∂

∂t
(�cpT) + ∂

∂xi
(�cpT vi − kT,i i ) = 0 (24.2.27)

Here the convection velocity vi is taken as a constant, but should be treated as a variable

when the energy equation (24.2.27) is solved simultaneously with the equations of

continuity and momentum. For simplicity of discussion, let us consider the Galerkin
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finite element formulation of (24.2.27b) in the form∫
�

��

[
∂

∂t
(�cpT) + ∂

∂xi
(�cpT vi − kT,i i )

]
d� = 0 (24.2.28)

Integrating (24.2.28) by parts,(∫
�

�cp���
 d�

)
∂T


∂t
+

∫
�

∗
��(�cpT vi ni − kT,i ni ) d � −

(∫
�

�cpvi��,i�
 d�

)
T


+
(∫

�

k��,i�
,i d�

)
T
 = 0

or ∫
�

Ŵ(�) (A�
Ṫ
 + B�
T
 + K�
T
 − G�) d� = 0 (24.2.29)

where

Heat capacity matrix A�
 =
∫

�

�cp���
 d�

Heat convection matrix B�
 = −
∫

�

k�d,i�
,i d�

Heat conduction matrix K�
 =
∫

�

�cpvi��,i�
 d�

The Neumann boundary vector is contributed by

�cpT vi ni − kT,i ni = g on �N (24.2.30)

The heat flux normal to the boundary surface takes the form

−kT,i ni = q(CD) + q(CV) + q(R) (24.2.31)

where the superscripts (CD), (CV), and (R) denote conduction, convection, and ra-

diation, respectively. Here q(CD) represents the conduction heat flux applied on the

boundary surface, q(CV) is the convection heat flux

q(CV) = �cpT vi ni = �(T − T′) on �
(CV)
N (24.2.32)

with � and T′ being the heat transfer coefficient and ambient temperature, respectively.

The radiation boundary heat flux q(R) is of the form

q(R) = F�ε
(
T 4 − T 4

r

)
on �

(R)
N (24.2.33)

Here F is the view factor and Tr denotes the radiation boundary temperature of a

separate body to which radiation exchange occurs.

It should be noted that the Neumann boundary conditions contain the variable

T in (24.2.32) and (24.2.33). This implies that temperature is unknown and must

be computed. Thus, the surface integral containing the temperature variable consists
of the boundary surface convection matrix

∗
C �
 and the boundary surface radiation
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vector
∗
R�,

∗
C �
 =

∫
�

�
∗
��

∗
�
 d � (24.2.34)

∗
R� =

∫
�

F� ε
∗
��

∗
�


∗
�	

∗
�

∗
�� d �T�T
T	 TT� (24.2.35)

It follows from (24.2.34), (24.2.35), and (24.2.31) that the Neumann boundary condition

G� is the mixed boundary condition (sometimes called the Cauchy boundary condition),

G� = ∗
G � − ∗

C �
T
 − ∗
R� (24.2.36)

where
∗

G� denotes the known data on the boundary surface

∗
G� =

∫
�

∗
��

(
q (CD) + � T′ + F�εT 4

r

)
d � (24.2.37)

Substituting (24.2.36) into (24.2.29)∫
�

Ŵ(�) (A�
Ṫ
 + B�
T
 + K�
T
 + ∗
C �
T
 + ∗

R� − ∗
G�) d� = 0 (24.2.38)

As discussed in Chapters 10 and 11, the transient problem in (24.2.38) may be recast

in a time-marching scheme. In terms of the temporal parameter �, we write

[A�
 + ��t(B�
 + K�
 + ∗
C �
)] Tn+1


 = [A�
 − (1 − �)�t(B�
 + K�
 + ∗
C �
)] Tn




+ �t(
∗

G� − ∗
R�) (24.2.39)

The algebraic equations resulting from (24.2.37) are nonlinear because of the radi-

ation boundary term:
∗
R �, and the standard Newton-Raphson iteration method should

be used as described in Section 11.5.1. This will lead to

J�
�T n+1, r+1

 = −En+1, r

� (24.2.40)

where

J�
 = A�
 + ��t(B�
 + K�
 + ∗
C �
) + �t S�


S�
 = S�
	(T	 TT�)n+1, r + S��
�(T�TT�)n+1, r + S��	
�(T�T	 T�)n+1, r

+ S��	
(T�T	 T)n+1, r

En+1, r
� = [A�
 + ��t(B�
 + K�
 + ∗

C �
)] Tn+1, r



− [A�
 − (1 − �)�t(B�
 + K�
 + ∗
C �
)] T n, r


 + � t
( ∗
G � − ∗

R n, r
�

)
An alternative approach for

∗
R� is to assume a linear variation of T4 within a small

element

T 4 = ��T 4
� (24.2.41)

where T 4
� is calculated from initial and/or boundary conditions and subsequently from

previous values during the time-marching process described in Chapters 10 and 11.
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Numerical examples for the implementation of radiation boundary conditions are

shown in Section 24.4.1(2) for both steady-state and transient heat transfer problems.

24.2.3 RADIATIVE HEAT FLUX AND RADIATIVE TRANSFER EQUATION

The governing equations for radiative heat transfer in participating media have been

well established [Sparrow and Cess, 1970; Siegel and Howell, 1992, among many others].

Optical thicknesses measured in terms of absorption properties or the photon mean free

path are involved in the radiative heat transfer. We define the monochromatic optical

thickness of the medium as

�o� = a �L

or

�o� = L
�p

where L is a characteristic length, a� is the absorption coefficient independent of tem-

perature, and �p is the photon mean free path. It is seen that the optical thickness

�o� is a reciprocal photon Knudsen number. We define �o� � 1 as optically thin and

�o� 	 1 as optically thick. The limiting case a� = 0 would represent a nonparticipat-

ing medium (transparent) where the radiative flux vector qR is constant (∇ · qR = 0),

whereas a� = ∞ corresponds to an opaque medium in which qR = 0.

Consider two surfaces depicted in Figure 24.2.3a for one-dimensional radiative trans-

fer with the intensity of radiation directed at an angle � from the normal, denoted

Figure 24.2.3 Geometries for one-dimensional radiative heat transfer.

(a) Coordinate system for one-dimensional radiative transfer. (b) The

radiation heat flux.
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as I+(y, �) and I−(y, �). The differential equations for these intensities assume the

form

cos �
dI+

�

dy
+ 
� I+

� = a�

�
e b�(y) + 	�

4�
G�(y) (24.2.42a)

cos �
dI−

�

dy
+ 
� I−

� = a�

�
e b�(y) + 	�

4�
G�(y) (24.2.42b)

where G�(y) is the radiation function given by

G�(y) = 2�

∫ �

0

I�(y, �′) sin �′ d�′ (24.2.43)

We may recast these equations as follows:

�
dI+

�

d��
+ I+

� = 1

�
�

[
a�e b�(��) + 	�

4
G�(��)

]
(24.2.44a)

�
dI−

�

d��
+ I−

� = 1

�
�

[
a�e b�(��) + 	�

4
G�(��)

]
(24.2.44b)

where

�� =
∫ y

0


�dy, �o� =
∫ L

0


�dy, � = cos �

With the boundary conditions of the form,

I+
� (��, �) = I+

� (0, �), �� = 0

I−
� (��, �) = I−

� (�o�, �), �� = �o�

we obtain the solution to (24.2.44) in the form

I+
� (��, �) = I+

� (0, �) e−��/� − 1

�

∫ ��

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
e−(��−�)/� d�

�

(24.2.45a)

I−
� (��, �) = I−

� (�o�, �) e(�o�−��)/� + 1

�

∫ �o�

��

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
e−(��−�)/� d�

�

(24.2.45b)

As defined in Figure 24.2.3b, the radiative heat flux takes the form

qR�(��) =
∫

4�

I�(��, �) cos � d� = 2�

∫ 1

−1

I�(��, �) � d� (24.2.46)

or

qR�(��) = 2�

∫ 1

0

I+
� � d� − 2�

∫ −1

0

I−
� � d�
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In view of (24.2.45), we obtain

qR�(��) = 2�

∫ 1

0

I+
� (��, �) e−��/�� d� − 2�

∫ −1

0

I−
� (�o�, −�) e−(�o�−��)/�� d�

+ 2

∫ ��

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
E2(�� − �) d�

− 2

∫ �o�

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
E2(� − ��) d� (24.2.47)

where the En(�) is given by

En(�) =
∫ 1

0

�n−2e−�/�d�

This integral for n = 1, 2, 3 is evaluated as

E1(�) = −a − ln � + � − �2

2 · 2!
+ �3

3 · 3!
+ · · · (24.2.48a)

E2(�) = 1 + (a − 1 + ln �)� − �2

1 · 2!
+ �3

2 · 3!
+ · · · (24.2.48b)

E3(�) = 1

2
− � + 1

2

(
−a + 3

2
− ln �

)
�2 + �3

1 · 3!
+ · · · (24.2.48c)

with a = 0.5772 (Euler’s constant). The total radiation flux is

qR(y) =
∫ ∞

0

qR�(��) d�

The divergence of the radiation flux vector takes the form

∇ · qR = dqR

dy
=

∫ ∞

0

dqR�

dy
d� =

∫ ∞

0


�
dqR�

d��
d� (24.2.49)

where

dqR�

d��
= −G�(�) + 4a�


�
eb�(��) + 	�


�
G�(��) (24.2.50)

where G�(��) is the incidence radiation function given by

G�(��) = 2�

∫ 1

0

I+
� (��, �′) d�′ − 2�

∫ −1

0

I−
� (��, �′) d�′

or

G�(��) = 2�

∫ 1

0

I+
� (0, �) e−��/� d� + 2�

∫ 1

0

I−
� (�o�, −�) e−(�o�−��)/�d�

+ 2

∫ �o�

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
E2(|�� − � |) d� (24.2.51)

Here we note that Planck’s function eb� is temperature dependent and thus equations

(24.2.50) and (24.2.51) constitute nonlinear integrodifferential equations.
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The gray-medium assumption leads to simplification of (24.2.50) and (24.2.51) in

which the absorption and scattering coefficients are assumed to be independent of

wavelength. Denoting that∫ ∞

0

eb�d� = �T 4,

∫ ∞

0

I�d� = I,
∫ ∞

0

G�d� = G

we rewrite (24.2.47) as

qR(�) = 2�

∫ 1

0

I+
� (0 , �) e−�/�� d� − 2�

∫ 1

0

I−
� (�o, −�) e−(�o−�)/��d�

+ 2

∫ �

0

1




[
a�T 4(�) + 	

4
G(�)

]
E2(� − �) d�

− 2

∫ �o

0

1




[
aT 4(�) + 	

4
G(�)

]
E2(� − �) d� (24.2.52)

This gives

dqR(�)

d�
= −G(�) + 4

a�



T 4(�) + 	



G(�) (24.2.53)

G(�) = 2�

∫ 1

0

I+(0, �) e−�/� d� + 2�

∫ 1

0

I− (�o, −�) e−(�o−�)/� d�

+ 2

∫ �o

0

1


�

[
a�T 4(�) + 	

4
G(�)

]
E1(|� − � |) d� (24.2.54)

For radiative equilibrium, in which radiation is the predominant mode of heat transfer

and the system is in steady state, we have ∇ · qR = 0 or here dqR/dy = 0. Then from

(24.2.53) we obtain, for 	 = 0,

G(�) = 4 �T 4(�) (24.2.55)

with the conservation of energy given by

2�T 4(�) = �

∫ 1

0

I+ (0, �) e−�/� d� + �

∫ 1

0

I− (�o, −�) e−(�o−�)/� d�

+ �

∫ �o

0

T 4(�)E1(|� − � |) d� (24.2.56)

The nonscattering media can be represented by (24.2.47) and (24.2.50) with 	� = 0,

thus, (24.2.51) is no longer necessary. For pure scattering (a� = 0), (24.2.50) becomes

dqR�

d��
= 0

which implies that the energy equation is uncoupled from the radiation transfer process.

Thus, the governing equations for scattering can be obtained by (24.2.50) and (24.2.51)

with a� = 0.

For a diffuse surface, I+
� (0, �) and I−

� (�o�, −�) are independent of direction, that

is, independent of �. Thus, we set

I+
� (0, �) = B1�

�
, I−

� (�o�, −�) = B2�

�
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where B1� and B2� are the surface radiosities. We then have

2�

∫ 1

0

I+ (0, �) e−�/� � d� = 2B1� E3(��) (24.2.57a)

2�

∫ 1

0

I−
� (�o�, −�) e−(�o�−��)/� �d� = 2B2� E3(�o� − ��) (24.2.57b)

2�

∫ 1

0

I+
� (0, �) e−���d� = 2B1� E2(��) (24.2.57c)

2�

∫ 1

0

I−
� (�o�, −�) e−(�o�−��)/� d� = 2B2� E3(�o� − ��) (24.2.57d)

To determine B1� and B2�, we proceed as follows: Substitute (24.2.57a,b) into

(24.2.47) with �� = 0 for Surface 1. Then

qR�(0) = B1� − H1� (24.2.58)

H1� = 2B2� E3(�o�) + 2

∫ �o�

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
E2(�) d�

Here B1� is the radiant energy leaving Surface 1 and H1� is the incident energy. We may

define the surface radiosity as

B1� = ε 1�e b1� + (1 − ε 1�)H1�

This leads to

B1� = ε 1�e b1� + 2(1 − ε 1�)

{
B2� E3(�o�) + 2

∫ �o�

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
E2(�)d�

}
(24.2.59a)

Likewise, for Surface 2

B2� = ε 2�e b2� + 2(1 − ε 2�)

×
{

B1� E3(�o�) + 2

∫ �o�

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
E2(�o� − �)d�

}
(24.2.59b)

For black surfaces, B1� = eb1� and B2� = eb2�. For nonblack surfaces, the radiosities B1�

and B2� can be determined by solving (24.2.59a,b) simultaneously.

Optically Thin Limit

Using (24.2.48a), E2(�) = 1 + O(�) and E3(�) = 1
2

− � + O(�2), we express the

monochromatic radiation flux as

qR�(��) = B1�(1 − 2��) − B2�(1 − 2�o� + 2��) + 2

∫ �o�

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
d�

− 2

∫ �o�

0

1


�

[
a�e b�(�) + 	�

4
G�(�)

]
d� (24.2.60)

For the optically thin case, �o� � 1, a further simplification can be made,

qR� = B1� − B2� (24.2.61)
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With similar simplifications from (24.2.59), we obtain

B1� = ε 1�e b1� + (1 − ε 1�)ε 2�e b2�

1 − (1 − ε 1�) (1 − ε 2�)
(24.2.62a)

B2� = ε 2�e b2� + (1 − ε 2�)ε 1�e b1�

1 − (1 − ε 1�) (1 − ε 2�)
(24.2.62b)

These expressions correspond to radiation transfer through nonparticipating media.

Differentiation of (24.2.60) gives

dqR�

d��
= −2B1� − 2B2� + 4


�

[
a�e b�(��) − 	�

4
G�(��)

]
(24.2.63)

with

G�(��) = 2B1� + 2B2�

Thus,

dqR�

d��
= −2a�


�
[B1� + B2� − 2e b�(��)] (24.2.64)

or

dqR�

dy
= −2a�[B1� + B2� − 2e b�(y)] (24.2.65)

This indicates that the radiation transfer to or from a volume element is independent of

the scattering coefficient. It is realized that the optically thin conditions are free from

integral equations.

Integration of (24.2.65) over all wavelengths leads to

dqR

dy
= 2am(T, T1)B1 + 2am(T, T2)B2 − 4ap(T)�T 4(y) (24.2.66)

with

am(T, T1) =

∫ ∞

0

a�(T)B1�d�

B1

(24.2.67a)

am(T, T2) =

∫ ∞

0

a�(T)B2�d�

B2

(24.2.67b)

For black surfaces with the monochromatic absorption coefficient independent of tem-

perature, we obtain

am(T, T1) =

∫ ∞

0

a�e b�(T1)d�

e b(T1)
= ap(T1) (24.2.68a)

am(T, T2) =

∫ ∞

0

a�e b�(T2)d�

e b(T2)
= ap(T2) (24.2.68b)
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Thus, from (24.2.66)

−dqR

dy
= 2�

[
ap(T1)T 4

1 + ap(T2)T 4
2 − 2ap(T)T 4(y)

]
(24.2.69)

For a gray medium (a = ap), equation (24.2.57) yields

dqR

dy
= −2�ap(T)

[
T 4

1 + T 4
2 − 2T 4(y)

]
(24.2.70)

Optically Thick Limit

Let us define

S�(��) = 1


�

[
a�e b�(��) + 	�

4
G�(��)

]

Expanding S�(�) in a Taylor series about � = ��,

S�(�) = S�(��) + dS�

d��
(� − ��) + 1

2

d2S�

d� 2
�

(� − ��)2 + · · · (24.2.71)

Let z = �� − � and z′ = � − �� and substitute (24.2.71) into (24.2.47) with �o� → 0 or

�� → ∞ and �o� − �� → ∞. Then we obtain

qR� = −4
dS�

d��

∫ ∞

0

zE2(z) dz

or

qR� = −4

3

d
d��

{
1


�

[
a�e b�(��) + 	�

4
G�(��)

]}
(24.2.72)

Similarly, we obtain

G�(��) = 4S�(��)

∫ ∞

0

E1(z)dz = 4S�(��) = 4e b�(�) (24.2.73)

which leads to

qR = −4

3

de b�

d��
= − 4

3
�

de b�

dy
(24.2.74)

The total radiation heat flux is then

qR = −
∫ ∞

0

4

3
�

de b�

dy
d� = − 4

3
R

de b

dy
(24.2.75)

where 
R is the Rosseland mean extinction coefficient defined by

1


R
=

∫ ∞

0

1


�

de b�

de b
d� (24.2.76)

For nonscattering media (	� = 0), this reduces to the Rosseland mean absorption

coefficient

1

aR
=

∫ ∞

0

1

a�

de b�

de b
d� (24.2.77)

with aR = ap = a for a gray medium, ap > aR, otherwise.
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Radiative Equilibrium

For gray and diffuse bounding surfaces, the radiation flux is given

qR = 2B1 E3(�) − 2B2 E3(�o − �) + 2�

∫ �

0

T 4(�)E2(� − �) d�

− 2�

∫ �o

0

T 4(�)E2(� − �) d� (24.2.78)

Upon differentiating (24.2.78), we obtain

2�T 4(�) = B1 E3(�) + B2 E3(�o − �) + �

∫ �o

0

T 4(�)E1(|� − � |) d� (24.2.79)

Introducing dimensionless quantities,

�(�) = �T 4(�) − B2

B1 − B2

, Q = qR

B1 − B2

we rewrite (24.2.78) and (24.2.79), respectively,

Q = 2E3(�) + 2

∫ �

0

�(�)E2(� − �) d� − 2

∫ �o

0

�(�)E2(� − �) d� (24.2.80a)

2�(�) = E2(�) +
∫ �o

0

�(�)E1(|� − � |) d� (24.2.80b)

Since qR1 = −qR2 = qR, we obtain

qR = ε1

1 − ε1

(
�T 4

1 − B1

) = − ε2

1 − ε2

(
�T 4

2 − B2

)
and

B1 − B2

�
(
T 4

1 − T 4
2

) = 1

1 +
(

1

ε1

+ 1

ε2

− 2

)
Q

(24.2.81)

This indicates that B1 − B2 can be found if Q is known as a function of �o.

Let us now consider the more realistic case of a nongray medium. For black surfaces

with 	� = 0, equation (24.2.47) becomes

qR�(��) = 2e b1�e 3(��) − 2e b2� E3(�o� − ��)

+ 2

∫ ��

0

e b�(�)E2(�� − �) d � − 2

∫ �o�

0

e b�(�)E2(� − ��) d� (24.2.82a)

and

qR =
∫ ∞

0

qR� d � = constant (24.2.82b)

Note that the previous problem of a gray medium was linear in T 4, but the present case

is nonlinear with eb�(T) being a different function of T for every value of �.
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24.2.4 SOLUTION METHODS FOR INTEGRODIFFERENTIAL RADIATIVE
HEAT TRANSFER EQUATION

It follows from (24.2.44) that the governing integrodifferential equation for radiative

heat transfer in participating media takes the form

dI(r, s)

ds
= −[a(r) + 	 s(r)]I(r, s) + S(r, s) = −
(r)I(r, s) + S(r, s) (24.2.83)

where S is the source function,

S = a(r)Ib(r) + 	 s(r)

4�

∫
4�

I(r, s′)�(s′, s) d�′ (24.2.84)

with r denoting the position vector, s the unit vector in the direction of the ray, and �

the scattering phase function. The boundary conditions for gray-diffuse surfaces are of

the form,

Iw = ε�T 4
w

�
+ 1 − ε

�

∫
n·s>0

I(s)s · n d� (24.2.85)

where n is the unit vector outward normal to the boundary surface. If FVM is used, for

example as in Figure 24.2.4a, this is one of the boundary surfaces for the control volume

A, with n being normal to this surface. One such location is point 8 (Figure 24.2.4b,c) at

the center of the boundary surface where the product s · n is to be calculated.

The finite volume formulation of (24.2.83) with respect to the volume and solid angle

leads to∫
�

∫
�

(
dI
ds

+ 
I − S
)

d�d� = 0 (24.2.86)

Integrating, we obtain∫
�

∫
�

(
I − S)d�d� +
∫

�

∫
�

Isi ni d�d� = 0 (24.2.87)

For the finite volume method via finite elements as described in Chapter 15, we notice

that integration over the solid angle is combined with the domain integral [first term in

(24.2.87)] and with the boundary surface integral [second term in (24.2.87)] as shown in

Figure 24.2.4b,c. For example, it is shown that the integral of control angle coordinates

for solid angles along s are fixed at node 8 for simultaneous numerical integration with

the boundary surface integral along n. The integral equation (24.2.87) is transformed

into a discrete finite volume summing process,[∑
CV

(
 + �̂)�n�� −
∑
CS

ŝi ni��

]
In =

∑
CV

aIb�n�� (24.2.88)

with

�̂ = 	 s

4�

∑
m

Im�(m, n), m, n = index for solid angle

�(m, n) = 1

�′
m�n

∫
�m

∫
�n

�(s′, s) d�′d� (24.2.89a,b,c)

ŝi =
∫

�n

si d�
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Figure 24.2.4 Finite volume representation via finite elements

for control boundary surfaces and control angle directions.

(a) Finite volume representation at A with boundary nodes, 1-8.

(b) Designation of n and s at boundary node 8. (c) Subdivision

of directional solid angles at boundary node 8.

where (24.2.89c) can be integrated analytically, using (24.1.5). By carrying out the sum-

mation process indicated above, one obtains a system of algebraic equations to de-

termine nodal values of the radiative intensity. The procedure described here can be

extended to hexahedral elements for 3-D applications. The geometrical configurations

are detailed in Chapter 7.

The numerical solution of (24.2.83) has been studied extensively in the past, using

a variety of methods such as Monte Carlo methods, discrete ordinate methods as well

as FDM, FEM, and FVM. We present some of the FVM examples for the solution of

(24.2.83) in Section 24.4.2.

24.3 RADIATIVE HEAT TRANSFER IN COMBINED MODES

24.3.1 COMBINED CONDUCTION AND RADIATION

If the medium conducts heat as well as absorbs, emits, and scatters thermal energy, the

total heat flux vector is the sum of the contributions of conduction heat flux qc and the
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radiative heat flux qR. Thus, the energy equation becomes

∇ · (qc + qR) = 0 (24.3.1)

with

−k∇2T + ∇ · qR = 0 (24.3.2)

For a one-dimensional case, we have

k
d2T
dy2

= dqR

dy
(24.3.3)

For a gray and diffuse parallel bounding surface, the radiation equations follow from

(24.2.47), (24.2.50), (24.2.51), (24.2.57), and (24.2.59a,b):

qR(�) = 2B1 E3(�) − 2B2 E3(�o − �) + 2a



∫ �

0

[
�T 4(�) + 	

4a
G(�)

]
E2(� − �) d�

− 2a



∫ �o

0

[
�T 4(�) + 	

4a
G(�)

]
E2(� − �) d� (24.3.4)

dqR

d�
= −2B1 E2(�) + 2B2 E2(�o − �)

− 2a



∫ �o

0

[
�T 4(�) + 	

4a
G(�)

]
E1(|� − � |)d � + 4a�



T 4(�) − 	

4a
G(�)

(24.3.5)

G(�) = 2B1 E2(�) + 2B2 E2(�o − �) + 2a



∫ �o

0

[
�T 4(�) + 	

4a
G(�)

]
E1(|� − � |) d�

(24.3.6)

Denoting � = 
y, �o = 
L, equation (24.3.3) becomes

d2T
d� 2

= (1 − 	/
)

k

[4�T 4(�) − G(�)] (24.3.7)

Introducing nondimensional quantities,

�(�) = T(�)

T1

, �2 = T2

T1

, �(�) = G(�)

�T 4
1

, N = k


4�T 3
1

, �o = 	



, X= B

�T 4
1

Equations (24.3.7) and (24.3.6) are reduced to

N
d2�

d� 2
= (1 − �o)

[
�4(�) − 1

4
�(�)

]
(24.3.8)

�(�) = −2X1 E2(�) + 2X2 E2(�o − �)

+ 2

∫ �o

0

[
(1 − �o)�4(�) + �o

4
�(�)

]
E1(|� − � |) d� (24.3.9)
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Figure 24.3.1 One-dimensional combined con-

duction and radiation.

where

X1 = ε 1 + 2 (1 − ε 1)

{
X2 E3(�o) +

∫ �o

0

[
(1 − �o) �4(�) + �o

4
�(�)

]
E2(�) d�

}
(24.2.10a)

X2 = ε 2�4
2 + 2 (1 − ε 2)

{
X1 E3(�o)+

∫ �o

0

[
(1 − �o) � 4(�) + �o

4
�(�)

]
E2(�o − �) d�

}
(24.2.10b)

The boundary conditions are �(0) = 1, (�o) = �2, as shown in Figure 24.3.1.

Note that N = ∞ and N = 0 indicate the conditions of solely conduction and radi-

ation, respectively. The parameter �o = 	/
 is known as the albedo of scattering and

represents the fraction of attenuated energy due to scattering. It is seen that �o = 0

implies a nonscattering medium and equations (24.3.8) and (24.3.9) are reduced to a

single equation,

N
d2�

d� 2
= �4(�) − X1

2
E2(�) + X2

2
E2(�o − �) + 1

2

∫ �o

0

�4(�)E1(|� − � |) d�

(24.3.11)

For the case of an optically thin medium, it follows from (24.3.61) and (24.3.62) that

qR = �
(
T 4

1 − T 4
2

) (
1

ε1

+ 1

ε2

− 1

)−1

(24.3.12)

or

q = k
L

(T1 − T2) + qR

which indicates a nonparticipating medium.

The radiation flux for an optically thick medium is given by (24.3.74) as

qR = 4

3


d(�T 4)

dy
= −16�T3

3


dT
dy

(24.3.13)

or

q = k
L

(T1 − T2) + 4�

3
L

(
T 4

1 − T 4
2

)
(24.3.14)

or in nondimensional form,

q

�T 4
1

�o − 4N(1 − �2) + 3

4

(
1 − �4

2

)
(24.3.15)

For pure scattering (�o = 1), the energy equation is uncoupled from the radiation
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transfer process with �o = 	 L and thus

qR = (B1 − B2)Q(�o) (24.3.16)

Formulation of Finite Element Equations

For a gray and diffuse parallel bounding surface, the governing equations are given

by (24.3.8) and (24.3.9),

N
d2�

dT2
= (1 − �o)

[
�4(�) − 1

4
�(�)

]
(24.3.17)

�(�) = 2X1 E2(�) + 2X2 E2(�o − �) + 2I E1(|� − � |) (24.3.18)

where

I [Ei (�)] =
∫ �o

0

[
(1 − �o)�4(�) + �o

4
�(�)

]
Ei (�) d� (23.3.19)

X1 = ε 1 + 1

D

{
2ε2(1 − ε1)E3(�o)�4

2 + 4ε1 (1 − ε1)(1 − ε2)E2
3(�o)

+ 8 (1 − ε1)2(1 − ε2)E2
3(�o)I[E2(�)] + 4(1 − ε1)(1 − ε2) E3(�o)I[E2(�o − �)]

}
+ 2 (1 − ε2)I[E2(�)] (23.3.20a)

X2 = 1

D

{
ε2�4

2 + 2(1 − ε2)E3(�o)ε1 + 4(1 − ε1)(1 − ε2)E3(�o)I[E2(�)]

+ 2(1 − ε2)I[E2(�o − �)]
}

(23.3.20b)

D = 1 − 4(1 − ε1) (1 − ε2)E2
3(�o) (23.3.21)

Substituting (24.3.20) and (24.3.21) into (24.3.19) yields

�(�) = f1 E1(�) + f2 E2(�o − �) f3 (24.3.22)

where

f1 = g1 + g2 I[E2(�)] + g3 I[E2(�o − �)]

f2 = g4 + g5 I[E2(�)] + g6 I[E2(�o − �)]

f3 = 2I[E1(|� − � |)]

g1 = 2ε1 + 2

D

[
2ε2(1 − ε1)E3 (�o) �4

2 + 4ε1(1 − ε1)(1 − ε2)E2
3(�o)

]
g2 = 16

D
(1 − ε1)2(1 − ε2)E2

3 (�o) + 4(1 − ε1)

g3 = 8

D
(1 − ε1)(1 − ε2)E3(�o)

g4 = 2

D

[
ε2�4

2 + 2(1 − ε2)E3 (�o) ε1

]
g5 = 8

D
(1 − ε1)(1 − ε2)E3(�o)

g6 = 4

D
(1 − ε2) (24.3.23)
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For applications of finite elements into the governing equations (24.3.18) and

(24.3.19), we introduce the global functions ��, such that

� = �(�)
� ��, � = �(�)

� ��, �4 = �(�4)
� �4

�, � = �(�)
� �� (24.3.24)

For simplicity, it is reasonable to assume linear functions for all of these variables. The

Galerkin finite element representation for (24.3.18) and (24.3.19) takes the form∫ �o

0

��

[
d2�

d� 2
− (1 − �o)

N

(
�4 − 1

4
�

)]
d� = 0 (24.3.25a)

∫ �o

0

��[� − f1 E2(�) − f2 E2(�o − �) − f3] d� = 0 (24.3.25b)

Here, � denotes the global nodes. Integrating (24.3.25) by parts, we obtain

A�
�
 + 
�
�
 = F� + G� (24.3.26)

C�
�
 = H� (24.3.27)

Note that the calculations of f1, f2, and f3 in (24.3.23) can be carried out by use of

Gaussian quadrature integration. To this end, we choose to use linear isoparametric

coordinates such that

�1 = 1

2
(1 − �), �2 = 1

2
(1 + �)

�� =
E⋃

e=1

�N�N�

where �N� is the Boolean matrix, and E is the total number of elements. For example,

consider

I[E2(�)] =
∫ �o

0

[
(1 − �o)�4(�) + �o

4
�(�)

]
E2(�) d� (24.3.28)

where from (24.3.48b)

E2(�) ∼= 1 − 0.4228 � + � ln � − �2

2
+ �3

12
(24.3.29)

Let h be the length of an element. Then

� = �

h
, d� = ∂�

∂�
d� = hd�

Thus

I[E2(�)] =
E⋃

e=1

h
∫ 1

−1

[
(1 − �o)�

(e)
N �N��4

� + �o

4
�N�N���

][
1 − 0.4228 �N�N���

+ �N�N��� ln(�N�N���) − 1

2
�N�N��2

� + 1

12
�N�N��2

� + · · ·
]

d�

(24.3.30)

The Gaussian quadrature integration can now be applied to (24.3.29)

I[E2(�)] =
⋃
e=1

N∑
i=1

wi f (�i ) (24.3.31)
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Returning to (24.3.28) and (24.3.29), denoting � = �/h, d� = hd�, we write the

explicit forms of the matrices,

A�
 =
E⋃

e=1

∫ h

0

d�N

d�

d�M

d�
d��N��N
 =

E⋃
e=1

1

h

∫ 1

−1

d�N

d�

d�M

d�
�N��N
d� (24.3.32)

B�
 = −
⋃
e=1

(1 − �o)h
4N

∫ 1

−1

�N�M �N��N
 d� (24.3.33)

C�
 =
E⋃

e=1

1

h

∫ 1

−1

�N�M �N��N
d� (24.3.34)

F� =
E⋃

e=1

d�

d�

∗
�M �N�

∣∣∣∣
h

0

(24.3.35)

G� = −
E⋃

e=1

(1 − �o)h
N

∫ 1

−1

�N�M �N��N
�4

d� (24.3.36)

H� =
E⋃

e=1

h
∫ 1

−1

{ f1[�N�N� − 0.4228�N�M�N��M
�


+ �N�M�N��M
 ln(�p�p	 �	 ) + · · ·] + f2[0.5772�N �N�

+ 0.4228�N�M�N��M
�
 + �N�N� ln(1 − �M�M
�
)

− �N�M�N��M
 ln(1 − �p�p	 �	 ) + · · ·] + f3�N�N�}d� (24.3.37)

where the last term for H� is given by

E⋃
e=1

h
∫ 1

−1

f3�N�N�d� =
E⋃

e=1

h
∫ 1

−1

∫ 1

−1

�N�N�

[
(1 − �o)�M�M
�4


 + �o

4
�M�M
�


]
× [−0.5772 − ln(�p�p	 �	 − �p�p	 �	 )

+ �p�p	 �	 − �p�p	 �	 + · · ·] d�d�

The boundary conditions are given by (Figure 24.3.1)

� = 1 at � = 0

� = �2 at � = �o

Since the Dirichlet boundary conditions are provided at both ends, the Neumann

boundary conditions F� (24.3.36) need not be prescribed.

All matrices in (24.3.27) and (24.3.28) are integrated using the Gaussian quadrature.

Here, �4 can be calculated initially from the Dirichlet boundary conditions and placed

in G� and H�. The solution of (24.3.28) and (24.3.29) is obtained iteratively by updating

G� and H� until convergence, in which the nodal values �4
� and �� on the right-hand

sides of (24.3.28) and (24.3.29) are replaced by those values of the previous iterative

cycle.
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Emitting and Absorbing Media

With �o = 0 which represents nonscattering media, the expressions (24.3.18) and

(24.3.19) are reduced to a single equation (24.3.53). The finite element analog takes the

form

A�
�
 = F� + Ĝ� + Ĥ� (24.3.38)

where G� and H� are the same as in (24.3.37) and (24.3.38), respectively, with the value

of �o set equal to zero.

The radiation flux for optically thin media is given by (24.3.13) which is a constant

and indicates that the medium is nonparticipating.

With the radiation flux given by (24.3.14), the Galerkin finite element equation for

the combined conduction and radiation takes the form (with T = ��T�)∫ L

0

��

(
d2T
dy2

+ g(T)
dT
dy

)
dy = 0 (24.3.39)

where

g(T) = 48�T2

3
k + 16�T3
(24.3.40)

Integrating (24.3.40) by parts, we obtain

A�
T
 + B�
(g)T
 = F� (24.3.41)

where

A�
 =
∫ L

0

d��

dy
d�


dy
dy =

E∑
e=1

∫ h

0

d�N

dy
d�M

dy
�N��N
dy (24.3.42)

B�
(g) = −
E⋃

e=1

∫ h

o
�N

�M

dy
g(T)�N��N
dy (24.3.43)

F� = d T
dy

∗
��

∣∣∣∣
L

0

(24.3.44)

Since B�
(g) is nonlinear, the Newton-Raphson iterations may be used to solve (24.3.42).

To this end, it is particularly advantageous to use isoparametric coordinates and

Gaussian quadrature for easy integration. An alternative method would be to write

g = ��g� (24.3.45)

and

B�
(g) = −
(e)⋃

e=1

∫ h

o
�N

d�M

dy
�p�N��M
�p	 g	 dy (24.3.46)

This will require updating of g	 at each iterative cycle until convergence.

Example problems for the combined mode conduction and radiation are presented

in Section 24.4.3.
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24.3.2 COMBINED CONDUCTION, CONVECTION, AND RADIATION

The most general form of the energy equation is written as

�c�
DT
Dt

= −∇ · q − p∇ · v + �� (24.3.47)

where

−p∇ · v + �� = �i j di j

q = −k∇T + qR

An alternative form is

�cp
DT
Dt

= ∇ · k∇T + bT
Dp
Dt

+ �� − ∇ · qR (24.3.48)

where b is the thermal expansion coefficient of the fluid.

Boundary Layer Energy Equation

Let us consider a boundary layer form of (24.3.48) for a two-dimensional flow.

u
∂T
∂x

+ v
∂T
∂y

= �
∂2T
∂y2

+ bTu
�cp

dP
dx

+ �

�cp

(
∂u
∂y

)2

− 1

�cp
∇ · qR (24.3.49)

where u and v denote x and y components of velocity, respectively, with x being the

streamwise coordinate and y the transverse coordinate, and where � is the thermal

diffusivity of the fluid. The simplification here is based on the large Peclet number

Pe = u ∞L
�

	 1

where L is a characteristic dimension. For small Eckert number

Ec = u 2
∞

cp�T
� 1

we may also neglect the second and third terms on the right-hand side of (24.3.49).

Furthermore, if

u
∂T
∂x

	 1

�cp

∂qRx

∂x

then it is reasonable to neglect the radiation in the x-direction. These simplifications

lead to

u
∂T
∂x

+ v
∂T
∂y

= �
∂2T
∂y2

− 1

�cp

∂qR

∂y
(24.3.50)

Flow through Ducts

For a fully developed flow through ducts with Ec � 1, we may neglect v∂T/∂y in

(24.3.50)

u
∂T
∂x

= �
∂2T
∂y2

− 1

�cp

∂qR

∂y
(24.3.51)
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where

u = 6um

(
y
L

− y2

L2

)
(24.3.52)

and, for a nonscattering gray fluid and black plate surfaces,

−dqR

d�
= 2�T 4

w E2(�) + 2�Tw E2(�o − �) + 2�

∫ �o

0

T 4(�)E1(|� − � |) d� − 4�T 4(�)

(24.3.53)

The axial temperature gradient may be assumed as

∂T
∂x

=
(

Tw − T
Tw − Tb

)
qw

�cpumL
(24.3.54)

where Tb is the local bulk-fluid temperature and qw is the total wall-heat flux,

qw = −k
(

∂T
∂y

)
y=0

+ 2�T 4
w [1 − E3(�o)] − 2�

∫ �o

0

T 4(�)E2(�) d� (24.3.55)

Upon combining (24.3.51) through (24.3.55), we now have

2N
d2�

d� 2
− 6�

�o

(
�

�o
− � 2

� 2
o

) (
1 − �

1 − �b

)

= −E2(�) − E2(�o − �) −
∫ �o

0

�4(�)E1(|� − � |) d� − 2�4(�) (24.3.56)

with

N = ka
4�T 3

w

, � = qw

�T 3
w

, � = T
Tw

, �b = Tb

Tw

� = −4N
(

d�

d�

)
�=0

+ 2 − 2E2(�o) − 2

∫ �o

0

�4(�)E2(�) d� (24.3.57)

We have boundary conditions for (24.3.56) in the form

�(0) = �(�o) = 1

Nonviscous, Nonconducting Flow over a Flat Plate

In this case, we have u = u∞, v = 0, and dP/dx = 0. The governing equation

becomes

u∞
∂T
∂x

= − 1

�cp

∂qR

∂y
(24.3.58)

Setting �o = 0 and εw = 1, �o = ∞, we get

qR = 2�T 4
w E3(�) + 2�

∫ �

0

T 4(x, t)E2(� − �)d � − 2�

∫ ∞

�

T 4(x, t)E2(� − �) d�

(24.3.59)

−dqR

d�
= 2�T 4

w E2(�) + 2�

∫ ∞

0

T 4(x, �)E1(|� − � |) d� − 4�T 4(x, �) (24.3.60)
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Furthermore, we may assume that temperature differences within the flow are suffi-

ciently small such that T 4 can be expressed as a linear function of temperature. Toward

this end, we expand T 4 in a Taylor series about T∞ neglecting higher order terms.

Thus,

T 4 ∼= 4T 3
∞T − 3T 4

∞ (24.3.61)

Introducing nondimensional quantities,

� = T − Tw

T∞ − Tw

, � = 2�aT 3
∞x

�cpu∞

we obtain

∂ �

∂ �
= 4

∫ ∞

0

�(�, �)E1(|� − � |) d� − 8 � (�, �) (24.3.62)

with the boundary condition

�(0, �) = 1 (24.3.63)

In view of (24.3.61), (24.3.62), and (24.3.59) with � = 0 we have

qRw

�
(
T 4

w − T 4∞
) = 2

∫ ∞

0

�(�, �)E2(�) d� (24.3.64)

with

T 4
w − T 4

∞ ∼= 4T 3
∞(Tw − T∞) (24.3.65)

Optically Thin Boundary Layer

We consider effects of both viscosity and heat conduction in a laminar flow of a

constant property gray fluid over a black isothermal plate governed by

u
∂T
∂x

+ v
∂T
∂y

= �
∂2T
∂y2

+ 2�a
�cp

[
T 4

w E2(�) +
∫ ∞

0

T 4(x, �)E1(|� − � |) d� − 2�T 4(x, �)

]

(24.3.66)

In the outer region the velocity in the x direction has the free stream uo and neglecting

heat conduction, we have

uo
∂T
∂x

= 2�a
�cp

[
T 4

w E2(�) +
∫ ∞

0

T 4(x, �)E1(|� − � |) d� − 2T 4(x, �)

]
(24.3.67)

For an approximate solution, we substitute the incoming free stream temperature To for

the temperature on the right side as first approximation and then carry out the integral

to obtain a second approximation. This yields (T = To at x = 0),

T(x, �) = To + �
(
T 4

w − T 4
o

)
E2(�)

2ax
�cpuo

+ · · · (24.3.68)

At the edge of the thermal layer � = ay = a where  is the inner boundary layer
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thickness, which is small so that E2(a) ∼= E2(0) = 1. Thus, (24.3.68) becomes

T(x, ) = To + �
(
T 4

w − T 4
o

) 2ax
�cpuo

+ · · · (24.3.69)

Now the last integral in (24.3.67) is carried out in two steps, one from � = 0 to a and

one from a to ∞. The first portion, neglected as the thermal layer, is optically thin and

the second is evaluated via (24.3.68). This leads to

u
∂T
∂x

+ v
∂T
∂y

= �
∂2T
∂y2

+ 2�a
�cp

(
T 4

w + T 4
o − 2T 4

)
(24.3.70)

The boundary conditions consist of (24.3.69) at y =  and T = Tw at y = 0.

Another approach in terms of dimensionless forms may be used. Denoting

u = u∞ f ′, v = 1

2

√
� u∞

x
(�f ′ − f ) (24.3.71)

where f (�) is the dimensionless Blasius stream function, and

� = y

√
u∞
nx

Let � = ay and

� = 2�aT 3
∞x

�cpu∞

we obtain

f ′ ∂T
∂�

+ 1

2

√
2 Pr N

�
(�f ′ − f )

∂T
∂ �

= 2N
∂2T
∂ � 2

+ 1

T 3∞

[
T 4

w E2(�) +
∫ ∞

0

T 4(�, �)E1(|� − � |) d� − 2T 4(�, �)

]
(24.3.72)

where

N
�a

4�T 3∞
, � = �√

2 Pr N�
, Pr = �

�

Setting N = 0( f ′(�) < f ′(∞) = 1) in (24.3.72) leads to

∂To

∂�
= 1

T 3∞

[
T 4

w E2(�) +
∫ ∞

0

T 4
o (�, �)E1(|T − t |) d � − 2T 4

o (�, �)

]
(24.3.73)

Note that this equation fails to satisfy temperature continuity near the surface. Assuming

Pr = 0(1) and introducing

� = �√
2 Pr N
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it follows from (24.3.72) that

f ′ ∂T
∂�

+ 1

2
√

�
(� f ′ − f )

∂T
∂ �

= 1

Pr

∂2T

∂ � 2
+ 1

T 3∞

[
T 4

w +
∫ ∞

0

T 4(�, �)E1(�) d � − 2T 4(�, �)

]
(24.3.74)

Note further that if T(�, �) = To(�, �) for >�, then we get∫ ∞

0

T 4(�, �)E1(�) d � =
∫ ∞

0

T 4
o (�, �)E1(�) d � −

∫ �

0

T 4
o (�, �)E1(�) d �

+
∫ �

0

T 4
o (�, �)E1(�) d � +

∫ �

0

T 4(�, �)E1(�) d �

Here the second and third integrals on the right side are of the order
√

2 Pr N and may

be neglected, and∫ ∞

0

T 4
0 (�, �)E1(�) d � = T 3

∞
dTo(�, 0)

d�
+ 2T 4

o (�, 0) − T 4
w

Thus,

f ′ ∂T
∂�

+ 1

2
√

�
(� f ′ − f )

∂T
∂ �

= 1

Pr

∂2T

∂ � 2
+ dTo(�, 0)

d�
+ 2

T 3∞

[
T 4

o (�, 0) − T 4(�, �)
]

(24.3.75)

The boundary conditions are

T = Tw, � = 0

T → To(�, 0), � → ∞
with

T(�, ∞) = To(�, 0) for N � 1

Optically Thick Boundary Layer

Although, in general, the optically thin boundary layer is a physically realistic model,

an optically thick model may be used if the thermal layer has become very thick or the

medium is highly absorbing. Again for small Eckert numbers, it follows from (24.3.50)

and (24.3.14) that, with 
 = a,

qR = −4�

3a
∂T 4

∂y

we obtain

u
∂T
∂x

+ v
∂T
∂y

= �
∂2

∂y2

(
T + 4�

3ka
T 4

)
(24.3.76)

Using the similarity transformation

T(�) = T(x, y)
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(24.3.76) becomes

1

Pr

∂2

∂�2

(
T + T 4

3T 3∞N

)
+ 1

2
f

∂T
∂�

= 0 (24.3.77)

with the boundary conditions

� = T − Tw

T∞ − Tw

and using (24.3.61), equation (24.3.77) reduces to

1

Pr

(
1 + 4

3N

)
∂2�

∂�2
+ 1

2
f

∂�

∂�
= 0 (24.3.78)

with

�(0) = 0, �(∞) = 1

Combined Conduction-Convection-Radiation in Scattering Medium

When scattering is considered in the absorbing and emitting medium for a parallel-

plate channel with the velocity and temperature profiles fully developed, we have the

governing equation

u
∂T
∂x

= �
∂2T
∂y2

+ �

�cp

dP
dx

+ �

�cp

(
∂u
∂y

)2

− 1

�cp

∂qR

∂y

It can easily be shown that, from (24.3.49)

d2�

d� 2
= 1

N
(1 − �o)

[
�4(�) − 1

4
�(�)

]
− 3�

N�o

(
�

�o
− � 2

� 2
o

) (
1 − �

1 − �b

)

+ 36Ec Pr

� 2
o

(
1 − 2�

�o

)2

= 0 (24.3.79)

where � = T/T1, �b = Tb/Tw, Ec = u2
b/cpT2

w (Eckert number) and Pr = cp�/� (Prandl

number) and � is defined in (24.3.9). The total heat flux � at y = 0 is given by

� = −4N
(

d�

d�

)
�=0

+ � (24.3.80)

where

� = 2 [X1 E3(0) − X2 E3(�o)] −
∫ �o

0

[
(1 − �o)�4(�) − 1

4
�(�)

]
E2(�) d�

Note that the last two terms on the right-hand side of (24.3.79) represent scattering

and viscous dissipation. If they are dropped, then we recover (24.3.8) for the case of

nonscattering.

Flow through Ducts

For a fully developed flow through ducts given by (24.3.51) and the nondimensional

form of (24.3.56), the finite element equations may be derived in the form similar to

(24.3.27). We proceed with

� = ����, �4 = ���4
�, � = ����
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and obtain

A�
�
 = F� + G� (24.3.81)

where A�
 and F� are the same as (24.3.33) and (24.3.36), respectively, and G� represents

the rest of the terms in (24.3.56).

Although the boundary layer equations are simplified from the general form, the

solution by numerical methods often leads to instability unless extremely small elements

are provided in the boundary layer region. We consider finite element equations for the

optically thin and thick cases.

For optically thin boundary layers let us consider the nondimensional form (24.3.75)

which results from (24.3.66). It is seen that the outer solution to (�, �) is required a priori.

For linearized radiation, we assume

�̂(�, �) = To(�, �) − Tw

T∞ − Tw

(24.3.82a)

� = T(�, �) − Tw

T∞ − Tw

(24.3.82b)

Thus, the linearized equation takes the form

f ′ ∂�

∂�
+ 1

2
√

�
(� f ′ − f )

∂�

∂ �
= 1

Pr

∂2�

∂ � 2
+ d �̂(�, 0)

d�
+ 8 �̂(�, 0) − 8 �(�, �) (24.3.83)

The required boundary conditions are

� → 0 at � = 0

� → �̂(�, 0) for � → ∞

The finite element representation of (24.3.83) is

A�
�
 + B�
�
 = F� + G� + H� (24.3.84)

in which

A�
 = 1

Pr

∫
�

∂��

∂�

∂�


∂ �
d� (24.3.85a)

B�
 =
∫

�

8���
d� (24.3.85b)

F� = 1

Pr

∂�

∂�

∗
��

∣∣∣∣
� = ∞

0

(24.3.85c)

G� =
∫

�

(
��

∂�


∂ �
+ 8���


)
�̂
d� (24.3.85d)

H� = −
∫

�

(
��

∂�


∂ �
�
�	 f ′

	 + ��
∂�


∂ �
�
�	 a	

)
d� (24.3.85e)
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where

a	 =
[

1

2
√

�
(� f ′ − f )

]
	

(24.3.85f)

To carry out calculations initially, the velocity field must be given and boundary

layer thickness assumed. This will require once again an iterative procedure until

convergence.

For more rigorous analysis, the continuity and momentum equations can be solved

simultaneously with the energy equation. In the presence of thermal buoyancy with

natural convection, we have

∂u
∂x

+ ∂v

∂y
= 0 (24.3.86a)

u
∂u
∂x

+ v
∂u
∂y

= �
∂2u
∂y2

+ gb(T − T∞) (24.3.86b)

u
∂T
∂x

+ v
∂T
∂y

= �
∂2T
∂y2

+ 1

�cp

[
2a�

(
T 4

w − T 4
∞ − 2T 4

)]
(24.3.86c)

Written in nondimensional form, we have

∂U
∂ X

+ ∂V
∂Y

= 0 (24.3.87a)

U
∂U
∂ X

+ V
∂U
∂Y

= 1

Re

∂2U
∂Y2

+ Ra�

Re2 Pr
(24.3.87b)

U
∂�

∂ X
+ V

∂�

∂Y
= 1

Re Pr

∂2�

∂Y2
+ �L

(m − 1)
{1 + m4 − 2[1 + (m − 1) �]} (24.3.87c)

where

U = u
u∞

, V = v

u∞
, X = x

L
, Y = y

L

� = T − T∞
Tw − T∞

, m = Tw

T∞
, Re = u∞L

�

�L = 2�aT 3
∞L

�cpu∞
, Ra = gb(Tw − T∞)L3

�k
, Pr = �

�

Boundary conditions are

� = 1, U = V = 0 at X, Y = 0 (24.3.88a)

T(x, ) ∼= T∞ + 2a�x
�cpu∞

(
T 4

w − T4
∞

)
, y =  (24.3.88b)

Y = x

L
, � = �(m + 1)(m2 + 1) (24.3.88c)

where boundary layer thickness is given by

x = 5x√
Re

(24.3.88d)
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To solve (24.3.87) we may use FDM, FEM, or FVM developed in Parts Two and

Three. However, treatments of convective terms and the fourth order nonlinearity of

temperature must be resolved. In particular, the optimal control methods (OCM) pre-

sented in Section 14.2 and also in Kim, 1982, Chung and Kim, 1984, Utreja, 1982, and

Utreja and Chung, 1989 are found to be efficient in the solution of (24.3.87). In this

method the formulation begins with construction of the cost function,

J = 1

2

[ ∫
�

(
∂U
∂ X

+ ∂V
∂Y

)2

d� +
∫

�

(
U

∂U
∂ X

+ V
∂U
∂Y

− 1

Re

∂2U
∂Y2

− Ra�

Re2 Pr

)2

d�

+
∫

�

(
U

∂�

∂ X
+ V

∂�

∂Y
− 1

Re Pr

∂S
∂Y

+ 2�L� − a
)2

d�

+ �1

∫
�

(
R − ∂U

∂Y

)2

d� + �2

∫
�

(
S − ∂�

∂Y

)2

d�

]
(24.3.89)

where �1 and �2 are the penalty constants, with R and S related by

R = ∂U
∂Y

(24.3.90)

S = ∂�

∂Y
(24.3.91)

∂2U
∂Y2

= ∂R
∂Y

(24.3.92)

∂2�

∂Y2
= ∂S

∂Y
(24.3.93)

Minimizing (24.3.89) with respect to all nodal variables, we obtain

J = ∂ J
∂U�

U� + ∂ J
∂V�

V� + ∂ J
∂��

�� + ∂ J
∂R�

R� + ∂ J
∂S�

S� = 0 (24.3.94)

since U�, V�, ��, R� and S� , are arbitrary, and for (24.3.94) to be valid with respect

to every nodal value of these infinitesimal quantities, we must have

∂ J
∂U�

= 0,
∂ J
∂V�

= 0,
∂ J
∂��

= 0,
∂ J
∂R�

= 0,
∂ J
∂S�

= 0 (24.3.95)

which provide simultaneous algebraic equations. The boundary conditions given by

(24.3.88) can be imposed easily in (24.3.95).

For optically thick boundary layer flow, the procedure for a finite element analysis

is now routine, either via Galerkin or optimal control methods.

If the Galerkin approach is used for (24.3.76), then we get

A�
T
 + B�
T
 = F� + G� (24.3.96)

where A�
 and F� are the same as (24.3.42) and (24.3.44), respectively, and

B�
 =
∫

�

(
1

�
u ��

∂�


∂ x
+ 1

�
v ��

∂�


∂ x

)
d� (24.3.97)

G� =
∫

�

m��
∂�


∂ y
T 4


 d� (24.3.98)
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with

m = 4�

3ka �
(24.3.99)

It is seen that simplification using the nondimensional form (24.3.78) leads to

A�
�
 + B�
�
 = F� (24.3.100)

where

A�
 =
∫

�

∂��

∂ �

∂�


∂ �
d� (24.3.101)

B�
 =
∫

�

g ��
∂�


∂ �
d� (24.3.102)

F� = ∂�

∂ �

∗
��

∣∣∣∣
1

0

(24.3.103)

g = 3 Pr Nf
2(3N + 4)

(24.3.104)

The corresponding boundary conditions are

�(0) = 0 (24.3.105)

�(∞) = 1 (24.3.106)

The formulation using OCM is self-explanatory and requires no further elaboration.

Scattering Medium

The combined conduction-convection-radiation heat transfer in a scattering medium

governed by (24.3.79) and (24.3.80) can be solved most effectively by the optimal control

penalty finite element method. This is because the Galerkin method is likely to suffer

instability due to the convective term or nonself-adjointness of the differential equation.

Following the OCM procedure, we write the cost function of the type (24.3.89) in a

more general form

J = 1

2

∫
�

(
Rn Rn + �(m)S(i)

m S(i)
m

)
d� (24.3.107)

where Rn (n = 1, 2, . . .) denotes the residual of the nth governing equation, �(m) refers

to the mth penalty function corresponding to the mth auxiliary constraint equation

introduced for a reduction of the second order derivative into first order such that

S(i)
m = G(i)

m − Ym,i (24.3.108)

with Ym the mth unknown and the comma denotes a partial derivative with respect to

the coordinate xi . Thus, for the problem at hand, we write

R1 = dG
d�

− 1 − �o

N

[
�4(�) − 1

4
�(�)

]
− 3�

N�o

(
�

�o
− � 2

� 2
o

) (
1 − �

1 − �b

)

+ 36Ec Pr

� 2
o

(
1 − 2�

�o

)2

= 0 (24.3.109)
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R2 = �(�) − 2

{
X1 E2(�) − X2 E2(�o − �)

+
∫ �o

0

[
(1 − �o)�4(�) + �o

4
�(�)

]
E1(|� − � |) d�

}
= 0 (24.3.110)

S1 = G − d �

d �
= 0 (24.3.111)

It is implied that the unknowns to be calculated consist of the temperature � = Y1,

the radiation function � = Y2 , and the temperature gradient G = G(1)

1 . It is noted that

the ranges of indices n, m, and i in (24.3.107) are n = 1, 2, 3; m = 1, i = 1. At this point

we require that all variables, Y1, Y2, G(1)

1 , be interpolated for finite elements,

Ym = ��Ym� →
{

� = ����

� = ����

(24.3.112)

G(i)
m = ��G(i)

m� → G = ��G� (24.3.113)

where Ym� and G(i)
m� are the values of Ym and G(i)

m at a global node �, and �� denotes

the global interpolation function [Razzaque, Klein, and Howell, 1982].

Finally, we minimize the cost function such that

J = ∂ J
∂��

�� + ∂ J
∂��

�� + ∂ J
∂G�

G� = 0 (24.3.114)

Since ��, ��, and G� are arbitrary, we must have∫
�

(
R1

∂R1

∂��
+ R2

∂R2

∂��
+ �S1

∂S1

∂��

)
d� = 0 (24.3.115a)

∫
�

(
R1

∂R1

∂��
+ R2

∂R2

∂��
+ �S1

∂S1

∂��

)
d� = 0 (24.3.115b)

∫
�

(
R1

∂R1

∂G�
+ R2

∂R2

∂G�
+ �S1

∂S1

∂G�

)
d� = 0 (24.3.115c)

Combining these equations, we obtain

Ai j (X)Xj = fi (24.3.116)

with

Xj = (��, ��, G�) (24.3.117)

Note that integrations are required along optical depth as indicated by (24.3.26, 27)

plus the finite element domain of (24.3.115). However, the integration limits for both

the optical depth and finite element domain are identical since all radiation and flow

variables along the axial direction are constant. The significant feature of (24.3.115) is

that the resulting nonlinear algebraic equations are symmetric, positive definite, and

well conditioned with a proper choice of the penalty constant �. The solution of the

nonlinear equations of (24.3.115) may best be carried out by the Newton-Raphson
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technique in the form

Ji j�X (n+1)
j = − f (n)

i (24.3.118)

Ji j = ∂ f (n)
i

∂ Xj
(24.3.119)

�X (n+1)
j = X (n+1)

j − X(n)
j (24.3.120)

with f (n)
i denoting the ith finite element equation in (24.3.116). Note that, in (24.3.120),

an inversion of the Jacobian matrix is avoided. The solution involves calculation of

� X (n+1)
j , and the unknowns X (n+1)

j are then determined from (24.3.120).

It should be noted that the gradient boundary conditions can be specified simultane-

ously at any given boundary node, which is not possible nor permitted in the Galerkin

finite element method. This fact can be considered an advantage in the optimal control

penalty finite elements, but at the same time deterioration of the solution may result

due to non-specification of such boundary conditions. It is further reminded that the

optimal control penalty finite elements offer no advantage over the standard Galerkin

approach if the governing equation is self-adjoint, in which no convective terms are

present.

Example problems for the two-dimensional analysis of combined mode conduction,

convection, and radiation are presented in Section 24.4.4.

24.3.3 THREE-DIMENSIONAL RADIATIVE HEAT FLUX INTEGRAL FORMULATION

Energy transfer in absorbing, emitting, and scattering media is an important considera-

tion in rocket propulsion, plasma generators for nuclear fusion, ablating systems, hyper-

sonic shock layers, nuclear explosions, etc. Equations governing such energy transfer

may represent a combined mode heat transfer by conduction, convection, and radiation.

Our objective is to compute the radiation function in terms of surface and vol-

ume integrals through arbitrary optical coordinates. In this approach, no limitations

on optical thickness are imposed. Numerical solutions of the governing equations are

implemented through the Galerkin finite elements. It is shown that use of isoparametric

elements facilitates numerical integration via Gaussian quadrature, unlimited by optical

depths of the participating media.

Example problems to demonstrate efficiency of the solution procedure include two-

dimensional diverging and converging channels. Effects of combined mode (conduction-

convection-radiation), albedo, optical thickness, etc., are investigated [Chung and Kim,

1984].

In general, it is convenient to have the energy equation in terms of the fluid temper-

ature and heat capacity rather than internal energy. It is also assumed that the radiant

energy and the radiation stresses are much smaller than the corresponding molecular

quantities and can therefore be neglected even at very high temperatures. Thus, if the

radiating fluid is an ideal gas, we have, for a steady state

�cpui
∂T
∂xi

− k
∂2T

∂xi∂xi
+ ∂qR

i

∂xi
= 0 (24.3.121)
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Consider a spectral optical volume, V�, and a spectral surface area, A�, as defined in

Goulard [1962]

dV� = � 2
� d��d� (24.3.122a)

dA� = � 2
� d�

/
cos � (24.3.122b)

where � is the angle between the normal vector to the surface and the direction � as

shown in Figure 24.3.2a. Note that V� and A� are the functions of the spectral optical

length, �� measured from the point M at r in the direction �. Expressing the spectral

optical space defined in equations (24.3.122a,b), we have

qR
�i (r) =

∫
A�

I�(rw)
e−��w

� ′ 2
�w

�i cos � dA� +
∫

V�

S�(r ′)
e−� ′

�

� ′ 2
�

�i dV� (24.3.123)

qR
�i,i (r) = 4�a�(r)B�(r) − a�(r)

∫
A�

I�(rw)
e−��w

� ′ 2
�w

cos � dA� + a�(r)

∫
V�

S�(r ′)
e−� ′

�

� ′ 2
�

dV�

(24.3.124)

For a gray medium with gray bounding surfaces, it can be shown that

qR
i (r) =

∫
A

�T 4
w

�

e−�w

� 2
�i cos � dA+

∫
V

S(r ′)
e−� ′

� ′2 �i dV (24.3.125)

and

∂qR(r)

∂xi
= 4


(
1 − 	




) (
�T 4(r) − 1

4
H

)
(24.3.126)

where Tw represents the surface temperature and H is an integral defined by

H =
∫

A

�T 4
w

�

e−�w

� 2
w

cos � dA+
∫

V
S(r ′)

e−� ′

� ′2 dV (24.3.127)

with

S(r ′) =
(

1 − 	




)
�T 4

�
+ �o

4�
H (24.3.128)

Assume that all the radiative physical properties (i.e., 
, a, and 	) are constant through-

out the flow domain and define dimensionless quantities

vi = ui

Uo
, � = T

To
, Xi = 
xi , �o = 
L

where Uo, To, and L are, respectively, the reference velocity, temperature, and length.

Then the energy equation can be written in dimensionless form as

∂2�

∂xi∂xi
− Re Pr

�o
vi

∂�

∂xi
− 1 − �o

N

(
�4 − 1

4�
H

)
= 0 (24.3.129)

Here H is the radiation function given by

H =
∫

V
�s

e−�

� 2
dV +

∫
A

� 4
w

e−�w

� 2
w

cos � dA (24.3.130)
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Figure 24.3.2 Three-dimensional heat flux integral formulation. (a) Radia-

tion contribution of a surface element, dA, and a volume element. dv, to a

point M in a direction �. (b) Geometry for volume integral. (c) Geometry

for surface integral.
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where �s is the dimensionless source function defined by �s = � S/�T 4
o . That is

�s(r) = (1 − �o)
(

�4 + �o

4�
H

)
(24.3.131)

To determine H, let us now consider an optical volume element, dV, centered at Bas

shown in Figure 24.3.2b, in which all distances are measured by the optical coordinates

X, Y, and Z. Let �z be the angle at which the point, M, sees the volume element, dV,

with respect to a point B at Z = 0, and let � and � be the optical distances of MB and

MB
′
, respectively. The volume integral of H is then evaluated as follows:∫
V

�s
e−�

� 2
dV=

∫ ∫ ∫ ∞

−∞
�s(B)

e−�

� 2
dZdXdY

=
∫ ∫ ∫ ∞

−∞
�s(B)

e−�/cos �z

(� 2/cos �z)2
d(tan �z�) dXdY

=
∫ ∫

�s F�(�) dXdY (24.3.132)

where B is a point in the two-dimensional domain of the X- and Y-coordinates, and

F�(�) is a geometric function of the optical distance, � , measured from the point, M,

involved in the volume integral,

F�(�) = 2

∫ �/2

0

e−�/cos �z

�
d�z (24.3.133)

To determine the surface integral of H, we consider a surface element dA= d�dZ,

in which d� is a boundary segment of the two-dimensional domain (Figure 24.3.2). Let

� be the angle between the normal vectors to the surface element centered at C′ and

the line MC
′
. Also, let �o be the angle at Z = 0.

Noting cos � = cos �z cos �o where �z is the angle between MC and MC
′
, it follows

that∫
A

�4
w

e−�w

� 2
w

cos �zdA =
∫ ∫ �

2

− �
2

�4
w

e−�/cos �z

(�w/cos �z)
cos �z cos �o(tan �z�) d� (24.3.134)

Thus, the integral, H, at the point, M, at r in the domain can be evaluated with �s solved

simultaneously by means of equation (24.3.131).

Galerkin finite elements to solve problems such as equations (24.3.129, 24.3.130) are

straightforward. We consider that the temperature, �, and radiation function, H, are

approximated as

� = ����, H = �� H� (24.3.135)

where �� denotes the four-node isoparametric interpolation function, with � repre-

senting the global nodes. Substituting equation (24.3.135) into equation (24.3.129) and

equation (24.3.130), we arrive at the Galerkin finite element equations in the form

A�
�
 + B�
�
 + C�
 H
 = F� + G� (24.3.136a)

D�
 H
 = L� + M� (24.3.136b)
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where

A�
 =
∫

�

∂��

∂xi

∂�


∂xi
d� B�
 = Re Pr

�o

∫
�

vi ��
∂�


∂xi
d�

C�
 = 1 − �o

4�N

∫
�

���
 d� F� =
∫

�

∂�

∂xi
ni

∗
�� d �

G� = 1 − �o

N

[∫
�

���
 d�

]
�4


 D�
 =
∫

�

���
 d�

L� = −
∫

�

(∫
V

�s
e−�w

� 2
dV

)
�� d� M� = −

∫
�

(∫
A

�4
w

e−�w

� 2
w

cos � dA

)
∗
�� d �

Here,
∗
�� represents boundary interpolation functions.

Combining equations (24.3.136a) and (24.3.136b), we write the resulting equations

in the form

Ki j Xj = fi (24.3.137)

with

Xj =
[

��

H�

]

The solution of nonlinear equations (24.3.137) may best be carried out by the Newton-

Raphson technique in the form

Ji j�X (n+1)
j = − f (n)

i (24.3.138)

where

Ji j = ∂ f (n)
i

∂ Xj

� X (n+1)
j = X (n+1)

j − X (n)
j (24.3.139)

with f (n)
i denoting the ith finite element equation in (24.3.137). Note that, in (24.3.137),

an inversion of the Jacobian matrix is avoided. The solution involves calculation of

� X(n+1)
j , and the unknowns X(n+1)

j are then determined from equation (24.3.139).

Example problems for the combined mode conduction, convection, and radiation

with three-dimensional flux integration are presented in Section 24.4.5.

24.4 EXAMPLE PROBLEMS

24.4.1 NONPARTICIPATING MEDIA

(1) View Factors

Calculate view factors for (1) two parallel 1 × 1 square planes, one unit apart and

(Figure 24.4.1.1a) and (2) two intersecting 1× 1 square planes at angles 30◦, 60◦, 90◦, 120◦,
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Figure 24.4.1.1 View factor calculations, convergence studies. (a) Convergence curve of view factor error

vs. mesh size for two parallel 1 × 1 square planes, one unit apart. (b) Convergence curve of view factor

error vs. mesh size for two intersecting 1 × 1 square planes at angle of 30◦, 60◦, 90◦, 120◦, 150◦. (c) View

factors vs. mesh size, intersecting planes. (———) exact solution; (— • —) two-point Gaussian quadrature;

(---------) six-point Gaussian quadrature.

and 150◦ (Figure 24.4.1.1b). Use linear isoparametric elements with 2-point Gaussian

quadrature.

The convergence curves for the results are presented in Figure 24.4.1.1b,c. It is

shown that the most accurate results are obtained for parallel surfaces. In the case of

intersecting surfaces with smaller angles, more refined grids and an additional number of

Gaussian points are required for convergence. It is reminded that the power of the finite

element method is its capability to handle irregular geometries other than a simple case

as shown in this example. If convergence is guaranteed from the basic mathematical

viewpoint, the accuracy of the solution for irregular geometries can be guaranteed.
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Figure 24.4.1.2 Heat conduction with convection and radiation boundaries. (a) 3 × 3 quadratic

elements (40 nodes), Example 24.2.2 case 1. (b) Temperature distribution, Example 24.2.2

case 1.

Here, the numerical results are based on linear interpolation functions and two-point

Gaussian quadrature integration. Higher order finite element interpolation functions

and/or an additional number of Gaussian points may be used for further improvement

in accuracy.

(2) Radiative Boundary Conditions

Case 1. Consider the geometry with convection and radiation boundaries as shown

in Figure 24.4.1.2a. Calculate the steady-state temperature with vi = 0 and the following

data: � = 1, Btu/hr ft2 ◦R. T′ = 520◦R, Tr = 520◦R, F = ε = k = 1, Q = 300 Btu/hr ft3

at the bottom, and q(CD) = 150 Btu/hr ft2 at the top, linearly varying in between. Use

isoparametric elements and the Newton-Raphson method.

The results are shown in Figure 24.4.1.2b. Convergence is obtained after three or

four Newton-Raphson iterations.

Case 2. Consider the geometry as shown in Figure 24.4.1.3a for one-dimensional

transient heat transfer. Initially, the domain is at a uniform temperature To. Let the

domain be exposed to ambient temperature, T′ = 0, and radiation temperature, Tr = 0,

at boundaries with A= F�εT3
0

L
k = 0, 2, B = � L

k = 0, 1. Calculate the transient wall

and center temperature distributions.

The computed results are shown in Figure 24.4.1.3b. These results are favorably

compared with those of the Monte Carlo method by Haji-Sheikh and Sparrow [1967].

24.4.2 SOLUTION OF RADIATIVE HEAT TRANSFER EQUATION
IN NONPARTICIPATING MEDIA

Two examples problems using FVM/FEM are presented in this section. It should

be noted that Chapter 7 discusses the finite volume methods via finite difference
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Figure 24.4.2.1 Radiative heat transfer in nonparticipating media, 3-D combustion chamber, FVM/FEM

solution [Baek et al., 1998]. (a) Geometry. (b) Grid (20 × 10 × 10). (c) Temperature contours, 
0 = 0.1, z= z0/2.

(d) Temperature contours, 
0 = 5.0, z= z0/2.

discretization, identified as FVM/FDM, whereas Chapter 15 presents the finite volume

methods via finite element discretization. It is unfortunate that this distinction is ignored

in the literature. It is emphasized that the discretization scheme via FDM or FEM used

in FVM formulations always be clarified.

(1) 3-D Combustion Chamber

In this example, the FVM/FEM solution of radiative heat transfer in nonparticipating

media carried out by Baek, Kim, and Kim [1998] is introduced. A three-dimensional

combustion chamber is modeled, with the initial and boundary conditions as shown in

Figure 24.4.2.1a,b.

The results are obtained for two values of extinction coefficients. Temperature

contours at the midplane (z = z0/2) for 
0 = 0.1 and 
0 = 5.0 m−1 are shown in Figure

24.4.2.1c,d. It is shown that the small extinction coefficient leads to much higher tem-

perature throughout the combustion chamber with steeper temperature gradient at the

side walls than the case of higher extinction coefficient.

(2) 3-D Enclosure and Reflective Walls

The FVM/FEM analysis by Raithby [1999] for the 3-D enclosure and reflective walls

is presented here. The geometry and solid angle discretization are shown in Figure

24.4.2.2a,b. The section of the wall x = 0, 0 ≤ y ≤ 12, 0 ≤ z ≤ 17 is black and held at

1000◦C. All other walls are diffuse and fully reflective (adiabatic to radiation). The
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Figure 24.4.2.2 Radiative heat transfer in participating median 3-D enclosure and reflec-

tive walls, FVM/FEM solution, Raithby [1999]. (a) Geometry (with the ceiling removed),

boundary conditions, and grid of a region with two interior obstacles. The radian energy

leaving the heated surface on the left is either reflected back to this surface or enters

the cooled surface on the right. (b) Solid-angle discretization used in the FVM solution

of this problem. (c) Radiant heat flux vector. (d) Comparison results of the benchmark

surface-to-surface predictions from the model of Hutchinson et al. [1987] with the FVM

predictions for two spatial meshes.

angular grid shown in Figure 24.4.2.2b has L = 32 solid angles. There are 8 solid angles

in the range of polar angle 0 ≤ � ≤ 60◦, 8 in the range 120◦ ≤ � ≤ 180◦, and 16 in the

range 60◦ ≤ � ≤ 120◦. All the solid angles are equal in size.

The radiation heat flux distributions are shown in Figure 24.4.2.2c on the plane

z = 7.05 m. It is seen that the reflection of the radiation by the two interior walls

and by the exterior walls transport the radiation to the cold walls. The effect of mesh

discretization on the net heat flux is shown in Figure 24.4.2.2d, with the finer mesh

approaching closer to the benchmark solution of Hutchinson, Stefurak, and Gerber

[1996].
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Figure 24.4.3.1 Combined conduction-radiation heat transfer, effects

of �0 on the temperature and radiation function for N = 1, �0 = ε1 =
ε2 = 1.0.

24.4.3 PARTICIPATING MEDIA WITH CONDUCTION AND RADIATION

The governing equation is given by (24.2.79) with the last two terms of the right-hand

side neglected,

d2�

d� 2
= 1

N
(1 − �0)

[
�4(�) − 1

4
�(�)

]

in which scattering is included but no convection and viscous dissipation are considered.

The boundary conditions are: �(�) = 1 at � = 0, �(�) = �2 at � = �0 with �2 = T2/T1.

Furthermore, the dimensionless radiative heat flux � is calculated from the ex-

pression (24.3.80). Here we note that the governing equation is of self-adjoint and

no gradient boundary conditions are to be specified. As mentioned in the previous

section, the standard Galerkin finite elements would suffice and, in fact, they are the

best approximation process for the self-adjoint problems.

The results of this analysis (20 linear elements) by the Galerkin approach are

shown in Figure 24.4.3.1. A comparison with the results of Viskanta [1965] and

Fernandes, Francis, and Reddy [1980] appears favorable, the present study confirming

the conclusions reached by Viskanta and others to include the following: (a) Radiation

increases with less scattering, (b) An increase of emissivity results in an increase of heat

flux, this rate being larger as scattering becomes less.

24.4.4 PARTICIPATING MEDIA WITH CONDUCTION, CONVECTION, AND RADIATION

(1) Combined Mode Heat Transfer Without and With Scattering and Viscous Dissipation

The equation governing this subject is obtained from (24.3.79) by setting �o = 0 and

EcPr = 0:

d2�

d� 2
= 1

N
(1 − �o)

[
�4(�) − 1

4
�(�)

]
+ 3�

N�o

(
�

�o
− � 2

� 2
o

)
1 − �

1 − �b

Because of the presence of the convective term here, the standard Galerkin finite ele-

ments fail and the optimal control penalty finite elements are shown to be effective.

The boundary conditions for this problem (Figure 24.4.4.1a) are: � = �w = 1 at � = 0

and � = �o. Due to symmetry about the center line, we may also use: � = �w at � = 0,
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Figure 24.4.4.1 Combined mode conduction, convection, and radiation with and without scattering

and viscous dissipation [Chung and Kim, 1984]. (a) Example problem. (1) One-dimensional radia-

tion, example problem 1; (2) fully developed duct flow, example problems 2 and 3. (b) Combined

conduction-convection-radiation heat transfer without scattering and viscous dissipation. N = 0.1; �0 = 0;

Ec Pr = 0; �0 = ε1 = ε2 = 1. (c) Combined conduction-convection-radiation heat transfer with scattering

and viscous dissipation. N = 0.1; ε1 = ε2 = 1. (1) �0 = 1.0; (2) �0 = 0.1. (——) Ec Pr = 0, �0 = 1.0; (— • —)

Ec Pr = 0.5, �0 = 0.5; (------) Ec Pr = 1.0, �0 = 0. (d) Combined conduction-convection-radiation heat

transfer, with scattering and viscous dissipation. N = 0.1; ε1 = ε2 = 1. (1) �0 = 1.0; �0 = 0.1. (——) Ec Pr = 0;

(— • —) Ec Pr = 0.5; (------) Ec Pr = 1.0. (e) Combined conduction-convection-radiation heat transfer

(temperature distributions) with scattering and viscous dissipation. N = 0.1; ε1 = ε2 = 1. (1) �0 = 1.0;

�0 = 0.1. (——) Ec Pr = 0, �0 = 1.0; (— • —) Ec Pr = 0.5, �0 = 0.5; (------) Ec Pr = 1.0, �0 = 0. (f) Combined

conduction-convection-radiation heat transfer (heat flux distributions) with scattering and viscous dissi-

pation. N = 0.1; ε1 = ε2 = 1. (1) �0 = 1.0; (2) �0 = 0.1. (——) Ec Pr = 0; (------) Ec Pr = 1.0.
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d�
d�

= 0 at � = �o
2

. In order to compare the present results with those of Viskanta [1963],

however, we use the following boundary conditions: � = �w at � = 0, � = �o and d�
d�

=
0, � = �o

2
. Specification of both Dirichlet and Neumann boundary conditions at a node

(� = �o/2 here) is not permissible in the Galerkin finite element equations, but this can

be handled easily in the optimal control penalty finite elements.

In Figure 24.4.4.1b, the trends of optimum value of penalty constant are shown. Note

that, for Nusselt number, total heat flux and temperature gradients, the optimum value

of penalty constant is approximately � = 105 at which convergence seems to have been

reached. From the past experiences, the optimum values of penalty constant in general

appear to be 104 < � < 1010.

If scattering and viscous dissipation are coupled with the combined mode heat trans-

fer by conduction, convection, and radiation, no additional difficulty in numerical so-

lutions are encountered with the optimal control penalty finite elements. The energy

equation is now governed by (24.2.121), and the same boundary conditions prevail as

in the previous example. Here the optimum value of penalty constant is again found to

be � = 105.

The most significant observation (Figures 24.4.4.1c,d) is that temperature suddenly

rises (possible viscous heating) and reaches a peak at �/�o = 0.1 and drops down to the

specified value, � = 0.5, at the center. This phenomenon occurs when the optical depth is

small (�o = 0.1) and viscous dissipation is large (Ec Pr = 1 in this case). The albedo (�o)

has no influence if less dominated by convection and radiation (N = 10). However, if

the medium is significantly dominated by convection and radiation (N = 0.1), then the

temperature decreases with an increase of albedo (Figure 24.4.4.1d). It is interesting

to note that these features are completely absent for a large optical depth (�o = 1)

(Figures 24.4.4.1c and 24.4.4.1d). Viscous dissipation leads to only a slight increase

in temperature, but unaffected by albedo even when the medium is dominated by

convection and radiation. The results of heat flux corresponding to these features are

shown in Figures 24.4.4.1e and 24.4.4.1f.

The effectiveness of the optimal control penalty finite elements has been demon-

strated in the solution of combined mode heat transfer by conduction, convection, and

radiation. It is also shown that scattering and viscous dissipation can easily be incorpo-

rated in the solution process. Through an example for a fully developed duct flow, the

following physical phenomena have been found: (1) For the constraint temperatures

� = 1 at the wall and � = 1/2 at the center of the duct, a considerable amount of viscous

heating develops with a peak temperature at �/�o
∼= 0.1. This phenomenon is observed

only for a small optical depth (�o − 0.1), more significant as viscous dissipation increases.

Note also that heat flux distributions are such that negative Nusselt numbers appear

in the region where temperature jumps occur. (2) An increase of emissivity leads to

a large Nusselt number when scattering is absent in the convection-radiation dominated

medium with a large optical depth. If the medium is dominated by convection and ra-

diation (N = 0.1), temperature decreases with an increase of albedo of scattering. This

influence disappears as the medium begins to be dominated by conduction (N = 10).

For large optical depths (�o = 1), the effect of viscous dissipation diminishes and the

temperature field is not affected by the albedo even when the medium is dominated by

convection and radiation.
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Figure 24.4.4.2 Effects of radiation on natural convection [Han and Baek, 1999]. (a) Eccentric annular

cross section. (b) Isotherms (upper, �T = 0.1) and streamlines (lower, �� = 0.03) in an eccentric annulus

(ev/L= 0.623) for various conduction to radiation parameters N with Ra = 1.5 × 104, = 1, �0 = 0.3, �0 = 0,

and black boundaries: (i) without radiation, (ii) N = 0.1, (iii) N = 0.05, (iv) N = 0.03, and (v) N = 0.02.

(c) Isotherms (upper, �T = 0.1) and streamlines (lower, �� = 0.03) in an eccentric annulus (ev/L= −0.623)

for various conduction to radiation parameters N with Ra = 1.5 × 104, = 1, �0 = 0.3, �0 = 0, and black

boundaries: (i) without radiation, (ii) N = 0.1, (iii) N = 0.05, (iv) N = 0.03, and (v) N = 0.02.

(2) Effect of Radiation on Natural Convection

This example presents the analysis investigating the effect of radiation on natu-

ral convection in the eccentrically positioned cylindrical annulus (Figure 24.4.4.2a) as

reported by Han and Baek [1999]. The flowfield equation is solved using the compress-

ible SIMPLER [Karki and Patankar, 1989] ( similar to equation (5.3.20) for diagonal

dominance), whereas the radiative transfer equation is solved using FVM/FEM. The

spatial and angular domains are discretized into 41 × 63 nonuniform spatial control vol-

umes and 2 × 24 control angles with uniform �� and ��, respectively. Isotherms and

streamline contours for the positive eccentricity are shown in Figure 24.4.4.2b. Here,
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Figure 24.4.4.3 The effect of eccentricity on various Nusselt numbers for N = 0.05, Ra = 1.5 × 104,

 = 1, �0 = 0.3, �0 = 0, and black boundaries: (a) NuC , (b) NuR, and (c) NuT [Han and Baek, 1999].

the convective motion is suppressed because of its thermally stable configuration, with

the total average heat transfer from the hot inner cylinder reduced for a fixed (N
conduction-radiation ratio) when the inner cylinder is moved upward. For the case of

negative eccentricity (Figure 24.4.4.2c), a temperature inversion in isotherms over the

upper section of the inner cylinder is more prominent because of the stronger convective

motion.

In Figure 24.4.4.3, the conductive, radiative, and total Nusselt number variations

around the inner and outer cylinder walls are shown. It is seen that the conductive wall

heat flux directed into the outer cylinder is dominant over the upper region, especially

for the positive eccentricity.

24.4.5 THREE-DIMENSIONAL RADIATIVE HEAT FLUX INTEGRATION FORMULATION

Consider a divergent or convergent channel flow through two infinitely wide plates with

an angle, , having different wall temperatures, as shown in Figure 24.4.5.1a [Kim, 1982].

It is assumed that the velocity profile of the channel flow is fully developed, laminar,
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Figure 24.4.5.1 Two-dimensional analysis with three-dimensional

heat flux formulation in combined conduction, convection, and

radiation. (a) Geometry of two-dimensional radiation problem.

(b) Effects of Reynolds number on the temperature profiles along

CC
′
and SS

′
. �0 = 1.0; Pr = 1.0. (——) �0; (------) �0 = 1. (c) Effects

of Reynolds number on the temperature profiles along CC
′
and SS

′
.

�0 = 0.1; N = 0.001; Pr = 1.0. (——) �0 = 0; (---) �0 = 1. (d) Effects of

N on the temperature profiles along CC
′

and SS
′
. �0 = 0.1; �0 = 0;

Re Pr = 100.
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Figure 24.4.5.1 (continued.) (e) Effects of N on the tempera-

ture profiles along CC
′
and SS

′
. �0 = 0.1; �0 = 0; Re Pr = 100.

(f) Effects of albedo �0 on the temperature profiles along

CC
′

and SS
′
. �0 = 1.0; N = 0.00; Re Pr = 100. (g) Effects of

albedo �0 on the temperature profiles along CC
′

and SS
′
.

�0 = 0.1; N = 0.00; Re Pr = 100.

and approximately given by

u (x, y) = 3

2
um(x)

[
1 − 4

(
y

D(x)

)2
]
, um(x) = Do

D(x)
um(x − L)

where um(x) and D(x) are, respectively, the mean flow velocity and the channel width at

a section, and Do denotes the width at the channel exit. The upper and lower surfaces are

also assumed to have uniform temperature Tc and Th, respectively, and they are assumed

to be black for simplicity. Furthermore, the inlet and outlet sections of the channel are

assumed to be imaginary porous black surfaces, through which the flowing medium

passes without any restrictions. The outlet mean velocity and channel width, Do, are
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used as reference velocity and length, respectively, and the lower plate temperature, Th,

is assumed to be the reference temperature.

With the foregoing assumptions, the energy equation (24.3.129) and the equation

(24.3.130) are solved simultaneously using the Galerkin finite elements. The boundary

conditions are: � = �h on the lower surface, � = �c on the upper surface where �h = Th/To

and �c = Tc/To. Note also that normal temperature gradients at the entrance and exit

are set equal to zero.

In this example, it is assumed that �h = 1.0, �c = 0.2, and  = 15 deg. For given

Reynolds and Prandtl numbers, the temperature distributions along the center line CC′

and the middle section SS′, are investigated for selected values of conduction-radiation

ratio, N, optical thickness, �o, and albedo, �o.

A total of 72 linear two-dimensional isoparametric elements with 91 nodes are

used in this example. An average of 6 iterations for the Newton-Raphson process was

required for convergence with 0.1% error.

For the Prandtl number of unity, Figures 24.4.5.1b and 24.4.5.1c show the effects

of the Reynolds number, Re, and the optical thickness, �o, on the temperature profiles

for a small N = 0.001. It is noted that for pure scattering (�o = 1), the temperature

profile at the center line CC′ is independent of Re and �o, while the profile at the middle

section SS′ is strongly dependent on the Reynolds number but not the optical thickness.

If the medium does not scatter but only absorbs radiation (�o = 0), the center line

temperatures become close to � = 0.8 for a lower Reynolds number when it is optically

thick (�o = 1.0). However, they become close to � = 0.6 for a higher Re when optically

thin (�o = 0.1). It is also indicated that the middle section temperature profile becomes

closer to a straight line as Re increases for �o = 1.0 (optically thick) and �o = 0, whereas

the opposite is true in the case of �o = 1.0.

On the other hand, if conduction energy transfer dominates over radiation (large

N), there are very little effects of �o on the temperature profiles for �o = 0, as noted

in Figures 24.4.5.1d and 24.4.5.1e. Also, the figures indicate that the profiles strongly

depend on N if it is optically thick, but the dependence on N is moderate for a small

optical depth (�o = 0.1). The same trend also appears in Figures 24.4.5.1f and 24.4.5.1g,

which show the dependence of the temperature distributions on albedo, �o, for a low

N. However, for a higher N the profiles converge to those for pure scattering.

It should also be noted that, for pure scattering, the temperature profile at the middle

section, SS′, is strongly dependent on the Reynolds number, but along the centerline,

CC′, it remains independent of Reynolds numbers since the temperatures for upper

and lower boundaries are kept constant.

The finite element solution for the two-dimensional radiation flux combined with

convection and conduction has been obtained. The following conclusions are reached:

(1) Isoparametric finite elements offer advantages of easy integration for the two-

dimensional radiation function involving the specular volume and specular surface

elements through Gaussian quadrature. (2) For the diverging channel, for pure scat-

tering, the temperature profile at the center line is independent of Reynolds number

and optical thickness. In the absence of scattering, however, the middle section temper-

ature profile becomes linear as the Reynolds number increases for large optical thick-

ness. (3) If conduction energy transfer dominates over radiation, there are very little

effects of optical thickness on the temperature profile in the absence of scattering. (4) For
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the converging channel, the radiation effect on the temperature profiles is small even

when conduction and convection are small. (5) Standard Galerkin finite elements may

be used if the convection domination is relatively small (Re Pr < 1000). However, for

large Reynolds numbers (Re Pr >1000), it is concluded that the nonsymmetric form

and ill-conditioning of the matrix from the convective terms would cause the solution

to deteriorate. In this case, the optimal control penalty finite elements can be used to

overcome such difficulties.

24.5 SUMMARY

The subject of radiative heat transfer in general is divided into the nonparticipating and

participating media. Often, the term “radiation transfer” refers to the radiative heat

transfer for the nonparticipating media. Both nonparticipating and participating media

have been treated in this chapter.

The highlights of the radiative heat transfer in the nonparticipating media are the

view factor calculations and the solution of radiative heat transfer equations. For the

participating media, detailed formulations are presented for the combined conduction

and radiation problems and combined conduction, convection, and radiation problems.

A special feature in this chapter is the integral formulation of three-dimensional heat

flux with respect to the optical thickness and spatial volumetric domain. Although the

coverage is not complete, it is intended that the subject of the combined mode radiative

heat transfer be self-contained.

Based on the theoretical foundations and numerical schemes presented in Sections

2 and 3, various example problems are demonstrated, including view factor calculations,

solutions of radiative heat transfer equations, participating media with conduction and

radiation, participating media with conduction, convection, and radiation, and the so-

lution of the energy equation for the combined mode radiative heat transfer with the

three-dimensional radiative heat flux integral equation. In these examples, FDM, FEM,

and FVM are employed selectively.
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CHAPTER TWENTY-FIVE

Applications to Multiphase Flows

25.1 GENERAL

Multiphase flow is a common observation such as occurs in evaporation or condensation

in which a liquid particle is transformed into a gas or vice versa. Other examples include

phase changes involved in the boiling of liquids, tracking of free surfaces between gas

and liquid, or rocket solid propellants which, upon ignition, change into a liquid phase

and subsequently into a gas phase. Furthermore, rigid body motions of solids in the

presence of gases or liquids such as in sedimentation and fluidized beds, and reactive

laminar and turbulent flows in fluid-particle mixtures, are the complicated physical

phenomena in multiphase flows.

Interfaces are present as a specified initial condition or as a result of phase changes

through evaporation, condensation, melting, solidification, merging (coalescence), or

breakup. Surface tension plays an important role in these interfaces. Interface kinemat-

ics dealing with interface tracking in the free surface flows may be described and solved

in many different ways. Among them are: volume tracking methods, front tracking

methods, level set methods, phase field formulations, continuum advection schemes,

boundary integral methods, particle-based methods, and moving mesh methods. A brief

review of these methods is given below.

Volume tracking methods, often known as the volume of fluid (VOF) method, were

originated by Nichols and Hirt [1975] and Noh and Woodward [1976], and further

extended by Hirt and Nichols [1981]. Since then, the VOF method has been improved

significantly over the years [Rudman, 1997; Rider and Kothe, 1998]. The VOF method

is based on the conservation of the volume fraction function F with respect to time and

space, expressed as

∂ F
∂t

+ (v · ∇)F = 0 (25.1.1)

This method will be further elaborated in Section 25.2.

The basic idea of the front tracking methods resides in the original marker and cell

(MAC) formulation [Harlow and Welch, 1966; Daly, 1967]. The interface is represented

discretely by Lagrangian markers connected to form a front which lies within and moves

through a stationary Eulerian mesh. As the front moves and deforms, interface points

912
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are added, deleted, and reconnected as necessary. Further details may be found in

Glimm and McBryan [1985], Churn et al. [1986], and Tryggvason et al. [1998].

Level set methods have been successful as evidenced in the literature [Osher and

Sethian, 1988; Sethian, 1996]. The basic premise of the level set method is to embed

the propagating interface �(t) as the zero level set of a higher dimensional function

�, defined as �(x, t = 0) = ± d, where d is the distance from x to �(t = 0), chosen

to be positive (negative) if x is outside (inside) the initial �(t = 0) = �(x, t = 0) = 0,

then a dynamical equation for �(x, t) that contains the embedded motion for �(t)
as the level set � = 0 can be derived similarly as in the volume of fluid conservation

equation (25.1.1).

Phase field formulations are applied predominantly to crystal growth problems and

Hele-Shaw flows [Caginalp, 1989; Kobayashi, 1993; Wang et al., 1993; Wheeler, Murray,

and Schaefer, 1993]. Applications to the Navier-Stokes system of equations have also

been made recently [Antanovskii, 1995; Jacqumin, 1996]. In these formulations, interfa-

cial forces are modeled as continuum forces by smoothing interface discontinuities and

forces over thin but numerically resolvable layers. This smoothing allows conventional

numerical approximations of interface kinematics on fixed grids.

In continuum advection schemes, the solution of (25.1.1) is carried out with schemes

normally required for an hyperbolic system, as an integral part of the conventional

fluid dynamics problems [Rider and Kothe, 1995; Chan, Pericleous, and Cross, 1991;

Pericleous, Chan, and Cross, 1995]. High order approximations for the volume fraction

function F will be the main factor for success.

Boundary integral methods are designed to track the interface explicitly, as in front

tracking methods, although the flow solution in the entire domain is deduced solely from

information possessed by discrete points along the interface [Geller, Lee, and Leal, 1986;

Hou, 1995; Rallison and Acrivos, 1978]. The advantage of these methods is the reduction

of the flow problem by one dimension involving quantities of the interface only.

Particle-based methods use discrete “particles” to represent macroscopic fluid

parcels [Monaghan, 1985]. Here, Lagrangian coordinates are used to solve the Navier-

Stokes system of equations on “particles” having properties such as mass, momentum,

and energy. The nonlinear convection term is modeled simply as particle motion and by

knowing the identity and position of each particle, material interfaces are automatically

tracked. By using particle motion to approximated the convection terms, numerical

diffusion across interfaces (where particles change identity) is virtually zero; hence

interface widths are well defined. Particle-based methods may be categorized in two

groups: (1) a scheme similar to particle-in-cell (PIC) methods [Harlow, 1988] and (2)

meshless method [Belytschko et al., 1996] such as the smooth particle hydrodynamics

(SPH) methods [Gingold and Monaghan, 1977; Monaghan, 1992].

In moving mesh methods, the position history of discrete points xi lying on the

interface is tracked for all time by integrating the evolution equation, forward in time.

dxi

dt
= vi (25.1.2)

A moving mesh is Lagrangian if every point is moved, and mixed (Lagrangian-Eulerian)

if grid points in a subset of the domain are moved. Mixed methods are used for mold
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filling simulations [Noh, 1964], where the mold computational domain can be held

stationary and the molten liquid is followed with a Lagrangian mesh [Lewis, Navti, and

Taylor, 1997; Muttin et al., 1993].

In other cases of multiphase problems such as rigid body motions in fluids or gases,

the flowfield depends on the moments and products of inertia of the solid and torque

acting on the surface of the solid. Hu, Joseph, and Crochet [1992] developed a numer-

ical scheme using finite elements for simulating solid-liquid mixture motions of a few

sedimenting circular and elliptic cylinders confined in a channel. This work was then

extended to simulate a large number of solid particles with moving unstructured grids

in the arbitrary Lagrangian-Eulerian (ALE) coordinates [Hu, 1995]. Glowinski et al.

[1999] studied a distributed Lagrange multiplier/fictitious domain method for suspended

solid particles in fluids. A finite element discretization in space and an operator-splitting

technique of discretization in time were used in this analysis. Subsequently, Maury [1999]

developed direct simulations of 2-D fluid-particle flows in biperiodic domains using the

ALE finite elements. It was shown that this method provides long-time simulations of

many-body motions (up to 5,000 particles).

Direct numerical simulation (DNS) of particle-turbulence was demonstrated by

Pedinotti, Martiotti, and Banerjee [1992], Pan and Banerjee [1996, 1997], and Li,

Mosyak, and Hetsroni [1999]. In these studies, the fluid flow in a horizontal channel

is solved using DNS, whereas a Lagrangian approach is used for the particle motion.

If the liquid-gas mixture or solid-gas mixture system is reactive, then computations

become complicated. The turbulent spray combustion discussed in Section 22.2.5 is

the liquid-gas mixture flow [Kim and Chung, 1990]. In this chapter, we examine more

broad and general approaches to the liquid-gas mixture and liquid-solid mixture flows

[Smirnov, Nikitin, and Legros, 1997; Mashayek, Taulbee, and Givi, 1997; Udaykumar

et al., 1997].

In Section 25.2, we discuss the volume of fluid (VOF) formulations with emphasis

on surface tension using the continuum surface force (CSF). Laminar flows for the

fluid-particle mixture with rigid boy motions of solids are presented in Section 25.3.

Also included in this section are the turbulent flows and reactive turbulent flows in

fluid-particle mixtures. Selected example problems are presented in Section 25.4.

25.2 VOLUME OF FLUID FORMULATION WITH CONTINUUM SURFACE FORCE

25.2.1 NAVIER-STOKES SYSTEM OF EQUATIONS

One of the most widely used approaches for simulating the liquid-gas phase interfaces

subjected to surface tension is the volume of fluid (VOF) concept developed originally

by Nichols and Hirt [1975] and others and subsequently extended by Blackbill, Kothe,

and Zemach [1992] for implementation of continuum surface force (CSF) model. The

VOF with CSF may be embedded into the conservation form of the Navier-Stokes

system of equations as

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (25.2.1)
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with

U =

⎡
⎢⎢⎢⎣

�

� F
�v j

� E

⎤
⎥⎥⎥⎦ , Fi =

⎡
⎢⎢⎢⎣

� v̂i

� v̂i F

� v̂i v j + p �i j

� v̂i E + p vi

⎤
⎥⎥⎥⎦ , Gi =

⎡
⎢⎢⎢⎣

0

0

−�i j

−�i j v j + qi

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0

0

� f j

� f j v j

⎤
⎥⎥⎥⎦

with the second equation denoting the space conservation for the volume fraction F :

∂

∂t

∫
�

� Fd � + ∂

∂xi

∫
�

� F v̂i d � = 0 (25.2.2)

which represents the volume of fluid (VOF) [Nichols, Hirt, and Hotchkiss, 1980]. Here,

the total velocity (partial velocity) vi is the sum of the convection (Eulerian) velocity v̂i

and grid (Lagrangian) velocity
∗
vi ,

vi = v̂i + ∗
vi (25.2.3)

This leads to the Lagrangian description for
∗
vi = vi and the Eulerian description for∗

vi = 0. Thus, we have an arbitrary (mixed) Lagrangian-Eulerian (ALE) description

for
∗
vi �= 0 and vi �= ∗

vi . Initially, we set
∗
vi = 0 and calculate vn+1

i from (25.2.1). Then,

calculate the grid displacement

un+1
i = un

i + �t
(
vn+1

i − vn
i

)
(25.2.4)

This provides the basis for the computation of
∗
v n+1

i as

∗
v n+1

i = ∗
v n

i + un+1
i − un

i

�t
(25.2.5)

The body force � f j consists of the gravity �g j and the volume force Qj (�):

� f j = �g j + Qj (�) (25.2.6)

Derivations of the volume force Qj (�), which represents the contribution of surface

tension between the liquid and gas interfaces, will be presented later in this section.

On the droplet-free surface we define the volume fraction F as

F = v(�)

v(�) + v(g)
(25.2.7)

with the subscripts (g) and (�) indicating gas and liquid, respectively. The total density

� is given by

� = � (�) F + � (g)(1 − F) (25.2.8)

In the formulation presented above, there are two options: The first is to remesh

the grid network as dictated by the grid velocity and the grid displacement. The second

option is to maintain the Eulerian coordinates and redefine the original element based

on the volume fraction so that the element properties are updated for the subsequent

time steps.
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Multiphase interactions are usually studied in low-speed incompressible flows,

although the Navier-Stokes system of equations (25.2.1) written in conservation form

for generality, is capable of handling both incompressible and compressible flows. This is

convenient for applications of the flowfield-dependent variation (FDV) method which

will be discussed in Section 25.3.1.

25.2.2 SURFACE TENSION

The pressure p is the sum of the pressure due to surface tension (ps) and the vapor

pressure (pv). This gives

ps = p − pv = � � (25.2.9)

where � is the surface tension and � is the curvature,

� = 1

R1

+ 1

R2

with R1 and R2 being the radii of curvature for a doubly curved surface.

The rate of change of force due to surface tension in a unit dimension xj is given by∫
�

∂�

∂xj
d � =

∫
�

∂

∂xj

(
p(g) − p(�) + ��

)
d � −

∫
�

∂

∂xi

(
�

(g)
i j − �

(�)
i j

)
d � (25.2.10)

Integrating the right-hand side, we obtain∫
�

∂�

∂xj
d � =

∫
�

(
p(g) − p(�) + ��

)
nj d � −

∫
�

(
�

(g)
i j − �

(�)
i j

)
ni d � (25.2.11)

where nj is the component of the unit normal vector on the surface. This leads to

∂�

∂xj
= (

p(g) − p(�) + ��
)
nj − (

�
(g)
i j − �

(�)
i j

)
ni (25.2.12)

Thus, for p(g) = p(�) and �
(g)
i j = �

(�)
i j , we must have

∂�

∂xj
= ��nj (25.2.13)

Let us now introduce the tangential vector component ti so that (see Figure 25.2.1a),

∂�

∂xi
ti t j = ∂�

∂xi
(�i j − ni n j ) (25.2.14a)

or

∇T � = ∇� − ∇N � (25.2.14b)

with

∇N � = n(n · ∇)�

∇T � = t(t · ∇)�

Thus, the normal and tangential projections of (25.2.11) lead to the scalar pressure

boundary conditions at the interface. Along the unit normal and tangential direc-

tions, the boundary conditions can be obtained by projecting (25.2.10) onto the normal
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Figure 25.2.1 Surface tension interfaces. (a) Normal and tangential components of stress. (b) Normal

and tangential surface components. (c) Transition region.

direction nj and tangential direction t j as follows:

Normal Direction

p(g) − p(�) + �� = (
�

(g)
i j − �

(�)
i j

)
ni n j (25.2.15)

Tangential Direction

∂�

∂xj
t j = (

�
(�)
i j − �

(g)
i j

)
ni t j (25.2.16)

with

�
(�)
i j = 	(�)

(
∂v(�)

i

∂xj
+ ∂v(�)

j

∂xi

)

These results are based on the fact that the spatial rate of change of surface tension
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normal to the surface vanishes and (nj t j = 0, ni t j �= 0) [Schmidt, Chung, and

Nadaraja, 1995].

25.2.3 SURFACE AND VOLUME FORCES

Let us consider the continuum surface force (CFS) model with the total surface force

Fs as the sum of the normal and tangential components [Brackbill et al., 1992],

Fs = Fsn + Fst (25.2.17)

where the tangential component vanishes for constant surface tension. To justify this,

we examine the surface force components as shown in Figure 25.2.1b. Using the Stokes

theorem,

Fs�A =
∮

Fsds =
∮

�tds

=
∮

ds × �n =
∫ ∫

dA(n × ∇) × �n

= �A[(n × ∇) × �n] (25.2.18)

we obtain, for �A→ 0,

Fs(xs) = (n × ∇) × �n

= �(n × ∇) × n + (n × ∇�) × n (25.2.19)

Noting that

n × ∇ = n × (∇T + ∇N) = n × ∇T

(n × ∇T) × n = 1

2
∇T(n · n) − n(∇T · n)

= −n(∇T · n)

(n × ∇�) × n = ∇� − n(n · ∇)� = ∇T�

Thus, (25.2.19) is written as

Fs(xs) = −�n(∇T · n) + ∇T� (25.2.20)

where we identify the normal and tangential components of the surface force as

Fsn = −�n(∇T · n) = −��n

Fst = ∇T�

where

� = −∇T · n = −∇ · n (25.2.21)

with the negative sign implying that the center of curvature is in the gas phase. The sign

change will occur if it is in the liquid phase.

For a constant surface tension, the tangential component of the surface force van-

ishes, and we have

Fs(xs) = −��n (25.2.22)

where xs denotes the interface (Figure 25.2.1c).
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To examine the volume force, let us first consider the density phase function �(x)

(characteristic function or color function) as follows (see Figure 25.2.1c):

�(x) =

⎧⎪⎨
⎪⎩

� (g) if in gas phase

� (�) if in liquid phase

〈�〉 at the interface

with

〈�〉 = 1

2

(
� (g) + � (�)

)
The volume force Fv(x) is defined as

lim
h→0

∫
�

Fv(x) d � =
∫

�

Fs(xs) d � (25.2.23)

with

Fv(x) = 0 for |n(xs) · (x − xs)| ≥ h

Consider the mollified density phase function �̃(x) given by

�̃(x) = 1

h3

∫
�

�(x′)S(x′ − x)d�′ (25.2.24)

with

h3 =
∫

�

S(x)d�

S(x) = 0 for |x| ≥ h
2

lim
h→0

�̃(x) = �(x)

where S is an interpolation function. Taking the gradient of �̃(x) and denoting

[� ] = � (�) − g(g), we have

∇�̃(x) = 1

h3

∫
�

�(x′)∇ S(x − x′)d �′

= [� ]

h3

∫
�

n(xs) S (x − xs)d �

∼= [� ]

h3
n(xso)

∫
�

S(x − xs) d � + O
(

h
R

)2

(25.2.25)

where R is the radius of the curvature at xso (surface point closest to x) so that

1

h2

∫
�

S(x − xs) d � ≤ S(x − xso) (25.2.26)

where the funtion S(x − xs) plays the role of a delta function such that it is zero every-

where except at x = xs. Thus, we have

lim
h→0

∫
�

n(xso) · ∇�̃(x)d � = [� ] (25.2.27)

lim
h→0

∇�̃(x) = n[� ] � [n · (x − xs)] = ∇�(x) (25.2.28)
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where �[·] is the delta function. This gives∫
�

F(xs)d � =
∫

�

Fs(x) �[n(xs) · (x − xs)]d � =
∫

�

��(x)n(x) �[n(xs) · (x − xs)]d �

(25.2.29)

Substituting (25.2.28) into (25.2.29) yields∫
�

F(xs)d � = lim
h→0

∫
�

��(x)
∇�̃(x)

[� ]
d � (25.2.30)

It follows from (25.2.23) and (25.2.30) that

Fv(x) = ��(x)
∇�̃(x)

[� ]
(25.2.31)

and∫ P2

P1

Fv(x) d (n · x) =
∫ �(g)

�(�)

��(x) n(x)
d�̃(x)

[� ]
(25.2.32)

∼= ��(xs)n̂(xs) for h > 0

lim
h→0

Fv(x) = Fs � [n(xs) · (x − xs)] (25.2.33)

Note that this is equivalent to the conventional definition

ps = p(�) − p(g) = ��

25.2.4 IMPLEMENTATION OF VOLUME FORCE

The body force � f j consists of the gravity �gi and the volume force Qj (�) as defined

in (25.2.6). It follows from (25.2.30) and (25.2.31) that

Q (�) = Fv(x) = ��(x)
∇�̃(x)

[� ]

�̃(x)

〈�〉 (25.2.34)

where �̃(x)/〈�〉 with 〈�〉 = (� (�) + � (g))/2 is multiplied to the right-hand side of (25.2.34)

to signify the process h → 0, coinciding (25.2.31) at the interface

(�̃(x)/〈�〉 = 1).

Note that when the acceleration due to surface tension is independent of the density,

neighboring contours in the transition region tend to remain a constant distance apart

under the action of surface tension. Denser fluid elements in the transition region

experience the same acceleration as lighter fluid elements when �(x)/〈�〉 is included in

Fv(x). Otherwise, the interface tends to thicken when Fv(x) is directed toward the fluid

having the smaller density, and too thin when Fv(x) is directed toward the fluid having

the lower density.

The unit normal vector n can be determined from the gradient of �̃(x) as

n = ∇�̃(x)

|∇�̃(x)| (25.2.35)
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This definition with (25.2.21) leads to

�∇�̃ = −∇�̃(x)(∇ · n) (25.2.36)

where ∇�̃ is nonzero only in the transition region and thus, the volume force is nonzero

only in the transition region.

The curvature � is calculated from

� = −ni,i = �̃,i
|�̃,i |,i
|�̃,i |2 − �̃,i i

|�̃,i | (25.2.37)

Since the volume fraction F as defined in (25.2.7) is indeed the mollified density phase

function �̃(x), we now set

�̃, j = F, j

with

[� ] = 1 for �̃ = F

and

lim
h→0

∫
�

Qj (�)d � =
∫

�

Qj (�)d �

with

Qj (�) = ��nj (25.2.38a)

Qj (�) = ��
�̃, j

[� ]
(25.2.38b)

Thus, the volume forces Qj (�) and Qj (�) are given by

Qj (�) = �

(
F,i i

|F,k| − F,i
|F,k|,i
|F,k|2

)
nj (25.2.39a)

Qj (�) = �

(
F,i i

|F,k| − F,i
|F,k|,i
|F,k|2

)
�̃, j

[� ]
(25.2.39b)

or

Qj (�) = �

(
F,i i

|F,k| − F,i
|F,k|,i
|F,k|2

)
F, j (25.2.39c)

with

[� ] = 1 for �̃ = F

The expression (25.2.39c) is now inserted into (25.2.6), which will then complete the

Navier-Stokes system of equations (25.2.1).

25.2.5 COMPUTATIONAL STRATEGIES

We consider that the convection and diffusion process, as well as the distribution of body

forces in two-phase flows, are very much flowfield dependent. To this end, we follow the
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FDV formulation as described in Section 13.6. To derive convection, diffusion, diffusion

gradient, and source term Jacobians we define the various conservation flow variables

as

� F = �, �u = m1, �v = m2, � û = m̂1

�
∗
u = ∗

m1 , � v̂ = m̂2, �
∗
v = ∗

m2 , �E = e (25.2.40)

These definitions lead to the conservation variables, convection flux variables,

diffusion flux variables, and the source terms,

U =

⎡
⎢⎢⎢⎢⎣

�

�
m1

m2

e

⎤
⎥⎥⎥⎥⎦ F1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m̂1

�m̂1

�

m̂1m1

�
+ p

m̂1m2

�

em̂1 + pm1

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m̂2

�m̂2

�

m̂2m1

�

m̂2m2

�
+ p

em̂2 + pm2

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G1 =

⎡
⎢⎢⎢⎢⎣

0

0
−�11

−�12

−�11v1 − �12v2 + q1

⎤
⎥⎥⎥⎥⎦ G2 =

⎡
⎢⎢⎢⎢⎣

0

0
−�21

−�22

−�21v1 − �22v2 + q2

⎤
⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎣

0

0

� f1

� f2

� f1v1 + � f2v2

⎤
⎥⎥⎥⎥⎥⎦

with

� f j = �g j + Qj Qj = �

(
F, j j

|F,k| − F, j
|F,k|, j

|F,k|2
)

F, j

�i j = 	

(
∂vi

∂xj
+ ∂v j

∂xi

)
− 2

3
	�i j

∂vk

∂xk

= �
(�)
i j F + �

(g)
i j (1 − F)

=
[

	(�)(vi, j + v j,i ) − 2

3
	(�)vk,k�i j

]
F +

[
	(g)(vi, j + v j,i ) − 2

3
	(g)vk,k�i j

]
(1 − F)

p = (
 − 1)

[
e − 1

2�

(
m2

1 + m2
2

)]

T = T(�) F + T(g)(1 − F)
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These governing equations can be solved using FDM, FEM, or FVM. In general,

the following solution steps may be followed.

(1) Solve the Navier-Stokes system of equations given by (25.2.1) with initial and

boundary conditions.

(2) Calculate un+1
i from (25.2.4).

(3) Calculate
∗
v n+1

i from (25.2.5).

(4) Repeat Steps (2) through (4) with updated values.

(5) Repeat until steady state is reached.

Notice that in the above solution process, the treatment of the transition region

and the interface are the most critical aspects of the two phase flow problems. To this

end, the determination of the deformed surface curvature and subsequently the volume

force is important.

The mixed Lagrangian-Eulerian treatments given by (25.2.3) through (25.2.5) allow

the mesh movement for remeshing at each time step. However, it is possible to retain

the Eulerian coordinates if so desired by setting vi = v̂i . In this case, the value of the

volume fraction F alone will determine the phase.

The formulations presented in the previous sections have been implemented in

Brackbill et al., 1992 and Kothe and Mjolsness, 1992 for the solutions of jet-induced tank

mixing and water rod collision using finite differences. In their solutions, pressure cor-

rections processes through the pressure Poisson equations are implemented together

with solutions of the incompressible momentum equations as described in Section 5.3.

Flowfield-Dependent Variation (FDV) Method

Difficulties in the analysis of two phase flows include determination of the effect

of any one variable upon another. In the liquid-gas system, we are concerned with

the process of how the effects of surface tension on temperature, pressure, density,

velocity, and volume changes of the liquid and gas can be properly taken into account.

In this regard, formulations required in the FDV theory (Section 6.5 and Section 13.6)

address these concerns through the FDV parameters as well as the various Jacobians of

convection, diffusion, and source terms. The most critical ones in two-phase flows are

the source term Jacobians.

d = ∂B
∂U

Explicit forms of the source term Jacobians are presented in Appendix C.

25.3 FLUID-PARTICLE MIXTURE FLOWS

25.3.1 LAMINAR FLOWS IN FLUID-PARTICLE MIXTURE WITH RIGID BODY
MOTIONS OF SOLIDS

There are many practical applications of fluid-particle mixture flows in which rigid body

motions of solid particles are important, such as in sedimentation or fluidized beds.

Here, the surface tension is considered insignificant. Instead, rigid-body motions of

solids require the moments and products of inertia and torque to be taken into account.
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Γ

Γp
ωp

Ωp

X
x

r

Vp

v

Ω
Figure 25.3.1 Fluid-particle mixture flow with solid particles un-

dergoing rigid-body motions.

In addition to the governing equations for fluids, the momentum equations for par-

ticles and their kinematic equations are needed. Let vpi be the translational velocity of

the pth particle in the direction i (see Figure 25.3.1). The equations for momentum and

torque are given by, respectively,

Mji
dvpi

dt
= F pj + Gpj (25.3.1)

I ji
d�pi

dt
+ (� × I ji �i )p = T pj (25.3.2)

where Mji is the 3 × 3 diagonal mass matrix, Fpj is the force imposed on the particle

by the fluid (hydrodynamic force), Gpj is the body force such as gravity, Iji is the 3 × 3

matrix of moments and products of inertia of the particle, and T pj is the torque imposed

on the particle by the fluid. The translational velocity is related by the generalized

position Xpi as

vpi = dXpi

dt
(25.3.3)

The fluid velocity is expressed as the sum of the velocity components due to translation

and rotation through an angular velocity �, for a particle at r = x − X,

v = vp + � × r

or written as a component form

vi = vpi + (εi jm� j rm)p on �p (p = 1, 2, . . . , N) (25.3.4)

with N denoting the number of particles and

�pi = d�pi

dt
(25.3.5)

where �pi is the angular orientation of the pth particle.
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The hydrodynamic forces and torques are given by

Fpj =
∫

�p

�i j ni d� p (25.3.6)

Tpj =
∫

�p

(r × �imni im)i d� p (25.3.7)

with

�i j ni i j = s on �p(p = 1, 2, . . . , N)

It should be noted that for 2-D the second term on the left-hand side in (25.3.2) vanishes.

In order to utilize the above equations of momentum for the particle motion, it is

useful to examine the nonconservation form of the momentum equations for fluids of

incompressible flow together with the continuity equation in the ALE coordinates.

� f

(
∂v
∂t

+ (v̂ · ∇)v
)

= �i j,i i j + � f g (25.3.8a)

∇ · v̂ = 0 (25.3.8b)

The finite element formulation of (25.3.8) and integration by parts lead to the traction

boundary conditions as the sum of the contribution of both domain wall surfaces and

particle surfaces,∫
�

�i j ni d� =
∫

�w

�i j ni d�w +
∫

� p

�i j ni d� p (25.3.9)

Notice that the second term on the right-hand side of (25.3.9) is identical to the sum

of the hydrodynamic force and torque given in (25.3.6). Thus, when the finite element

equations for (25.3.8a,b) and the momentum and torque equations (25.3.1, 25.3.2) are

constructed and combined, it is seen that the surface traction force acting on the particle

surface and the hydrodynamic force of the particle are cancelled out.

It should be realized that during the computation, particles may collide with each

other or with the wall. In order to prevent this, there are a number of options that have

been reported in the literature. Among them are: Collision repulsive model [Glowinski

et al., 1999], which adds a fictitious force to the particle momentum equations to prevent

collision; inelastic restitution model [Johnson and Yezduyar, 1996], which monitors the

conservation of linear momentum at the contact surface; thin liquid film gap model

[Hu, 1996], which provides a thin layer of mesh around the particle that is fixed to the

particle surface, moving together with the particle; and coupled variational formulation

[Maury, 1999], which leads to a symmetric linear system.

In general, the computational procedure can be described as follows:

(1) Introduce initial mesh.

(2) Initialize v(x0, 0), p(x,0), Xp(0), vp(0) for p = 1, 2 . . . , N.

(3) Select time step �tn+1 and solve the fluid momentum and continuity equations

without particles.

(4) Introduce the particles into the flowfield.
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(5) Solve the particle momentum and torque equations at tn+1 = tn + �tn+1 from

Step (3).

(6) Update particle position, Xn+1 = Xn + �tn+1vn
pi .

(7) Update mesh nodes, xn+1 = xn + �tn+1vn

(8) Remesh and project (if the mesh distortion is severe).

(a) Generate a new mesh.

(b) Project the flowfield data onto the new mesh.

(9) Return to the fluid momentum and continuity equations and repeat the process

until convergence.

Some selected numerical examples are presented in Section 25.4.2.

25.3.2 TURBULENT FLOWS IN FLUID-PARTICLE MIXTURE

We have seen the complexity of turbulence in Chapter 21. Thus, it is of interest to

examine interactions of turbulence with particle-laden flows. Experimental data indicate

that the addition of particles may increase or decrease the turbulent kinetic energy of

the carrier fluid. The presence of small particles in isotropic turbulence reduces the

turbulent kinetic energy, whereas the opposite is true for larger particles [Hetsroni and

Sokolov, 1971; Parthasarathy and Faeth, 1987]. However, for anisotropic turbulence,

Vinberg, Zaichick, and Pershukov [1991] showed that the addition of small particles

can enhance turbulence. For coarse particles, the level of fluctuations is determined by

vortex shedding and turbulent kinetic energy depends on the drag coefficient [Yarin

and Hetsroni, 1993].

Turbulence is also affected by the one-way coupling or two-way coupling. In one-way

coupling, the fluid moves the particles, but there is no feedback from the particles on the

fluid motion. Pedinotti et al. [1992] carried out DNS analysis, assuming that the particle

concentration is low enough to allow the use of one-way coupling. However, some

turbulence mechanisms may be significantly influenced by both particle-particle and

particles-wall interactions so that the two-way coupling must be considered [Hetsroni

and Rozenblit, 1994; Li, et al., 1999].

If the effect of surface tension and rotational force (torque) is negligible, the equation

of motion of a particle is simpler than in the cases examined in the previous sections. In

this case, the approximate form of the equation for the motion of a single particle is

dvpi

dt
= f

�p
(v̂i − vpi ) (25.3.10)

where �p is the particle time constant for Stokesian drag of a spherical particle.

�p = � pd2
p

18	
(25.3.11)

where dp is the particle diameter. The function f is an empirical correction to Stokesian

drag for large particle Reynolds number,

Rep = �̂ f d2
p|v̂i − vpi |

	
(25.3.12a)

f = 1 + 0.15Re0.687
p (25.3.12b)
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where the symbol ˆ denotes the values of the fluid variables at the particle location. The
particle Reynolds number valid in (25.3.12) and (25.3.13) is Rep ≤ 1000.

Taking into account the effects of particles moving parallel and perpendicular to a

wall [Kim and Karrila, 1991], the particle equations of motion may be written in the

form

mp
dv
dt

= 3

4
CD

�

� p

1

dp
|v̂ − vp|h(H) + mf

Dv̂
Dt

+ 1

2
mf

d
dt

(v̂ − vp) + (mp − mf )g

(25.3.13)

with

CD = 24

Rep
+ 6

1 + Re0.5
p

+ 0.4, 0 ≤ Rep ≤ 2 · 105, Rep = |v̂ − vp|dp

�

h(H) = 1

1 − 9

16

dp

2H
+ 1

8

(
dp

2H

)3
for a particle moving parallel to a wall

h(H) = 1

1 − 9

8

dp

2H
+ 1

8

(
dp

2H

)3
for a particle moving perpendicular to a wall

where H is the height of the wall.

The corresponding momentum equations for the fluid are the same as (25.3.8a)

except that we subtract on the right-hand side of (25.3.8a) the momentum source term,

W j , representing the effects of the particle drag which is calculated by volume averaging

the contributions from all of the individual particles within the cell volume.

� f

[
∂v j

∂t
+ (vi v j ),i

]
= −p, j + �i j,i + � f g j − Wj (25.3.14)

with

Wj = 1

� f V

Np∑
p=1

(
f mp

�p
(v̂ j − vpj )

)
(25.3.15)

where V is the cell volume, the particle mass is mp = � pd3
p/6, and Np is the number of

particles within the cell volume.

Based on the governing equations above, a number of investigators studied DNS

solutions [Mashayek et al., 1997; Li et al., 1999] and LES [Hansell, Kennedy, and

Kollman, 1992], among others. Mashayek et al. [1997] developed algebraic Reynolds

stress models for two phase flows. Comparisons with DNS calculations show reasonable

agreements. The procedure of development of algebraic models for two-phase flows is

similar to the derivation of algebraic stress model of a single-phase flow reported by

Taulbee [1992].

25.3.3 REACTIVE TURBULENT FLOWS IN FLUID-PARTICLE MIXTURE

The laminar flows in fluid-particle mixture discussed in the previous section can be

extended to include chemical reactions such as in Smirnov [1988], van der Wel et al.
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[1993], Eckhoff [1994], and Smirnov et al. [1997], among others. Again, the Eulerian

frame for the gas and Lagrangian coordinates for particles are the preferred approach. In

most practical problems in engineering, the fluid is air and the particle is the condensed

phase consisting of either liquid droplet or minute solid particles such as dust. The spray

combustion presented in Section 22.2.5 is an example of reactive turbulent flows in fluid-

particle mixture in which liquid fuel droplets are considered as the condensed phase.

As in the laminar flow, there are two types of models for particle-laden gas flows: one-

way coupling and two-way coupling. In turbulent flows, the two-way coupling becomes

significant, with the high rates of mass and energy fluxes from the particles in combustion

process which may cause major changes in the flowfield. This is particularly important

in dust explosion phenomena.

The conventional RANS models proved to be satisfactory for a homogeneous

system, but unsuitable for heterogeneous polydispersed phases due to uncertainties

involved in modeling process and instability in the nature of turbulent flows. Thus, it is

advantageous to use deterministic methods such as DNS in order to examine adequacy

of RANS models.

Governing Equations for the Gas Phase

Let the volume fraction of gas be given by � such that the volume fraction of particles

is (1 − �). The governing equations using the K−ε model are written as

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (25.3.16)

with

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��

�� ṽ j

�� Ẽ

�� K
��ε

��Ỹk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�� ṽi

�� ṽi ṽ j + � p�i j

�� ṽi Ẽ + � pṽi

�� ṽi K

�� ṽi ε

�� ṽi Ỹk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−� i j − �∗
i j

−� i j v j − �∗
i j ṽ j + qi + q∗

i

��(� + �∗
�K

)K,i + �∗
i j ṽ j

��(� + �∗
�ε

)K,i + ε
K C1ε�∗

i j ṽ j

��ỸK,i + ��v′′
i Y′′

k,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

�� g j + N j

�� g j v j + Q

−��ε
−C2ε��ε

�k + M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ′′
i j = −� ṽ′′

i v′′
j = ��∗

(
ṽi, j + ṽ j,i − 2

3
ṽk,k�i j

)
− 2

3
� K�i j

Ẽ =
∑

k

Yk
(
c�kT̃ + H0

k

) + 1

2
ṽi ṽi

q∗
i = ��

∑
k

cpkỸkṽ′′
i T′′ +

∑
k

(
cpkT̃ + H0

k

)
�� ṽ′′

i Yk
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where M is the mass flux per unit volume from the other phases, N j is the momentum

flux from other components and phases, and Q is the energy flux from other phases.

Mathematical Model for Particle Phase

A stochastic approach may be used to describe the motion of polyhedral particles

with a group of representative variables such as the mass and velocities of model particles

involved. The equations of motion and energy balance of kth particles are

mk
dVk

dt
= mkg + Fk − mk

�k
∇p,

dr
dt

= Vk (25.3.17)

mk
dek

dt
= qk + Q̂k (25.3.18)

where ek is the specific internal energy and Q̂k is the heat release or absorption on the

particle surface due to chemistry or phase transition.

Particle mass depletion is determined by

dmk

dt
=

∑
k

ṁkj (25.3.19)

The variations of particle radius and volume are calculated from the depletion of the

skeleton component instead of the total particle mass in terms of suitable probability

density functions for particle radius distributions. As a result, the extraction of volatiles

can cause the decay of particle mean density, resulting in longer flotation in the atmos-

phere.

Mathematical Modeling of Phase Interactions

The two-way coupling can be modeled by determining the mass, momentum, and

energy fluxes between model particles and the surrounding gas. Subsequently, total

fluxes from the particle phase to the gas on the basis of the statistical processing can be

evaluated.

Mass exchange processes between particles and gas occur as a result of phase transi-

tion from evaporation or condensation on the surface of liquid droplets, devolatization

of dust particles, chemical reactions on the interface, etc. In addition to volatiles extrac-

tion, an overall reaction is assumed to take place on a particle’s surface:

C + 1

2
O2 → CO (25.3.20)

Thus, two components from the gas phase (O2 and CO) take part in the reaction and

the generalized volatiles component can be extracted. Finally, fluxes Mk, M, N j , Q to

gas phase as well as the volume fraction of particles (1 − �) are calculated by evaluating

the corresponding fluxes from the volume of model particles. It is assumed that the

volatiles L extracted from organic dust consist of

L = (O2, CO, CO2, H2O, N2, CH4, H2, NH3)

There are two overall reactions assumed to control chemical transformation:

L+ �O2
O2 → �COCO + �H2OH2O + �COCO2 + �N2

N2

2CO + O2 ⇔ 2CO2
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The values of stoichiometric coefficients in the volatile oxidation reaction are calculated

according to the concentrations of components in volatiles. Further details can be found

in Smirnov [1988] and Smirnov et al. [1997].

25.4 EXAMPLE PROBLEMS

25.4.1 LAMINAR FLOWS IN FLUID-PARTICLE MIXTURE

In this example, we discuss finite element calculations for laminar flow in fluid-particle

mixture with effects of rigid body motions of solid particles upon fluid flows as reported

by Maury [1999]. Both translational forces and torques acting on the surface of particles

are taken into account. Variational finite element equations are derived from govern-

ing equations given in Section 25.3.1; nonuniform biperiodic unstructured meshes of

domains with holes are generated.

The main feature in this formulation is the average behavior of a large number of

particles. An extra term is added to the pressure, representing the Lagrange multiplier

associated with the verticle volume conservation constraint.

Following the ALE approach and the method of characteristics, the time-

discretization turns out to be a generalized Stokes problem. A suitable variational

formulation leads to a symmetric system involving all the unknowns which are then

solved, using the conjugate gradient Uzawa algorithm [Elman and Golub, 1994].

Figure 25.4.1a shows the boundary of the periodic window containing 1,000 2-D

elliptical particles of various sizes. The biperiodic unstructured triangular mesh

corresponding to the selected zone representing the left side block is shown in

Figure 25.4.1 Laminar flow in fluid-particle mixture [Maury, 1999]. (a) Mesh bound-

ary. (b) Mesh detail, left block in (a). (c) Velocity field, right block in (a).
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Figure 25.4.1b. The computed velocity field for the zone designated by the right side

block is demonstrated in Figure 25.4.1c. Further details are shown in Maury [1999].

25.4.2 TURBULENT FLOWS IN FLUID-PARTICLE MIXTURE

We present in this example the results of direct numerical simulation (DNS) of inter-

actions between solid particles and near-wall turbulence as reported by Li et al. [1999].

The flowfield of horizontal channel is solved using a Lagrangian approach for the par-

ticle motion. Two-way coupling is used to account for the effect of the particles on the

structure of the near-wall turbulence, and on the mainstream.

In this analysis, the vorticity transport equations (12.2.10) and the curl of the vor-

ticity transport equations given by (12.2.11) are used for fluid motions. The rigid-body

particle motion includes translational force without rotational torque. However, the

particle equations of motion as given in (25.3.10) are modified to include the effects

of height of the channel H with respect to the particle size and additional temporal

rate of changes of flowfield [Kim and Karrila, 1991]. Computational procedures are as

follows:

(1) The flowfield is calculated to the steady state without particles using the spectral

method. Equations (12.2.10) and (12.2.11) are used with the solution expanded

to the finite Fourier series in the x1, x2 directions and Chebyshev polynomials

to the normal direction x3 (see Chapter 14).

(2) Introduce the particles into this flowfield and calculate their motions with one-

way coupling using (25.3.13). The particles are considered as points at this time

and allowed to reach stationary distribution. However, the particles are rela-

tively large and each covers a number of collocation points. The fluid velocity

at various locations in the particle is averaged with a three-dimensional cubic

spline interpolation scheme and applied on the particle through (25.3.13).

(3) In order to implement the two-way coupling, all the velocities in the collocation

points occupied by the particle are set equal using (25.3.14).

(4) Iterations between Step (2) and Step (3) continue until convergence.

Figure 25.4.2a shows the geometry for this example. The calculations are carried

out in a computational domin of 1074 × 537 × 171 wall units in the x1, x2, and x3

directions with a resolution of 128 × 128 × 129. The density of particle is 1050 kg. The

turbulent Reynolds number Re∗ = 2hv∗/� = 85.4, the corresponding bulk Reynolds

number Re = 2hU/� = 2600 with h = 37 mm are used.

Figure 25.4.2b shows the distribution of particles (dimensionless diameter d+ = 8.5)

in the x1, x2 plane, compared with the experimental data (Figure 25.4.2c). It is seen that

the tendency of particles to agglomerate into the streaks depends on the particle size

and flow conditions. In Figure 25.4.2d, distributions of particles in the x1, x3 plane and

x2, x3 plane are shown. Although not shown, the coarser particles affect the velocity

fluctuations of the carrier fluid significantly. Turbulent intensity and Reynolds stresses

are increased considerably as the particle size increases. Further details are presented

in Li et al. [1999].
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Figure 25.4.2 Turbulent flow in fluid-particle mixture [Li et al., 1999]. (a) Flow geometry. (b) Dis-

tribution of particles (d+ = 8.5), numerical simulation, x1-x2 plane. (c) Distribution of particles,

experimental data, x1-x2 plane. (d) Distribution of particles (d+ = 8.5), numerical simulation, x1-x3

and x2-x3 planes.

25.4.3 REACTIVE TURBULENT FLOWS IN FLUID-PARTICLE MIXTURE

This example shows thermogravitational instability in large-scale combustion of dis-

persed dust-air mixtures and its contribution to turbulence as studied by Smirnov et al.

[1997]. Two-way coupling effects in gas-particle interactions and combination of both

deterministic and stochastic approaches are demonstrated.

The K − ε approximations are used to calculate the gas phase flow with the account

for mass, momentum, and energy fluxes from the particle’s phase. The equations of

motion for particles take into consideration those turbulent fluctuations in the gas flow.

The models for phase transitions and chemical reactions accommodate thermal destruc-

tion of dust particles, volatilization, chemical reactions in the gas phase, and heteroge-

neous oxidation of particles. The influence of inert and chemically reacting particles

on the flowfield induced by heating from below and by sedimentation is adequately

resolved. The related equations for this analysis are presented in Section 25.3.3.

The computational domain is 2000 m in the horizontal direction and 1000 m in the

vertical direction. Initial and boundary conditions are: U = 10 m/s, p0 = 1.013 · 105 Pa,

T0 = 280K, Q = 1.67 · 105 W/m3, �s0 = 0.0005,

K0 = 0.1 m2/s2, ε0 0.01 m2/s3.
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Figure 25.4.3 Reactive turbulent flow in fluid-particle mixture [Smirnov et al., 1997]. (a) Dust volume

share distribution in combustion of air-dust mixtures over the heat source. (1) t = 21s, (2) 52, (3) 88,

(4) 137, (5) 542. (b) Volatiles oxidation intensity in combustion of air-dust mixtures over the heat source.

(1) t = 21s, (2) 52, (3) 88, (4) 137. (c) Turbulent kinetic energy distribution in the gas phase under large

scale combustion of air-dust mixtures. (1) t = 21s, (2) 52, (3) 88, (4) 137.

Figure 25.4.3a shows the dust volume share distribution in combustion of air-dust

mixtures over the heat source. Here the particles are pushed aside by the upgoing blob

of hot air above the zone of heat release [Figure 25.4.3a(1)]. Particles are then lifted

up by the vortices created and form a well-known mushroom-type structure that is

deformed due to the wind [Figure 25.4.3a(2)]. The new ignition and combustion of

particles delivered into the heated zone causes the formation of another upgoing blob

of heated dust-air mixture [Figure 25.4.3a(3)]. The second blob is then sucked into the

primary vortices and rises further above [Figure 25.4.3a(4)]. Meanwhile, a new ignition

of fresh dust-air mixture begins and the process is repeated [Figure 25.4.3a(5)].

Volatiles oxidation intensity in combustion of air-dust mixtures over heat source

is presented in Figure 25.4.3b. It is seen that the initial ignition [Figure 25.4.3b(1)] is

followed by several hot spots transported by vortices [Figure 25.4.3b(2)]. The main

reaction zone oscillates due to periodic contractions and expansions of the heat zone
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[Figure 25.4.3b(3,4)]. The characteristic frequency of these oscillations is much lower

than the frequency of the mushroom-type structure.

Figure 25.4.3c shows the turbulent kinetic energy in the gas phase under large-scale

combustion of dust-air mixtures. Turbulence is caused by vortices and heated zone

oscillation intially [Figure 25.4.3c(1)]. The turbulent kinetic energy is transported by

both initial and secondary vortices, leading to an increased magnitude throughout the

process [Figure 25.4.3c(2–4)].

25.5 SUMMARY

The current status of the research in multiphase flows is reviewed in this chapter with

a limited number of example problems. In particular, the volume of fluid formulation

with continuum surface force and fluid-particle mixture flows, along with the laminar

and turbulent flows in the fluid-particle mixture are included.

Treatments of surface tension, surface and volume force due to surface tension,

and implementation of volume force are presented. It is shown that the volume force

calculated in terms of surface tension is used as the source terms in both momentum and

energy equations. The formulation suggested in Section 25.2.5 lends itself to all speed

flows, although the emphasis is on the low-speed incompressible flows in general.

Fluid-particle mixture flows include laminar flows with the rigid-body motions of

solids, turbulent flows in fluid-particle mixture, and reactive turbulent flows in fluid-

particle mixture. Some representative numerical examples of these topics are also

examined in this chapter.
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CHAPTER TWENTY-SIX

Applications to Electromagnetic Flows

In this chapter, computations involved in electromagnetism are discussed, including

magnetohydrodynamics, rarefied gas dynamics, and plasma dynamics. To deal with these

physical phenomena, Maxwell equations and Boltzmann equations are introduced. It is

shown how these equations are solved separately and together with the standard fluid

dynamics equations.

Section 26.1 introduces all governing equations involved in electromagnetism,

followed by solutions of Boltzmann equation using the BGK model discussed in

Section 26.2. We discuss in Section 26.3 semiconductor plasma processing, including

charged particle kinetics in plasma discharge, discharge modeling with moment equa-

tions, and reactor model for chemical vapor deposition. In Section 26.4, some appli-

cations are presented, including magnetohydrodynamic flows in coronal mass ejection

and various aspects of plasma processing in semiconductors.

26.1 MAGNETOHYDRODYNAMICS

Magnetohydrodynamics (MHD) deals with the motion of a highly conducting fluid

in the presence of a magnetic field. Such a motion generates electric currents which

change the magnetic field, and the disturbed field in turn gives rise to mechanical forces

which affect the flowfield. This coupling between the electromagnetic and mechani-

cal forces then characterizes hydromagnetic phenomena. Celestial bodies which con-

tain large conducting masses are known to exhibit pronounced hydrodynamic pheno-

mena.

The electromagnetic field is produced by a distribution of electric current and charge.

The motion of charge constitutes a current that is determined by the magnitude of the

charge and velocity. The current density at a point is defined as the vector J by the

equation

J = �v (26.1.1)

where � is the charge density and v the velocity vector. It follows that in metals and

valves, where the electricity is carried by electrons that are negatively charged, the

direction of the current density vector is opposite to that of the moving electrons.

937
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The current I across a surface is defined to be the rate at which a charge crosses that

surface. Since a charge can cross S only by virtue of its velocity normal to S, we have

I = J · ndS (26.1.2)

where n is a unit vector normal to S.

Consider now two isolated charges e and e1 moving in free space. The charge e is

acted on by certain electrical forces due to e1. If e is at rest, the electrical force is eE. The

vector E is called the electric intensity. If e is moving with velocity v, there is an additional

force ev × B where the vector B is called the magnetic flux density. Two other vectors

play a role in specifying the electromagnetic field, and they are related to the lines

of force which emanate from charge and currents. The vector D, which is called the

electric flux density, effectively measures the number of lines of force which originate

from a charge. The vector H, which is called the magnetic intensity, is such that its value

on a closed curve effectively measures the current which passes through the curve.

We shall assume that the vectors E, B, D, and H are continuous and possess contin-

uous derivatives at ordinary points at which Maxwell’s equations

∇ × E + ∂B
∂t

= 0 (26.1.3a)

∇ × H − ∂D
∂t

= J (26.1.3b)

∇ · B = 0 (26.1.3c)

∇ · D = � (26.1.3d)

are satisfied. Since the divergence of the curl of any vector vanishes identically, we

obtain, by taking the divergence of (26.1.3b)

∇ · J = −∇ · ∂D
∂t

= − ∂

∂t
(∇ · D) (26.1.4)

Substitution of (26.1.3b) into (26.1.4) gives

∂�

∂t
+ ∇ · J = 0 (26.1.5)

By analogy with a corresponding equation in hydrodynamics, (26.1.5) is called the equa-

tion of continuity.

In a field of infinite electrical conductivity, the fluid particles are tied to the lines of

force of the magnetic field so that the lines of force may be thought of as possessing

inertia, the mass per unit length equal to the density of the fluid � .

To describe the magnetohydrodynamic behavior, we must have: (1) the mechanical

equations embodying the effect of the electromagnetic forces as well as other forces on

the motion, (2) the equation at continuity, (3) the equation of heat transport, and (4)

the equation of state as well as the Maxwell equations given in (26.1.3).

Consider a viscous fluid in motion in which the only body forces are gravity and

electromagnetic forces. The equation of motion can be written as

�
∂v
∂t

+ �(v · ∇)v = −∇p + �g + J × B + eE + �

[
∇2v + 1

3
∇(∇ · v)

]
(26.1.6)
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in which

J × B = (∇ × B) × B (26.1.7)

The equations of continuity, energy, and state are the same as given in Chapter 2 except

that the product of velocity with the magnetic and electric forces must be added to the

energy equation. The condition to be satisfied at a fluid-fluid boundary or fluid-vacuum

boundary can be obtained by integration of the relevant equation across a thin stratum

coinciding with the surface.

The new variables introduced in the Maxwell’s equations and the momentum equa-

tions may be combined to form the electromagnetic Navier-Stokes system of equations

as follows:
∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= S (26.1.8)

with

U =

⎡
⎢⎢⎢⎣

�

�v j

� Ê

Bj

⎤
⎥⎥⎥⎦ Fi =

⎡
⎢⎢⎢⎣

�vi

�vi v j + p∗ �i j

(� Ê + p∗)vi

vBj − v j Bi

⎤
⎥⎥⎥⎦ Gi =

⎡
⎢⎢⎢⎣

0
−�∗

i j

−�∗
i j v j + qi

1
�0�

Bj,i

⎤
⎥⎥⎥⎦ S =

⎡
⎢⎢⎢⎣

0

� Fj

� Fi vi + Ei Ji

0

⎤
⎥⎥⎥⎦

(26.1.9)

P ∗ = P + 1

2�0

BkBk (26.1.10a)

�∗
i j = �i j + �

(m)
i j (26.1.10b)

�i j = 2�
(
di j − 1

3
dkk

)
(26.1.10c)

�
(m)
i j = 1

�0

Bi Bj (26.1.10d)

di j = 1

2

(
vi, j + v j,i

)
(26.1.10e)

Ê = 3

2
NKBT = 3

2
p, (KB = Boltzmann’s constant)

There are four conservation variables to be solved: � , �v j , � Ê, Bj , and subsequently

the primitive variables are calculated from the constraint conditions. Note that the elec-

tromagnetic forces may be written in conservation forms using gradients of squares and

products of the magnetic flux density in (26.1.9). This may be desired for computational

efficiency in dealing with discontinuities and/or fluctuations.

The motion of ionized gas belongs to the regime of plasma dynamics. The charged

particles in a magnetic field are of interest in many physical phenomena such as occur in

astrophysics, semiconductor, etc. The characteristic feature of the motion of a charged

particle in a magnetic field is its tendency to spiral around the magnetic lines of force:

on this is superposed a slow drift normal to the magnetic field if this is not uniform. This

drift will be in opposite sense for oppositely charged particles in a gravitational field or

a field of force other than an electrical field. But in the case of crossed electrical and



940 APPLICATIONS TO ELECTROMAGNETIC FLOWS

magnetic fields, the drift will be the same for the charges of opposite sign, irrespective

of their masses and charges.

Computations involved in magnetohydrodynamic flows such as in coronal mass

ejection may be carried out using (26.1.8). Computational difficulties or solution con-

vergence can occur due to physical discontinuities arising from the relationship between

the Lundquist number S and the magnetic resistivity �.

S = � d/� A (26.1.11)

� = vAL/S (26.1.12)

where � d and �A denote the magnetic diffusion time and Alfve’nic time, respectively,

with vA and L being the local Alfve’nic speed and scale height of the solar atmosphere,

respectively,

L = kT0/mg (26.1.13)

where k is the Boltzmann constant and m is the proton mass. It is interesting to note

that the Alfve’nic time and Lundquist number resemble the chemical reaction time

and Damköler number in Newtonian reactive flows, respectively, whereas the magnetic

resistivity is anagolous to viscosity. Thus, it is expected that the governing equations

given by (26.1.8) may become stiff, resulting in difficulties of convergence to accurate

solutions. To this end, it is worth investigating the merit of the flowfield-dependent

variation (FDV) approach presented in Sections 6.5 and 13.6.

Plasma reactors used for semiconductor manufacturing can be described by a con-

tinuum CFD model coupling plasma transport, neutral species dynamics, gas flow, heat

transfer and power coupling from an external source. Such a multicomponent, multi-

temperature system is simulated by the mass conservation for each species, momentum

conservation of the mixture, and energy transport of electrons and neutrals [Bose et al.,

1999]. The mass-averaged flow velocity is given by (26.1.6). The mass fraction for each

of N species is described by

∂�s

∂t
+ ∇ · v�s = −∇ · Js +

N∑
r=1

Rsr (26.1.14)

where �s is the species density (the product of number density n and molecular mass ms),

Js is a mass flux due to gradients of density, pressure, and electrostatic forces. The flux Js

can be written in a form ensuring the mass conservation [Bose et al., 1999]. The source

Rsr denotes the mass rate production or consumption of species s from reaction r . The

rates of electron-induced reactions in the plasma are functions of electron distribution

function (EDF) which can be found as a solution of the Boltzmann equation.

The Boltzmann equation is a continuity equation in a six-dimensional space (three

coordinates in domain space and three in velocity space)

∂ f
∂t

+ (v · ∇) f + (F · ∇v) f =
(

∂ f e

∂t

)
c

(26.1.15)

where ∇v stands for the gradient vector operator in the velocity space. Here (∂ f e/∂t)c

represents the collisional force equal to the rate of change by encounters in the number

of the class v, dv, in a fixed element of volume dr at r, t . Each charged particle of a mass
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m is acted upon by a force mF given by

F = e
m

(E + v × B) (26.1.16)

The Boltzmann equation for charged particle of mass m and carrying a charge e is

therefore

∂ f
∂t

+ (v · ∇) f +
[

e
m

(E + v × B) · ∇v

]
f =

(
∂ f e

∂t

)
c

(26.1.17)

Numerical implementations of (26.1.6) and applications to plasma instability are

shown in Section 7.3 [Chung, 1978]. Numerical solutions of the magnetohydrodynamic

Navier-Stokes system of equations (26.1.8) as applied to coronal magnetic field have

been reported by Wu and his co-workers [Wu and Wang, 1987; Wu et al., 2000], among

others. Some of their results will be presented in Section 26.4.1. Applications of

Boltzmann equation in the form given in (26.1.17) will be demonstrated in plasma

glow discharge processing for semiconductors in Section 26.4.2.

26.2 RAREFIED GAS DYNAMICS

26.2.1 BASIC EQUATIONS

Let us consider a rarefied gas flowing in a horizontal duct with irregular cross section

with z being the coordinate parallel to the flow and x, y the coordinates of the cross

section normal to z. The Boltzmann equation, linearized in the manner of Bhatnagar,

Gross, and Krook [1954], known as the BGK model, may be written in the form

∂ f
∂t

+ (c · ∇) f = �0

�
( f eq − f ) (26.2.1)

where c is the dimensionless velocity defined by

c = v�0 �0 =
√

m
2kT0

(26.2.2)

f is the single local dimensionless distribution function, v the molecular velocity, � the

collision frequency, and k the Boltzmann constant. Applying the Chapman and Enskog

method of successive approximation, we write

f = f 0(1 + �)

n = n0(1 + 	) (26.2.3)

T = T0(1 + �)

with

f 0 = n�3
0
−3/2 exp(−c2) (26.2.4)

and

f eq = n�3
0
−3/2 exp

[
1

(1 + �)
(c − q∗)2

]
(26.2.5)

where q∗ is the dimensionless flow velocity which is defined as q∗ = q �0 and n is the



942 APPLICATIONS TO ELECTROMAGNETIC FLOWS

number density. For the problem we consider here, the flow velocity can be expressed as

q∗
x = q∗

y = 0 (26.2.6)

and

q∗
z = 1

n�3
0

∫ ∞

−∞

∫ ∞

−∞
f cz�dcxdcydcz (26.2.7)

For small Mach number flow where |qz| � 1, 	 � 1 � � 1, and � � 1, the equilibrium

local distribution function can be linearized as

f eq = f 0

[
1 + 2czq∗

z +
(

c2 − 3

2

)
�

]
(26.2.8)

For simplicity, we consider a pure shear flow without heat transfer, namely, an isother-

mal flow at T0. Thus, the temperature change due to compression will be ignored; that

is, � = 0. This implies that the gas flows are resulting from a density gradient along the

z direction, which in turn is caused by a pressure gradient. Therefore, the Boltzmann

equation is linearized as

∂�

∂t
+ cx

∂�

∂x
+ cy

∂�

∂y
+ czK = 1

�
(2czq∗

z − �) (26.2.9)

where the nonlinear terms (�/n)(dn/dz) are neglected, and furthermore, we have re-

stricted our attention to a fully developed flow, with ∂�/∂z and (d/dz)(1/p)(dp/dz)

being zero, leading to K = (1/p)(dp/dz), and � = �/�0.

On the walls of the duct, we shall assume that it reflects diffusely the molecules

impinged on it. Thus, the boundary conditions for the distribution function will be

characterized by Maxwellian; namely, on the boundary (F0)

f (−sgn cx; r0, c) = f (−sgn cy; r0, c) = f 0 (26.2.10)

with

sgn cx = +1 for cx > 0 and cy > 0

sgn cy = −1 for cx < 0 and cy < 0

the boundary condition for � then becomes

�(−sgn cx; r0, c) = �(−sgn cy; r0, c) = 0 (26.2.11)

Introducing the dimensionless variables of the form

x∗ = x
r0

, y∗ = y
r0

, �∗ = �

Kr0

, � = r0

�
(26.2.12)

and also assuming that

�∗ = cz� (x∗, y∗, cx, cy) (26.2.13)

we can rewrite (26.2.9) as

∂�

∂t
+ cz

∂�

∂x
+ cy

∂�

∂y
+ K = 1

�

[
1




∫ ∞

−∞

∫ ∞

−∞
� exp

(−c2
x − c2

y

)
dcxdcy − �

]

(26.2.14)

where the superscript * is deleted for simplicity.
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Our objective is to determine � , called the perturbation function, and subsequently

� from which we can calculate flow velocity by (26.2.7). In order to obtain the values for

� , we shall apply the half-range method [Gross, Jackson, and Ziering, 1957] by dividing

the � into four parts: namely,

� = � ± ±(cx, cy) (26.2.15)

and that � ± ± is only defined for cx > 0 and cy > 0, � +− for cx > 0 and cy < 0, � −+ for

cx < 0 and cy < 0. The integral in (6.2.14) may be written as∫ ∞

−∞

∫ ∞

−∞
� exp

(−c2
x − c2

y

)
dcxdcy

=
∫ ∞

0

∫ ∞

0

� ++ exp
(−c2

x − c2
y

)
dcxdcy +

∫ ∞

0

∫ 0

−∞
� −+ exp

(−c2
x − c2

y

)
dcxdcy

+
∫ 0

−∞

∫ ∞

0

� +− exp
(−c2

x − c2
y

)
dcxdcy +

∫ 0

−∞

∫ 0

−∞
� −− exp

(−c2
x − c2

y

)
dcxdcy

(26.2.16)

Finally, we calculate the volume flow rate Qz

Qz =
∫ ∫

qz(x, y)dxdy (26.2.17)

In the following section, we demonstrate how these calculations are performed using

the finite element technique.

26.2.2 FINITE ELEMENT SOLUTION OF BOLTZMANN EQUATION

In the final form of the Boltzmann equation with BGK collision model, we assume

that the perturbation function � ± ±(x, y, cxcy) is given by [Chung, Oden, and Wu, 1974;

Chung, 1978]

� ± ±(x, y, cx, cy) =
∞∑

m=0

∑
n=0

mn(x, y)H± ±
mn (cx, cy) (26.2.18)

wherein H± ±
mn = h±

m(cx)h±
n (cy) and h±

m(cx) and h±
n (cy) are the Hermite polynomials of

order m. Substituting (26.2.18) into (26.2.14), we obtain the residual function

R± ±(x, y, cx, cy)

=
∞∑

m=0

∞∑
n=0

∂mn

∂t
H± ±

mn +
∞∑

m=0

∞∑
n=0

cx
∂mn

∂x
H± ±

mn +
∞∑

m=0

∞∑
n=0

cy
∂mn

∂y
H± ±

mn

+ 1

�

( ∞∑
m=0

∞∑
n=0

mn H± ±
mn − 1




∫ ∞

−∞

∫ ∞

−∞

∞∑
m=0

∞∑
n=0

mn H± ±
mn exp

(−c2
x − c2

y

)
dcxdcy

)

(26.2.19)

In the approximation (26.2.18), we choose mn in such a manner that the averages of R
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with respect to H± ±
i j

Ri j (x, y) =
∫ ∞

−∞

∫ ∞

−∞
RH±±

i j dcxdcy (26.2.20)

vanish in velocity domain so as to obtain systems of partial differential equations in mn

of the form

∞∑
m=0

∞∑
m=0

∂mn

∂t
Wmni j +

∞∑
m=0

∞∑
m=0

∂mn

∂x
Amni j +

∞∑
m=0

∞∑
m=0

∂mn

∂y
Bmni j

+ KEi j + 1

�

( ∞∑
m=0

∞∑
m=0

mnCmni j −
∞∑

m=0

∞∑
m=0

mn Dmn Ei j

)
= 0 (26.2.21)

where

Wmni j =
∫ ∞

−∞

∫ ∞

−∞
H± ±

mn (cx, cy)H± ±
i j (cx, cy)dcxdcy

Amni j =
∫ ∞

−∞

∫ ∞

−∞
cx H± ±

mn (cx, cy)H± ±
i j (cx, cy)dcxdcy

Bmni j =
∫ ∞

−∞

∫ ∞

−∞
cy H± ±

mn (cx, cy)H± ±
i j (cx, cy)dcxdcy

Cmni j =
∫ ∞

−∞

∫ ∞

−∞
cx H± ±

mn H± ±
i j dcxdcy

Ei j =
∫ ∞

−∞

∫ ∞

−∞
cx H± ±

mn dcxdcy

Thus, we have reduced the problem of solving (26.2.1) to that of solving an infinite

system of partial differential equations (26.2.21) in the function mn = mn(x, y). We

shall proceed to obtain approximate solution of a truncated version of (26.2.21) by the

finite element method.

Introduce the functional relationship in the form,

mn(x, y) = SN(x, y)Nmn (26.2.22)

with N being the local node. Substituting (26.2.22) into (26.2.21), we obtain the new

local residual

R̂i j (x, y) =
∞∑

m=0

∞∑
n=0

{
Wmni j SN

∂Nmn

∂t
+ Amni j

∂SN

∂x
Nmn + Bmni j

∂SN

∂y
Nmn

+ 1

�
(Cmni j SNNmn − Dmn Ei j SN Nmn)

}
+ KEi j (26.2.23)

We now choose the local nodal values of Nmn in such a manner that the local residual

R̂i j (x, y) is orthogonal to the subspace spanned by the functions SN(x, y) for each finite

element; that is∫ ∫
SN R̂i j dxdy = 0 (26.2.24)



26.2 RAREFIED GAS DYNAMICS 945

This is basically the Galerkin method used throughout this book. Thus, the local finite

element equations are of the form

∞∑
m=0

∞∑
n=0

{
Wmni jwNM

∂Mmn

∂t
+

[
Amni j aNM + Bmni j bNM

+ 1

�
(Cmni j − Dmn Ei j )cNM

]
Mmn

}
+ Ei j KdN = 0 (26.2.25)

where

wNM =
∫ ∫

SNSMdxdy

aNM =
∫ ∫

∂SN

∂x
SMdxdy

(26.2.26)

bNM =
∫ ∫

∂SN

∂y
SMdxdy

cNM = wNM

dN =
∫ ∫

SNdxdy

Equation (26.2.25) represents the general local finite element model of (26.2.21)

which will then be assembled into a global form. Boundary conditions amount to sim-

ply prescribing nodal values of mn(x, y) at boundary nodes. In specific applications,

appropriate forms of the interpolation function SN(x, y) must be chosen and only a

finite number of terms of the series in (26.2.23) can be used.

Having completed all integrations in (26.2.26), we obtain the finite element equations

of the form

J NM
mni j ̇

M
mn + KNM

mni j 
M
mn = F N

i j (26.2.27)

where

J NM
mni j =

∞∑
m=0

∞∑
n=0

Wmni jwNM

KNM
mni j =

∞∑
m=0

∞∑
n=0

(
Amni j aNM + Bmni j bNM + 1

�
(Cmni j − Dmn Ei j )cNM

)

F N
i j = Ei j KdN

The number of equations generated in (26.2.27) depends on the order of Hermite

polynomial approximations and the number of nodes in an element. Consider the mth

Hermite polynomial defined by

Hm(ς ) = (−1)m exp(ς 2)
dm

dς m
exp(−ς 2) (26.2.28)

The number of local finite element equations is determined by

r = (1 + m)2 N
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where N is the number of nodes in an element: for example, if we choose m = 3 and

N = 4, then the number of local finite element equations becomes 64 with 16 equations

at each node. The total number of equations for the entire cross section is 16 time the

total number of nodes.

Numerical solutions of (26.2.27) for a square duct were carried out [Chung et al.,

1974; Chung, 1978]. It was shown that the orthogonal projection in the Euclidean space

dealing with both spatial domain and velocity dimension leads to an effective approach

to the solution of the Boltzmann equation.

26.3 SEMICONDUCTOR PLASMA PROCESSING

26.3.1 INTRODUCTION

Plasma dynamics describing the motion of ionized gas studied in Sections 26.1 may

be extended to charged particle kinetics combined with reactive flows of Chapter 22

for applications to integrated circuits (IC) in semiconductor. Physics and chemistry

of plasma-enhanced chemical vapor deposition (PECVD) are important processes for

semiconductor device fabrication. Low temperature, partially ionized discharges used

in IC manufacturing are characterized by a number of interacting effects: plasma gen-

eration of active species; plasma power deposition and loss mechanisms; surface pro-

cesses proceeding at the wafer, reactor walls, and fixtures; particulate generation; and

gas flow and heat transfer patterns, etc. Here, the role of CFD will be extremely im-

portant in resolving plasma process simulation and discharge modeling [Meyyappan,

1995].

A plasma is a collection of charged particles where the long-range electromagnetic

fields set up collectively by the charged particles have an important effect on the par-

ticles’ behavior. In the case of a semiconductor, the fields the plasma sets up will be

mostly electric fields. This electrical field is created because electrons in the plasma

tend to move much faster than ions. The fast-moving electrons hit the wall and charge

up negatively, and this negative charge pushes other electrons away at the same time

as attracting positive ions, with the rates of arrival of electrons and positive ions made

about equal at the steady state.

The negative space charge at dielectric walls repels plasma electrons from the wall,

exposing the positive charge in a region close to the wall known as a sheath. The electric

fields in the positively charged sheath region are strong, whereas those in the plasma

interior are weak. The strong electrical field in the sheath accelerates the ions in a direc-

tion normal to the surface. The high energy ions moving toward the surface represent

the vital aspect of the plasma processing of materials. The ions, among other things,

sputter (knock) material off the surface, damage the surface, provide heat to the sur-

face, or implant in the surface. This process is known as etching. Because the sheath

electric fields cause ions to arrive at near normal incidence, they tend to hit the bottom

of a trench rather than a vertical sidewall of a trench. This is crucial for the faithful

transfer of a pattern during etching. Plasma ions striking a semiconductor through a

hole in a mask will more likely dig the hole straight down. The electrons ionize neutrals,

break molecules apart to form radicals, create molecules in excited states, and heat the

surface. The radicals are frequently responsible for etching the surface. Radicals may
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also polymerize on the surface and form a layer that protects the surface. Chemical

etching by itself is isotropic and has high selectivity but is not desirable because there

is no preferred direction, whereas etching by ions provides anisotropy but often lacks

selectivity. Thus, a commonly used example of the combination of chemical and physical

etching is etching in the presence of a gas that will polymerize on the surface. Anisotropy

is achieved because ions only clean the polymer off the bottom of a trench and not off

the side walls. Selectivity might depend on the chemical etch of the bare surface only

being effective for (say) Si or SiO2. In etching using CF4 gas, a polymer is formed on

the surface of Si but not SiO2. The SiO2 gives up oxygen to form CO2 from the radicals,

which contain carbon. This prevents the formation of the polymer on SiO2, and so SiO2

will be etched while Si is protected from etching by the polymer [Kirmse et al., 1996].

The electric and magnetic fields in the plasma are set up self-consistently by the

plasma, and the plasma is controlled by those fields. The conditions in which the electric

field is strongly affected by the plasma may be described by Poisson’s equation,

∇ · E = �

ε
(26.3.1a)

or

∇2� = −�

ε
(26.3.1b)

where E is the electric intensity, � is the charge density, ε is the surface energy, and � is

the electrostatic potential in the main chamber. One-dimensional analysis of (26.3.1b)

shows that the plasma number density in a plasma reactor has to be in excess of

106 cm−3 which will affect the electrostatic potential. This is a very low density compared

to densities used in plasma processing. The usual situation in a plasma reactor is that

the density of ions and electrons is high enough to shield out a typical applied voltage in

a very short distance, so that the plasma interior can be nearly free from strong electric

fields, and the electrons can provide a charge density that nearly neutralizes the plasma

in the interior. Further details of the basic principles of plasma processing have been

well documented in the literature [Chapman, 1980; Boenig, 1982; Manos and Flamm,

1989; and Hitchon, 1999; among others].

In plasma processing reactors, a self-sustaining glow discharge is made available from

a direct current (DC), radio frequency (RF), or microwave power source. The electrons

gain energy from the applied electrical field but do not lose energy significantly from

the numerous elastic collisions with the gas due to their small mass compared to the gas

atoms (molecules). As a result, the electrons attain a very high temperature, while the

background gas and heavy ions are relatively cold. Hence, these discharges, which are

only partially ionized, are cold plasmas. A variety of electron-impact reactions result

in inelastic collisions with the gas molecules in the discharge that are responsible for

the creation of reactive and nonreactive fragments from the parent gas. Inelastic colli-

sion between heavy particles leads to recombination and other chemical reaction. The

net result from all of this chemical activity is a partially ionized discharge consisting

of electrons, positive ions, negative ions, atoms, radicals, other neutral fragments, and

the parent gas(es). This system is not in thermodynamic equilibrium. It is indeed the

deviation from thermodynamic equilibrium that is responsible for the effectiveness of a

discharge in material processing and permits low-temperature processing. In addition,



948 APPLICATIONS TO ELECTROMAGNETIC FLOWS

Figure 26.3.1 Various plasma reactors. (a) Capacitively coupled plasma (CCP) reactor. (b) Electron cycloton

resonance (ECR) reactor. (c) Inductively coupled plasma (ICP) reactor [courtesy of CFDRC].

several heterogeneous reactions occur on the wafer, electrode, and reactor walls. An-

other important surface activity involves the emission of the secondary electrons by the

impact of electrons and positive ions on the surface.

For the past two decades, capacitively coupled plasma (CCP) reactor (Figure 26.3.1a)

has been employed using typically 13.56-MHz of RF power source. Recently, efforts are

being made to develop new plasma sources capable of high processing rates and unifor-

mity over large wafers (larger than 200 mm) with minimum wafer damage, achieving a

structure scale size of 150 nm or less. The electron cycloton resonance (ECR) reactor

is currently receiving much attention for both deposition and etching (Figure 26.3.1b).

Here, microwave energy at 2.45 GHz is coupled to the natural resonance frequency of

the electron gas in the presence of a strong magnetic field (875 gauss). Another new

plasma source is an inductively coupled plasma (ICP) reactor in which the plasma is

driven inductively, with a power source that operates at the standard RF of 13.56 MHz.

ICP reactors use a variety of different coil designs as illustrated in Figure 26.3.1c.

In the past, computer calculations were carried out with simplifications, using either

plasma discharge model (PDM) or gas flow model (GFM) in chemical vapor deposition

(CVD). In PDM, we consider only the discharge physics aspects, setting aside gas flow,
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gas and wafer heating, and reactor issues. Here, it is assumed that the loss of charged

particles (electrons and ions) due to gas convective flow is negligible. In this approach,

we are primarily concerned with the physical features of the discharge such as electrical

characteristics, utilization of applied power, and variations of densities, plasma potential,

sheath thickness, ion flux, etc., as a function of process input parameters. On the other

hand, in GFM, we disregard the discharge aspects and focus on an idealized reactor

model. In this approach, we assume an electron density distribution in the reactor.

Reaction rate constants are either taken from experiments or evaluated using some

assumed form for electron energy distribution function (EEDF).

Obviously, the most desirable approach is to combine both PDM and GFM at the

expense of computational resources, known as the complete process model (CPM). The

governing equations for PDM are those presented in Section 26.1, whereas the reactive

flow equations of Chapter 22 are applied to GFM. Traditionally, Monte Carlo methods

and particle-in-cell methods have been used for PDM, with FDM, FEM, and FVM

favored for GFM. For the sake of completeness, the governing equations for CPM as a

combination of PDM and GFM are summarized below.

26.3.2 CHARGED PARTICLE KINETICS IN PLASMA DISCHARGE

The charged particle kinetics for PECVD may be governed by the Boltzmann equation

(26.1.12) as

∂ f
∂t

+ (v · ∇) f + (F · ∇v) f =
(

∂ f
∂t

)
c

(26.3.2)

with F being the electromagnetic force,

F = e
m

(E + v × B) (26.3.3)

and the velocity distribution function (VDF) f may be given by the two-term approxi-

mation in the form,

f (r, v, t) = f0(r, v, t) + v
v

· f1(r, v, t) (26.3.4)

where f0 and f1 denote the isotropic part and anisotropic part, respectively, given by

Shkarofsky et al. [1966] as

∂ f 0

∂t
+ 1

3
(v · ∇)f1 − 1

v2

∂

∂v

[
ev2

3m
(E · f1) + 1

2
v3�	 f 0

]
+ Se

= −	∗(v) f 0 + v′

v
	∗(v′) f 0(r, v′ t) + Ie (26.3.5)

∂f1

∂t
+ (v · ∇) f 0 − eE

m
∂ f 0

∂v
= −	 f1 (26.3.6)

where 	 and 	∗ are the moment transfer frequency and the total frequency of inelastic

collisions, v′ = (v2 + 2ε∗/m)1/2, Se is the electron-electron Coulomb collision operator,

and Ie is the source of newly born electrons.
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γ

Figure 26.3.2 The surface of an ellipsoid of revolution describes

the distribution function in three dimensions. The electric field is

shown for the general case in which it is not aligned with the axis

of symmetry (0 < � < 1).

Recently, Richley [1999] proposed an elliptic representation of the Boltzmann equa-

tion with validity for all degrees of anisotropy. By choosing an ellipsoid of revolution to

describe the angular dependence of the velocity distribution, the Boltzmann equation

can be reduced to a set of two equations which may be applicable to a wide range of

conditions. These equations are reduced to the two-term representation of (26.3.4) for

nearly isotropic cases.

To this end, Richley considers an ellipsoid of revolution as shown in Figure 26.3.2

in which the magnitude of the distribution function is taken to be the length of a line

extending from one focus to a point on the surface such that

f = b
√

1 − � 2

1 − � · v
v

∼= b
(

1 + � · v
v

)
(26.3.7)

where � is the vector in the direction of the axis of symmetry, with magnitude equal

to the eccentricity of the ellipsoid and 0 ≤ � ≤ 1. It can be shown that the elliptic

representation is equivalent to a three-term spherical harmonic expansion,

f (r,v) = f 0(r,v) + v
v

· f1 + f̃ 2 :
vv
v2

(26.3.8)

with the colon denoting a tensor product. Here, f̃ 2 and vv represent second order

tensors the product of which results in a scalar. This is analogous to the product of

stress tensor and velocity gradients representing thermoviscous dissipation in the fluid

mechanics energy equation. To express the nature of anisotropy, it is convenient to

use new quantities formed by integration over all solid angles � as defined in (24.1.5),

leading to

n(r, v) =
∫

�

f d� (26.3.9)

W =
∫

�

v
v

f d� (26.3.10)
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It can be shown that substitution of (26.3.9) and (26.3.10) into (26.3.2) results in two

moment equations of the form

∂n
∂t

+ ∇ · (vW) − q0

m
1

v2

∂

∂v
(v2E · W) =

(
∂n
∂t

)
c

(26.3.11a)

∂W
∂t

+ ∇ ·
[

nv

2

(
3X
�

−1

)
��

]
+∇

[
nv

2

(
1 − X

�

)]
− q0

m
1

v3

∂

∂v

[
nv3

2

(
3X
�

− 1

)
E · ��

]

− q0

m
E

{
∂

∂v

[
n
2

(
1 − X

�

)]
+ n

2v

(
1 − 3X

�

)}
=

(
∂W
∂t

)
c

(26.3.11b)

with � being the unit vector along the axis of symmetry, and

X = |W|/n (26.3.12)

which may be called the “anisotropy parameter” (X � 1, small anisotropy; X = 1, strong

anisotropy). It should be noted that �� represents the second order tensor which when

dotted with a vector results in another vector.

Let us now assume that

n = 4
 f 0 (26.3.13)

W = (4
/3)f1 (26.3.14)

f̃ 2 = 5

4

(
3

X
�

− 1

)
(3�� − Ĩ) f 0 (26.3.15)

with Ĩ being the unity tensor. If we substitute these to (26.3.11a) and (26.3.11b), the two-

term spherical harmonic expansion can be obtained as demonstrated by Richley [1999].

Thus, the elliptic representation can be thought of as being identically the two-term

spherical harmonic expansion, with closure of the hierarchy according to (26.3.15).

Returning to (26.3.8), the isotropic part f0 defines the scalar characteristics of parti-

cles such as density, mean energy, etc. The vector part f1 denotes vector quantities such

as current. The tensor part f̃2 contributes to things like directed energy. Based on the

elliptic representation of the Boltzmann equation described above, it is possible to ob-

tain special cases of (26.3.5) and (26.3.6), valid for strongly or weakly anisotropic VDF.

(1) Strongly Anisotropic VDF

The Boltzmann equations for strongly anisotropic VDF may be written as

∂ f 0

∂t
+ 1

v
∇ · (v2f1) = S0 (26.3.16)

∂f1

∂t
+ 1

v
∇ · vỸ + v∇Y1 + qE f

2mv

(
3X
�

− 1

)
(I − ��) = S1 (26.3.17)

where

Ỹ = f 0v2

2

(
3X
�

− 1

)
�� (26.3.18)

Y1 = f 0

2

(
1 − X

�

)
(26.3.19)

with S0 and S1 being the collision terms given in Richley [1999].
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Equations (26.3.16) and (26.3.17) are useful for problems with strong anisotropy

of the VDF such as the fast electrons in the cathode region of glow discharges and

positive ions in gaseous plasmas. The elliptic representation is an efficient alternative to

statistical methods especially attractive for multidimensional problems with substantial

anisotropy of the VDF where statistical methods are computationally expensive.

(2) VDF with Small Anisotropy

The expressions of (26.3.18) and (26.3.19) may be simplified for small anisotropy

[Kortchagen, Buch, and Tsendin, 1996] as Y = 0 and Y1 = f 0/3 with � = 0. Further-

more, we set

f1 = f + f ei�t (26.3.20)

with

f = − v

3	m
∇ f0 (26.3.21)

f = qEv

(	m + i�)

∂ f 0

∂ε
(26.3.22)

where � is the angular field frequency, 	m is the transport collision frequency. Substi-

tuting these expressions into (23.3.16) leads to

∂ f 0

∂t
+ 1

v
∇ · (vDr∇ f 0) + 1

v

∂

∂ε

(
vDε

∂ f 0

∂ε

)
= S0 (26.3.23)

where Dr = v2/3	m is the diffusion coefficient in configuration space,

Dε = Dr
Ẽ2

2

	2
m(

	2
m + �2

) (26.3.24)

is a diffusion coefficient along the energy axis.

(3) Weakly Collisional Discharges with Hot Plasma Effects

If the particle mean free path becomes comparable to or larger than the charac-

teristic size of the system, then specific kinetic effects appear in the weakly collisional

operating regimes. For low-pressure RF discharges, these effects are due to thermal

electron motion and include collisionless electron heating and anomalous skin effect

[Kolobov and Economou, 1997; Lieberman and Godyak, 1998]. The collisionless power

absorption dominates at pressures below 10 mTorr and can exceed the collisional power

absorption by an order of magnitude at the lowest gas pressure. In the weakly collisional

regimes, the oscillating part of the electron distribution function (EDF) can be written

as an integral along the electron trajectories [Kolobov, 1998]:

f (r,v,t) = e
∫

dse−vsv(t − s) · E(r(t − s), t − s)
∂ f 0

∂ε
(26.3.25)

Consequently, the electron current at a given point depends on the field values in other

points, leading to a variety of hot plasma effects [Godyak et al., 1999]. In this regime
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the energy relaxation length of electrons is large compared to the discharge dimensions.

Thus, the isotropic part of the EDF is given by [Aliev, Kaganovich, and Schluter, 1997]

∂ f o

∂t
+ 1

v

∂v

∂ε

(
Dε

∂ f 0

∂ε
+ Vε f 0

)
= S (26.3.26)

where v denotes the electron velocity averaged over discharge volume accessible to elec-

trons with total energy ε. It should be noted that in spite of simplicity (26.3.26) contains

enough information about electron kinetics in the spatially inhomogeneous plasma.

The focal point is the energy diffusion coefficient Dε which describes the peculiarities

of electron heating [Godyak and Kolobov, 1998].

The solution of the Boltzmann equation has been carried out using particle-in-cell/

Monte Carlo collision (PIC/MCC) methods [Surendra and Graves, 1991a,b]. Since these

methods are extremely time consuming, research into deterministic methods such as

finite volume methods will be highly desirable.

26.3.3 DISCHARGE MODELING WITH MOMENT EQUATIONS

When should we use the Boltzmann equation, and when is the continuum model suf-

ficient? Figure 26.3.3 illustrates a hierarchy of transport descriptions of electrons in

weakly ionized gaseous and solid-state plasmas [Bringuier, 1999]. This hierarchy is

based on peculiarities of electron collision dynamics resulting in a great distinction of

momentum and energy relaxation rates. When electrons move through a background of
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Figure 26.3.3 A hierarchy of transport descrip-

tions. The left-hand side of each transport equa-

tion contains a divergence of flux in a relevant

space. The flux consists of drift or drift-diffusion.

Arrows connect two levels of descriptions of

decreasing complexity. As space and time scales

increase, a lesser description suffices. Over time

scales longer than the velocity-correlation time,

the energy and position suffice to specify the par-

ticle state. Over time scales exceeding the energy

correlation time, a macroscopic description in co-

ordinate space is sufficient.
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neutral gas atoms or in a solid lattice they significantly change the direction of their mo-

tion, but only slightly change their energy in elastic collisions with heavy particles. Thus,

the energy relaxation length �u (and time �u) considerably exceeds the velocity relax-

ation length � and collision time � . Over time scales shorter than the energy corre-

lation time, and for spatial scales smaller than the energy relaxation length, the con-

tinuum (drift-diffusion) approximation in position space is not sufficient and kinetic

analysis is necessary (low arrow in Figure 26.3.3). However, owing to the great dis-

tinction of momentum and energy relaxation rates, for the time scales exceeding colli-

sion time and for spatial scales exceeding the mean free path �, the six-dimensional

Boltzmann kinetic equation can be reduced to a much simpler Fokker-Planck equa-

tion (26.3.23) in a four-dimensional energy-position manifold (upper arrow in Figure

26.3.3).

It is difficult to solve spatially inhomogeneous Boltzmann and Fokker-Planck equa-

tions. As an alternative, continuum approach has been widely used for modeling gas

discharges. This approach uses the moments of the distribution to obtain the macro-

scopic properties of the discharge, assuming a certain form of the distribution function

or solving local BE to calculate transport coefficients and rates of chemical reactions.

An infinite chain of coupled moment equations would be equivalent to the Boltzmann

equation. In practice, only a finite set of moment equations can be used. The most prac-

tical number of moment equations would be three, representing mass, momentum, and

energy. Higher moments require more closure relations, resulting in a difficult com-

promise associated with new unknowns as discussed in Chapman and Cowling [1952]

and Gogolides and Swain [1992], among others.

In the absence of magnetic field, the first three moments of the Boltzmann equation

corresponding to mass, momentum, and energy are of the form

∂nk

∂t
+ (nkvki ),i =

∑
m

�km (26.3.27)

∂

∂t
(nkmkvkj ) + (nkmkvki vkj ),i = −pk, j + nkqkEj − nkmk	k (26.3.28)

∂εk

∂t
+ (εkvki ),i = qknkvki Ei − (pkvki ),i + (kkTk,i ),i −

∑
m

�kmHm (26.3.29)

where the subscripts k and m denote the species, tensorial indices i and j represent

spatial dimensions, 	k is the elastic collision frequency, and

ε = n
(

1

2
mv2 + 3

2
kT

)
(26.3.30)

with other notations the same as in Chapter 22. In addition to the above equations we

need the Poisson equation as given in (26.3.2).

For solutions of these equations we require appropriate rate expressions and trans-

port parameters as discussed in Ward [1958] and Richards, Thompson, and Swain [1987],

among others. Boundary conditions for electrons in RF discharges require specifica-

tion of the net flux at the electrode. They are given by the sum of electrons lost due

to recombination and electrons generated by secondary electron emission. These and

other conditions are detailed in Chantry [1987], Graves and Jensen [1986], and Barnes,
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Colter, and Elter [1987], among others. Some example problems will be presented in

Section 26.3.5.

26.3.4 REACTOR MODEL FOR CHEMICAL VAPOR DEPOSITION (CVD) GAS FLOW

The basic governing equations and assumptions in chemical vapor deposition gas flow

are similar to those in reactive flows presented in Chapter 22. In addition, listed below

are assumptions made specifically for chemical vapor deposition gas flow:

(1) The mixture of feed gas and generated species is treated as continuum in which

the mean free path of the gas molecules must be much smaller than the reactor

dimensions. Thus, the collisions in the gas phase would be more dominant than

collisions on the walls.

(2) The gases in the plasma reactor are assumed to be ideal; ideal gas law and

Newton’s law of viscosity can be applied.

(3) The Reynolds number is small enough that the low is laminar.

(4) The Mach number is low so that the effects of pressure variation on the density

of the gas mixture may be neglected.

(5) Gas is weakly ionized.

Here we consider an ideal reactor model that ignores the details of the glow dis-

charge. This is done by assuming an electron density distribution in the reactor. The rate

constants are either taken from experiments or evaluated using some assumed form for

EEDF.

The conservation equations for mass, momentum, energy, and species are the same

as given in (22.2.34). For the sake of completeness we repeat here,

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (26.3.31)

with
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⎡
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�v j

�vi v j + p�i j

� Evi + pvi

�Ykvi

⎤
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⎡
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0
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−� DkmYk,i

⎤
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�
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Yk fki
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k �k
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⎥⎥⎥⎥⎥⎥⎥⎥⎦

Instead of solving the entire equations required for CFD, many options for simpli-

fications have been shown in the literature. For example, a fully developed flow may

be assumed such as in Chen [1983], Meyyappan and Buggeln [1990], and Venkatesan,

Trachtenburg, and Edgar [1992]. Another example is a plug flow model in which it is
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assumed that there is no velocity gradient in the axial direction [Lii et al., 1990]. If the

inner-electrode spacing is small compared to the length in the flow direction, concen-

tration is more uniform in the axial direction compared to the radial direction. In this

case axially average one-dimensional species equations can be solved to study polymer

etching in an oxygen discharge [Economou and Alkier, 1988] and silicon etching in NF4

discharge [Stenger et al., 1987].

26.4 APPLICATIONS

26.4.1 APPLICATIONS TO MAGNETOHYDRODYNAMIC FLOWS
IN CORONA MASS EJECTION

Wu and his co-workers [Wu and Wang, 1987; Wu et al., 2000] developed the fully implicit

continuous Eulerian (FICE) method using finite difference discretizations of SIMPLE

algorithm (Section 5.3.1) and boundary condition implementations for compatibility

and characteristic properties and nonreflecting boundaries as discussed in Section 6.7.1.

They used this method in solving specialized cases of (26.1.8) as applied to magneto-

hydrodynamic flows in coronal mass ejection. Here, the governing equations are based

on resistive MHD theory in which the field topology is changed due to the magnetic

reconnection process. They consist of conservation laws of mass, momentum, energy,

and induction equations describing the dynamical interaction between plasma flow and

magnetic field. The viscous dissipation is neglected as it is two orders smaller than the

magnetic dissipation.

Wu et al. [2000] simulated recent observations at the 1996 solar minimum obtained by

the Large Angle Spectrometric Coronagraph (LASCO) on the Solar and Heliospheric

Observatory revealing the motion of density enhancements in the coronal streamer

belt, known as the plasma blobs. Figure 26.4.1.1 shows the initial condition used for the

analysis. It represents the physical parameters of the magnetic resistive MHD simulation

Figure 26.4.1.1 Physical parameters of MHD simulation model: (a) the magnetic field

configuration, the dotted line region indicates the region of reconnection, (b) Plasma

density as a function of latitude at various solar radii; (c) solar wind radial velocity as a

function of latitude at various solar radii [Wu et al., 2000].
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(a)

(b)

Figure 26.4.1.2 Calculated and observed corona [Wu et al., 2001]. (a) Nu-

merical MHD simulated images. (b) Observed typical corona.

model for a global coronal magnetic field to investigate the formation and propagation of

the observed plasma blobs. This choice is important to create the appropriate dynamics

for the formation of the plasma blobs by magnetic reconnection. The solution changes

and evolves due to the introduction of finite magnitude resistivity in the induction

equations.

The calculated results show the quiescent corona as shown in Figure 26.4.1.2a as

compared to the observed typical corona at solar minimum (Figure 26.4.1.2b). Figure

26.4.1.3 shows the evolution of the magnetic field topology. It is seen that the change

of magnetic field topology caused by magnetic reconnection occurs in four stages, with

reconnection taking place at five points marked by O1 through O5. A radial pressure gra-

dient is created between the inner corona and outer corona, as shown in Figure 26.4.1.4.

It is also shown that after the second stage reconnection, some of the magnetic flux

feeds into two neighboring loops and pushes the central loop outward together with

outward pressure gradient. Further details are provided in Wu et al. [2000].

26.4.2 APPLICATIONS TO PLASMA PROCESSING IN SEMICONDUCTORS

(1) Capacitively Coupled RF Glow Discharge

In this analysis [Gogolides and Swain, 1992], a plasma is simulated using a two-

moment model in the study of on an electropositive (Ar) and an electronegative



958 APPLICATIONS TO ELECTROMAGNETIC FLOWS

Figure 26.4.1.3 Evolution of magnetic field configuration during the magnetic reconnection

where OI(I = 1-5) represents the location of magnetic reconnection occurring at times of

4.58 hours, 10.42 hours, 14.17 hours, and 16.25 hours, respectively, after introduction of the

magnetic resistivity for S = 100 [Wu et al., 2000].

(SF6) discharge. The effects of pressure and current amplitude variation and the ef-

fect of ion mobility variation with electric field are examined. The predicted emis-

sion of the 750.4 nm argon line (Figure 26.4.2.1a) is compared with experiments (Fig-

ure 26.4.2.1b). Given conditions are: 1 torr, 2-cm spacing, 13.5 MHz, and 0.14 W/cm2, and

0.14 W/cm2.

(2) Two-dimensional Capacitively Coupled RF Glow Discharge

Young and Wu [1993] modeled electrons with a three-moment nonequilibrium

model and ions are modeled with a nonequilibrium single-moment model which in-

cludes an ionic effective electric field. The nonuniform plasma density profiles and the
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Figure 26.4.1.4 Pressure distributions in the meridianal plane at t = 12.5 hours after introduction of

magnetic resistivity for S = 100 [Wu et al., 2000].

radial sheath width variation with various gas pressures are investigated. The elec-

tron density profiles from a two-dimensional simulation for argon are shown in Figure

26.4.2.2. The ambipolar structure in the axial direction is evident. The two-dimensional

results for plasma variables in the center of the discharge are only 5% different from

the corresponding one-dimensional results. It is near the edge that the density is differ-

ent from that in the center. Indeed, the density near the walls is higher. The electrons

Figure 26.4.2.1 RF glow discharge [Gogolides and Swain, 1992]. (a) Predictions from a two-moment model

for emission of the 750.4-nm argon line (1 torr, 2 cm spacing, 13.5 Mhz, and 0.14 W/cm2). (b) Experimentally

measured emission.
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Figure 26.4.2.2 Two-dimensional profile of electron density in

an argon discharge [Young and Wu, 1993].

tend to diffuse from the electrode zone toward the walls, but they experience a strong

spacecharge field near the electrode edge regions, which results in a local pileup of

electrons as seen in Figure 26.4.2.2.

(3) CCP with Gas Flow

Figure 26.4.2.3 shows an industrial type CCP reactor used for semiconductor man-

ufacturing. Two-dimensional transient simulations were performed with commercial

software CFD-PLASMA developed by CFD Research Corp. Oxygen gas enters the

chamber through a showerhead (streamlines show gas flow patterns) which also plays a

role of upper electrode driven at 13 Mhz. Using different frequency to drive the lower

electrode (which holds the wafer) allows to some extent an independent control of

the ion energy distribution at the wafer. Figure 26.4.2.3 shows also instantaneous axial

distributions of some plasma parameters on the axis of the chamber.

(4) Epitaxial Silicon Growth in CVD Reactors

Two-dimensional conservation equations of momentum, energy, and mass are solved

using finite elements for the analysis of epitaxial silicon growth in pancake CVD reactors

from SiH2Cl2 [Oh, Takaudis, and Neudeck, 1991]. Complex gas flow patterns with large

recirculations are induced by the shearing force of the inlet jet and by buoyancy effects

as shown in Figure 26.4.2.4. An increase in the flowrate from 20 to 90 standard liters

per minute leads to a reverse from a radially increasing to a radially decreasing growth

rate.

(5) PECVD of SiO2 in a 3D ICP Reactor

Figure 26.3.1c shows results of 3-D simulations of PECVD of SiO2 in an Inductively

Coupled Plasma reactor obtained with commercial software CFD-PLASMA developed

by CFD Research Corp. (http://www.cfdrc.com/∼cfdplasma). A mixture of SiH4/Ar/O2

is injected into the gas chamber through vertical injectors and exits through an outlet

at the bottom of the chamber (streamlines show the gas flow patterns). The total gas

pressure in the reactor is maintained at the 10 mTorr level. RF current in coils wrapped

around a dome chamber induces an azimuthal electric field which maintains the plasma.
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Figure 26.4.2.3 Dual-frequency capacitively coupled plasma [Courtesy of CFDRC].

Power deposition is localized in the vicinity of the dome because RF fields cannot

penetrate far into the plasma due to skin effect. In spite of very localized power depo-

sition, electron temperature is fairly uniform inside the chamber due to high thermal

conductivity of the electrons. Thus, ionization rate and rates of other plasma-chemical

reactions (which are exponential functions of electron temperature) are rather uniform

within a volume and the plasma density has a maximum in the chamber center because

of recombination loss of charged particles at the walls of the chamber. A processing

wafer is placed on top of an electrostatic chuck (a pedestal in Figure 26.3.1c). Contours

of calculated SiO2 deposition rate are shown in Figure 26.3.1c.
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Figure 26.4.2.4 Finite element analysis of pancake reactor. The susceptor temperature Ts = 950◦C, system

pressure P = 150 torr. (a) Induction heated pancake reactor (left) and cross-section (right). (b) Computa-

tional grid. (c) Streamlines in the reactor.

26.5 SUMMARY

In this chapter, we have reviewed some aspects of magnetohydrodynamics (MHD),

rarefied gas dynamics, and semiconductor plasma processes. The governing equations

for MHD in general, finite element formulation of the Boltzmann equation, plasma

discharge for semiconductor applications are presented.

Some of the example problems in coronal mass ejection using the fully implicit con-

tinuous Eulerian method [Wu et al., 2000] are reviewed. Here the governing equations

are based on the resistive MHD theory in which the field topology is changed due to the

magnetic reconnection process. They consist of conservation laws of mass, momentum,

energy, and induction equations describing the dynamical interaction between plasma

flow and magnetic field.
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Example problems for plasma processing in semiconductors include capacitively

coupled RF glow discharge and radial flow in an RF glow discharge. A brief discus-

sion of epitaxial silicon growth in chemical vapor deposition reactors is also presented.

In addition, the results of 3-D simulations of PECVD of SiO2 in inductively coupled

plasma rector are demonstrated, representing the current state of the art.
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CHAPTER TWENTY-SEVEN

Applications to Relativistic Astrophysical Flows

27.1 GENERAL

Relativistic theory is divided into two categories: special relativity and general relativity.

In special relativity, we follow Einstein’s postulate establishing the universality of the

speed of light, c, relative to any unaccelerated observer, regardless of the motion of

the light’s source from the observer. General relativity arises as an extension to special

relativity to describe the motion of particles evolving under the presence of gravitational

fields. In order to take into account the effect of gravitation, however, we must abandon

the Eulerian coordinates used in Newtonian fluid dynamics. Instead, it is necessary to

invoke a curvilinear four-dimensional manifold (the spacetime) to represent particle’s

trajectories.

Many of the problems encountered in astrophysics are involved in the numerical

solution of special or general relativistic fluid dynamics equations. Active research in this

subject area has been in progress for the past 40 years. Earlier studies include structure

and evolution of stars [Chandrasekhar, 1942; Aller and McLaughlin, 1965, among

others]. Black hole accretion flows have been studied extensively as evident from numer-

ous publications [Paczynski and Wiita, 1980; Katz, 1980; Eggum et al., 1988; Hawley

et al., 1984a,b; Clarke et al., 1985; Stella and Vietri, 1997; Bromley et al., 1998; Font

et al., 1998a,b; Koide et al., 1999; Font et al., 1999]. Some of the recent activities include

Gamma ray bursts [Meszaros and Rees, 1993; Sari and Piran, 1998; Fishman and Meegan,

1995; and Panattescu and Meszros, 1998], explosive and jet phenomena [Norman, 1997],

and astrophysical turbulence flows and instability [Bulbus and Hawley, 1998].

Despite these developments in “computational astrophysical fluid dynamics,” many

difficulties remain unresolved. Among them are the rapidly rotating stars, detailed

accretion disk structure and evolution, evolving and interacting binaries, etc. First of

all, boundary conditions are unknown in many instances. It is difficult to predict the

geometry for the solution until the problem is actually solved. The shape of the outer

surface of a rotating star or accretion disk can be part of the solution. In order to

resolve such difficulties, arbitrary assumptions such as spherical symmetry or slowly

rotating perturbation problems have been suggested [Kippenhahn and Thomas, 1970].

Uncertainties of boundary conditions may be resolved using iterative processes usually

accommodated in FDM, FEM, or FVM.

965
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The main computational issues involved in relativistic hydrodynamics stem from

discontinuities associated with shock waves. High-resolution shock-capturing techniques

developed in Newtonian computational fluid dynamics (CFD) have been proven suc-

cessful also in dealing with relativistic astrophysical flows. Balsara [1994] studied an

extension of the Riemann solver to resolve shock waves using a secant method and

Newton method for iterative solutions. In this work, an exact treatment of transverse

velocities across general, oblique shocks was enforced and, as a result, the equivalence

to the nonrelativistic limit was demonstrated.

Another approach to the Riemann solver with various reconstruction schemes in

three-dimensions was reported by Aloy et al. [1999] as an extension of earlier studies

[Marti et al., 1991; Marti et al., 1995]. The results including spherical shock reflection

with the Lorentz factor of 700 and larger are shown to be satisfactory.

Gravitational effects in symmetric spherical coordinates with pseudo-Newtonian

approximations have been studied by Nobuta and Hanawa [1999] using the total vari-

ation diminishing (TVD) scheme [Roe, 1981] in their investigation of time-dependent

inviscid hydrodynamical accretion flows onto a black hole. In this work, accretion that

consists of hot tenuous gas with low specific angular momentum and cold dense gas

with high specific angular momentum was considered, resulting in the hot gas accreting

continuously and the cold gas intermittently as blobs. It is shown that the high spe-

cific angular momentum gas blobs bounce at the centrifugal barrier and create shock

waves.

Meier [1999] examined finite element methods (FEM) for applications to multidi-

mensional astrophysical structural and dynamical analysis to study rotating stars, inter-

acting binaries, thick advecting accretion disks, and four-dimensional spacetime prob-

lems in general. In this approach, the complex differential equations on the

arbitrary curvilinear grid are generated automatically by the FEM integrals.

In this chapter, we explore applications of the existing CFD technologies to

relativistic astrophysical fluid dynamics. We first review the governing equations in

Section 27.2. This is followed by some selected example problems presented in Section

27.3 [Richardson et al., 1999; Richardson, 2000; Richardson and Chung, 2002].

27.2 GOVERNING EQUATIONS IN RELATIVISTIC FLUID DYNAMICS

27.2.1 RELATIVISTIC HYDRODYNAMICS EQUATIONS IN IDEAL FLOWS

The equations describing the evolution of a relativistic fluid are local conservation

laws of the stress-energy, T��, and the matter current density, J �, given by covariant

derivatives as follows:

T��
;� = 0 (�, � = 0, 1, 2, 3) (27.2.1)

J �
;� = 0 (27.2.2)

with

J � = �u� (27.2.3)
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where � is the rest mass density and u� the 4-velocity of the fluid. Note also that the

semicolon implies the covariant derivative with respect to the 4-metric of the underlying

spacetime.

For simplicity, we consider a perfect fluid (viscosity and thermal conduction are

neglected). In this case the energy-momentum tensor can be written as

T�� = �hu�u� + pg�� (27.2.4)

with g�� being the 4-metric describing the spacetime and h the specific enthalpy defined

as

h = 1 + ε + p
�

(27.2.5)

where ε is the specific internal energy and p the isotropic pressure. The above system

of equations can be closed by the normalization condition for the four-velocity,

g��u�u� = −1 (27.2.6)

and the equation of state,

p = p(� , ε) (27.2.7)

Dynamics of the gravitational field in general relativity theory is described by the

Einstein’ field equation

G�� = 8�T�� (27.2.8)

where G�� is the Einstein tensor associated with the ten metric components g�� = g�� of

the spacetime and the stress energy tensor T��. There are various forms of the Einstein’s

equations suitable for numerical analyses such as suggested by Arnowitt, Deser, and

Misner [1962], known as the ADM or (3 + 1) formulation, and Bona et al. [1995], known

as the BM hyperbolic formulation.

In the ADM formulation, the spacetime is considered to be foliated into a set of non-

interacting spacelike hypersurfaces. There are two kinematic variables which describe

the evolution between these surfaces: the lapse function � = (−gtt )− 1
2 , which describes

the rate of advance of time along a timelike unit vector n� normal to a surface, and the

spacelike shift vector �i that describes the motion of coordinates. These parameters are

related to the line element,

ds2 = −(
�2 − �i �

i)dt2 + 2�i dxi dt + �i j dxi dx j (27.2.9)

with �i j being the three-dimensional metric tensor. The ADM formulation, then, casts

the Einstein’s equations into a first order (in time) quasi-linear system of equations.

In the BM hyperbolic formulation, the evolution equations are written as a first

order balance law with the same mathematical structure as the hydrodynamic equations

usually employed in traditional CFD approaches.

Instead of using the covariant derivatives, it is convenient to formulate the numerical

process via a coordinate system (x0 = t, x1, x2, x3) and express (27.2.1) and (27.2.2)

in terms of coordinate derivatives. To this end, we write the governing conservation
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equations in the form [Hawley et al., 1984; Banyuls et al., 1997; Font et al., 1998],

∂U
∂t

+ ∂Fi

∂xi
= B (27.2.10)

with the conservation variables U written as

U =

⎡
⎢⎢⎣

D

Sj

	

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

√
�W�

√
��hW2v j

√
�(�hW2 − p − W�)

⎤
⎥⎥⎦ (27.2.11)

where � is the determinant of �i j , v j is the fluid 3-velocity, and W is the Lorentz factor,

W = (1 − �i j v
i v j )−1/2 (27.2.12)

where we invoke the natural unit,

G = c = 1

and the spatial components of the 4-velocity ui are related to the 3-velocity vi by

ui = W(vi − �i/�) (27.2.13)

The convection flux vector Fi and the source vector B are given by

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�

(
vi − �i

�

)
D

�

((
vi − �i

�

)
Sj + √

�p
i
j

)

�

((
vi − �i

�

)
	 + √

�vi p
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(27.2.14)

B =

⎡
⎢⎢⎣

0

�
√

�T��g����
�j

�
√

�
(
T�0�, � − �T���0

��

)
⎤
⎥⎥⎦ (27.2.15)

where D, Sj , and 	 are defined in (27.2.11) and ��
�� is the 4-Christoffel symbol,

��
�� = 1

2
g��(g��,� + g��,� − g��,�) (27.2.16)

The numerical solution of (27.2.10) can be carried out using any one of the schemes

developed in Chapter 6 for FDM, Chapter 13 for FEM, or Chapters 7 and 15 for FVM.

Some applications of (27.2.10) without the source term are presented in Section 27.3.4.

27.2.2 RELATIVISTIC HYDRODYNAMICS EQUATIONS IN NONIDEAL FLOWS

In special relativity, the effect of gravitational fields is neglected. Viscosity and heat

conduction may be included in both general and special relativistic flows. However,

one of the least investigated physical phenomena in the relativistic flows is the effect of

viscosity and heat conduction upon the flow field. The primary reason for this lack of
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studies is the difficulty involved in computation, as is usually the case for shock wave

turbulent boundary layer interactions in the Newtonian flows. Anticipating that this will

be a future research topic in the relativistic hydrodydamics, some of the basic governing

equations are presented in this section.

The metric tensor components in special relativity [Misner, Thorne, and Wheeler,

1973] are defined by the Minkowski geometry, g��. The Kerr black hole geometry is

commonly used in general relativity since it describes a black hole that has angular

momentum and since it easily reduces to the Schwarzschild metric for non-rotating

black holes. In general, the components of the metric tensor are derived from the line

element ds2 given by

ds2 = g��dx�dx�

For the special relativistic line element, we have

g�� =

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

ds2 = −dt2 + dx2 + dy2 + dz2

The Kerr line element for angular momentum a per unit mass M is written as [Misner

et al., 1973]

ds2 = −� − a2 sin2 �

2
dt2 − 2a

2Mr sin2 �

2
dtd�

+ (r2 + a2)2 − a2� sin2 �

2
sin2 �d�2 + 2

�
dr2 + 2d�2

with

� ≡ r2 − 2Mr + a2

2 ≡ r2 + a2 cos2 �

The general relativistic Kerr metric is of the form,

g�� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−� + a2 sin2 �

2
0 0

a sin2 �(� − (r2 + a2))

2

0
2

�
0 0

0 0 2 0

a sin2 �(� − (r2 + a2))

2
0 0 −a2 sin4 �� + sin2 �(r2 + a2)2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Further details of metrics and Christoffel symbols are presented in Appendix D-1.

The fluid four-acceleration is defined as

A� = v�;�v� (27.2.17)
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with

v�;� = v�;� P�
� − c−2 A�v� (27.2.18)

where P�
� is the projection tensor defined as

P�
� = 


�
� − c−2v� v� (27.2.19)

Defining the symmetric rotation tensor ��� as

��� = 1

2

(
v�,� P�

� − v�,� P�
�

)
(27.2.20)

and the symmetric shear tensor E�� as

E�� = 1

2

(
v�,� P�

� + v�,� P�
�

)
(27.2.21)

we may express the velocity gradient in the form,

v�;� = D�� + ��� + 1

3
� P�� − c−2 A�v� (27.2.22)

where

D�� = E�� − 1

3
� P�� (27.2.23)

� = v�
;� (27.2.24)

Introducing the shear viscosity � and the bulk viscosity ς , and using the general

form for speed of light, the energy stress tensor can be written as

M�� = �00v�v� + pP�� − 2�D�� − ς � P�� + c−2(Q�v� + Q�v�) (27.2.25)

where �00 is the total mass density

�00 = �0(1 + ε/c2) (27.2.26)

and Q� is the four-vector generalization of the heat flux,

Q� = −kP��

(
T,� + Tv�;�v�

)
To derive the equations of motion, we take a covariant derivative of the energy

stress tensor,

M��
;� =

{
D�00

D	
+ �[� 00 + c−2(p − ς �)]

}
v� + [� 00 + c−2C]A�+ P��(p − ς �),�

−2�D��
;� + c−2

[
DQ�

D	
+ 4

3
�Q� + v� Q�

;� + Q�(D�� + ���)

]
= F�

(27.2.27)

where 	 is the relativistic proper time, related to the Newtonian time t as

D
D	

=
(

dt
d	

)
∂

∂t
+

(
dxi

d	

)
∂

∂xi
= v0

c
∂

∂t
+ vi ∂

∂xi
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It follows from (27.2.27) that

F� = P�� F� (27.2.28)

Substituting (27.2.27) into (27.2.28), we obtain the equations of motion

[
�00 + c−2(p − �ς )

] Dv�

D	
= F� − P�

� (p − �ς ),� + 2�P�� D��
;�

− c−2

[
P��

DQ�

D	
+ 4

3
�Q� + P�� Q�(D�� + ���)

]
(27.2.29)

Note that the speed of sound used in (27.2.25) through (27.2.29) will be set equal to

unity.

It is interesting to note that, in cartesian coordinates, we obtain

D
D	

→ D
Dt

Pi j → 
i j

with (27.2.29) being transformed into the Newtonian momentum equations.

The relativistic energy equation can be derived first by multiplying (27.2.27) with

the relativistic velocity v�, by invoking the first and second laws of thermodynamics,

together with the entropy S, and following the procedure similar to the Newtonian

counter part [Chung, 1996, 175–77]. This process will lead to

�0T
DS
D	

= � 0

[
Dε

D	
+ p

D
D	

(
1

� 0

)]
= 2�D�� D�� + ς �2 − (

Q�
;� + c−2 Q� A�

)
(27.2.30)

The solution of (27.2.42) in terms of entropy is cumbersome. Thus, the energy equation

is cast in the form

�0

[
Dε

D	
+ p

� 0

v�
;�

]
= 2�D�� D�� + ς �2 − (

Q�
;� + c−2 Q� A�

)
(27.2.31)

Additional details are available in Eckert, 1940; Weinberg, 1972; Misner et al., 1973;

and Miharas and Miharas, 1984, among others.

In order to achieve convergence to accurate solutions for the problems with shock

discontinuities, the governing equations must be written in conservation form. To this

end, the nonconservation forms of the momentum and energy equations given above,

together with the continuity equation, are transformed into a conservation form. The

acceptable conservation form should be capable of recovering the nonconservation

form.

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B (27.2.32)
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U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√−g��W
√−g(�h�2W2v1)
√−g(�h�2W2v2)

√−g(�h�2W2v3 + Pg03)
√−g(�h�2W2 + Pg00)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27.2.33a)

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√−g��Wvi

√−g
(
�h�2W2vi v1 + Pg11
i

1

)
√−g

(
�h�2W2vi v2 + Pg22
i

2

)
√−g

(
�h�2W2vi v3 + Pg33
i

3

)
√−g(�h�2W2vi + Pg30vi )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27.2.33b)

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

√−g
(

−ς � Pi1 − 2�

[
1

2

(
vi

;� P�1 + v1
;� P� i) − 1

3
v�

;� Pi1
]

+ Qi v1 + Q1vi
)

√−g
(

−ς � Pi2 − 2�

[
1

2

(
vi

;� P�2 + v2
;� P� i) − 1

3
v�

;� Pi2
]

+ Qi v2 + Q2vi
)

√−g
(

−ς � Pi3 − 2�

[
1

2

(
vi

;� P�3 + v3
;� P� i) − 1

3
v�

;� Pi3
]

+ Qi v3 + Q3vi
)

√−g
(

−ς � Pi0 − 2�

[
1

2

(
v0

;� P� i + vi
;� P�0

) − 1

3
v�

;� Pi0
]

+ Qi W
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27.2.33c)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√−gM���1

��

√−gM���2
��

√−gM���3
��

√−gM���0
��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27.2.33d)

where the Christoffel symbols are evaluated in terms of metric tensors (Appendix D).

Once the conservation variables, U, Fi , Gi , and B, are solved, it is necessary to covert

these conservation variables into the primitive variables such as � , �i , p, h, T, and W.

It can be shown that these relations lead to a quartic equation. The real roots for the

quartic equation can be found using the polynomical solution techniques [Richardson,

2000].

Simplification with Minkowski Coordinate Transformation

Neglecting the lapse function and the shift vector (� = 1, �i = 0) and using the

Minkowski coordinate transformation [Miharas and Miharas, 1984], the conservation
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form of the special relativistic hydrodynamic equations in cartesian coordinates is

written as

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= 0 (27.2.34)

with

U =

⎡
⎢⎣

� W

�hW2v j

�hW2 − p

⎤
⎥⎦ , Fi =

⎡
⎢⎣

� Wvi

�hW2vi v j + p
i j

�hW2vi + pvi

⎤
⎥⎦ , Gi =

⎡
⎢⎣ 0

−	 i j

−	 i j v j + qi

⎤
⎥⎦
(27.2.35)

where 	 i j and qi denote the stress tensor and heat flux vector, respectively,

	 i j = 2�d̂i j (27.2.36)

qi = kPi j (T, j + T Aj ) (27.2.37)

with

d̂i j = 1

2
(vi,kPkj + v j,kPki ) − 1

3
vk,kPi j (27.2.38)

Pi j = 
i j + vi v j (27.2.39)

Aj = dv j

d	
= W2 dv j

dt
(27.2.40)

Here, the quantity vi v j in (27.2.39) is dimensionless (divided by c2) in the natural unit,

	 is the independent variable, known as proper time, such that d	 = Wdt . It should also

be noted that
√

� = 1 in (27.2.11). All other variables are as defined in Section 27.2.1.

27.2.3 PSEUDO-NEWTONIAN APPROXIMATIONS WITH GRAVITATIONAL EFFECTS

The general relativistic flows may be simplified using the Pueudo-Newtonian approx-

imations [Paczynski and Wiita, 1980; Nobuta and Hanawa, 1999] associated with the

black hole accretion. Here, the gravitational effect is introduced in terms of the

Schwarzschild radius r s

r s = 2GM
c2

(27.2.41)

where G and M denote the gravitational constant and black hole mass. The pseudo-

Newtonian potential is given by

�(r) = − GM
r − r s

(27.2.42)

It is now possible to write the conservation variables, convection flux, diffusion flux,

and source terms with gravity similarly as in the Newtonian fluid dynamics except that
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the pressure and energy must be expressed in terms of the Boltzmann constant instead

of the standard gas constant [Miharas and Miharas, 1984]. Thus, we have

U =

⎡
⎢⎣

�

�v j

� E

⎤
⎥⎦ , Fi =

⎡
⎢⎣

�vi

�vi v j + p
i j

(� E + p)vi

⎤
⎥⎦ , Gi =

⎡
⎢⎣ 0

−	 i j

−	 i j v j − kT,i + qR

⎤
⎥⎦ ,

B =

⎡
⎢⎣ 0

(��), j

(��),i vi

⎤
⎥⎦ (27.2.43)

with

E = ε + 1

2
vi vi

p = � KT
wmmH

+ �T 4

3
(27.2.44)

ε = 1

� − 1

KT
wmmH

+ �T 4

�
(27.2.45)

where K is the Boltzmann constant, wm is the mean molecular weight, mH is the mass

of the hydrogen atom, and qR is the radiative heat flux (see Chapter 24). For spherical

coordinates, all partial derivatives will be converted to covariant derivatives.

27.3 EXAMPLE PROBLEMS

27.3.1 RELATIVISTIC SHOCK TUBE

The nonrelativistic (Newtonian) shock tube problem shown in Figure 6.5.1 may be

transformed to the case of relativistic flow using the jump condition as deduced from

(27.2.17) in the form,

[� Wu] = 0 (27.3.1.a)

[�hW2u2 + p] = 0 (27.3.1.b)

[�hW2u + pu] = 0 (27.3.1.c)

Closed form solutions of (27.3.1) are of the form [Hawley et al., 1984a]

�2

�1

= � + 1

� − 1
+ �

� − 1
(Wm − 1) (27.3.2a)

us =
{

1 + �/(� − 1)(Wmum)2

�1 + [�/(� − 1)]Wm pm

}
pm

Wmum
(27.3.2b)

where the subscript m denotes the intermediate stage. The finite difference solution of
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Figure 27.3.1.1 Results of a 500-zone relativistic shock tube (w = 1.38) [Hawley et al., 1984b].

Reprinted with permission.

(27.3.1) by Hawley et al. [1984b] is presented in Figure 27.3.1.1, following almost exactly

the analytical solution.

The significant difference from the Newtonian shock tube is that the initial velocity

profile is nonlinear in the rarefaction region due to the relativistic velocity addition.

Furthermore, the shocked region is narrower and the difference between the shock

velocity and intermediate velocity is smaller because of Lorentz contraction, approach-

ing the velocity of light. These effects lead to the density change across the shock

becoming larger than the Newtonian flow. Note also that temperature and pressure

jumps are not as prominent as in the case of nonrelativistic flow.

27.3.2 BLACK HOLE ACCRETION

It is well known that accretion is the origin of X-ray and gamma-ray emission as well as

jets emerging from some active black holes. Examples of black hole accretion include the

stellar collapse to a black hole, a black hole in a binary system, and a supermassive black

hole in an active galactic nuclei, with the accreting matter gaining angular momentum.
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Figure 27.3.2.1 Evolutionary sequence for the infall of fluid with angular momentum lms < l = 3.77 < lms

at times, t = 43 m, 130 m, 172 m, 300 m, 430 m. The contours are equally spaced in the log of density with

a minimum of 10−6 and an interval of log2. The vectors depict direction of fluid flow at every other grid

point. Note the backflow beginning at t = 172 m which results from fluid rebounding at the centrifugal

barrier. [Hawley et al., 1984b]. Reprinted with permission.

In these cases, the collapsing rotating star is likely to leave behind considerable material

with large angular momentum in a disk or ring around the newly formed black hole.

The subsequent accretion process may induce viscous or magnetic torques to transport

angular momentum outward, causing the bulk of the material to move inward, gaining

internal energy at the expense of the gravitational field. The process of accretion onto

a balck hole requires the solution of Einstein equations such as shown in the previous

section.

Hawley et al. [1984b] studied applications of (27.2.10) to an axisymmetric geometry

of black hole accretion assuming the steady-state pressure-balanced fat disk [Wilson,

1972]. The solution of (26.2.10) was carried out using the finite difference monotonic

scheme of Van Leer [1974]. Their results of the black hole accretion are shown in

Figure 27.3.2.1. Although these results are in agreement with the analytical solution

qualitatively, disagreements in the peak densities range from 0.8 to 50% as compared

with the analytical solution.

27.3.3 THREE-DIMENSIONAL RELATIVISTIC HYDRODYNAMICS

The Riemann solvers as used in Newtonian fluids may equally be efficient in relativis-

tic hydrodynamics. Aloy et al. [1999] solved three-dimensional relativistic equations

(27.2.10) without source terms, using FDM Riemann solvers [LeVeque, 1991].

In their work of the three-dimensional simulation of a relativistic jet propagating

through an homogeneous atmosphere, Aloy et al. [1999] reports snapshots of the proper

rest-mass density distribution, pressure, specific internal energy, and Lorentz factor of

the relativistic jet model as shown in Figure 27.3.3.1. The input data include: the beam
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Figure 27.3.3.1 Snapshots (top to bottom) of the proper rest-mass density

distribution, pressure, specific internal energy (all on a logarithmic scale),

and Lorentz factor of the relativistic jet model discussed in the text (� =
0.99c, Mb = 6.0, � = 0.01, � = 5/3) after 160 units of time. The resolution

is four zones/Rb [Aloy et al., 1999]. Reprinted with permission.

flow velocity ub = 0.99c, the beam Mach number Mb = 6.0, and the ratio of the rest

mass density of the beam and the ambient medium � = 0.01. The ambient medium

consists of 15Rb × 15Rb × 75Rb with Rb being the beam radius. The jet is injected at

z = 0 in the direction of the positive z-axis through a circular nozzle (x2 + y2 ≤ R2
b) and

is in pressure equilibrium with the ambient medium (� = 1.4). Simple outflow boundary

conditions are imposed except at the injection region.

The gross morphological and dynamical properties of highly supersonic relativis-

tic jets as shown in Figure 27.3.3.1 is qualitatively similar to those obtained in two-

dimensional analysis [Marti et al., 1997].

27.3.4 FLOWFIELD DEPENDENT VARIATION (FDV) METHOD
FOR RELATIVISTIC ASTROPHYSICAL FLOWS

The most important aspect of the relativistic hydrodynamics is how to resolve shock

waves as seen in the previous two sections. Turbulent boundary layers are even more

difficult problems, particularly when the shock waves are interacting with turbulent

boundary layers. Although there are many options available for the solution approaches,

we shall examine, in this section, the FDV theory introduced in Sections 6.5 and

13.6 as applied to the general and special relativistic flows. Any one of the governing

equations presented in this section, (27.2.10), (27.2.17), or the conservation equations

with (27.2.26) can be accommodated in the FDV formulation.
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As shown in Sections 6.5 and 13.6, the advantage of FDV formulations includes the

ability to capture discontinuities such as shock waves and high gradients of any variable,

and to deal with disparity and nonlinearity of source terms. Thus, the FDV method is

considered to be effective for both general and special relativistic astrophysical flows.

For the purpose of illustration, we focus on applications with FDV via FEM using

(27.2.32).

The variation parameters needed for the scope of the problems discussed in this

section are those of convection, viscosity, and source term. These parameters are similar

to the ones shown previously in Sections 6.5 and 13.6. The first order convection variation

parameters are of the form:

s1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(r, 1) r > �

0 r < �, r =
√

W2
max − W2

min

Wmin

1 Wmin = 1

(27.3.3)

s2 = 1

2

(
1 + s�

1

)
0 < � < 1 (27.3.4)

where � is small number (� ≈ 0.01) and W is the Lorentz factor, replacing the Mach

number used in the Newtonian flows.

The viscous variation parameters are defined by the relativistic Reynolds number

similarly as in Newtonian flows (Sections 6.5 and 13.6). They are of the form:

s3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(s, 1) s > �

0 s < �, s =
√

Re2
max − Re2

min

Remin

1 Remin = 0

(27.3.5)

s4 = 1

2

(
1 + s�

3

)
0 < � < 1 (27.3.6)

Recall that Damköler number was used for the source term variation parameters

in chemically reacting flows (Section 13.6). For gravitational effects, however, we must

employ the source term variation parameters associated with gravitation in terms of

relativistic Froude number Fr .

s5 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min(t, 1) t > �

0 t < �, t =
√

Fr2
max − Fr2

min

Frmin

1 Frmin = 0

(27.3.7)

s6 = 1

2

(
1 + s�

5

)
0 < � < 1 (27.3.8)
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with

Fr = v2
i

GL
= v2

i

L

Using these variation parameters, the flux and source term Jacobians are defined

similarly as in Newtonian flows:

ai = ∂Fi

∂U
, bi = ∂Gi

∂U
, cik = ∂Gi

∂U,k
, d = ∂B

∂U
(27.3.9)

Explicit forms of convection, diffusion, and source term Jacobians are presented in

Appendix D-2. The diffusion gradient Jacobians cik are calculated numerically.

The conservation form of the relativistic hydrodynamic equations given by (27.2.17)

is written in terms of the FDV formulation,(
A + En

i
∂

∂xi
+ En

i j
∂2

∂xi∂x j

)
�Un+1 = −Qn (27.3.10)

and its FEM applications lead to

(A�� 
rs + B��rs)�Un+1
�s = Hn

�r + Nn
�r (27.3.11)

with details of the algebra for each term in (27.3.11) carried out similarly as in (13.6.21)

through (13.6.24).

Computations of the convection and diffusion Jacobians follow the same procedure

as in the Navier-Stokes system of equations such that all convection and diffusion flux

terms are differentiated with respect to each of the conservation variables. Unlike the

nonrelativistic flows, extraction of primitive variables (� , vi , p, T) from the conserva-

tion variables requires the solution of quartic equations or iterative processes through

integration time steps [Richardson, 2000].

Two test problems are used to evaluate the FDV theory in the relativistic regime.

The first is the special relativistic shock tube to test the shock capturing scheme. This

is followed by the general relativistic hydrodynamic equations, examining the “dust

infall” problem.

Special Relativistic Shock Tube

The special relativistic shock tube and how it differs from the Newtonian shock tube

was briefly discussed in Section 27.3.1, and we present here the special relativistic shock

tube solved using FDV theory. The example utilizes the Minkowski geometry used in

Font et al. [1998b].

The initial conditions have the left-hand parameters given by P1 = 13.3 and �1 =
10.0, and the initial right-hand parameters by Pr = 6.67e-7 and �1 = 1.0. The initial

velocity is zero along the entire length of the tube. These parameters carry normalized

units as discussed in Section 27.2.1. The equation of state is given by P = (� − 1)�ε
where the adiabatic exponent, �, is equal to 5/3. The shock tube is one unit in length

(x = −0.5, 0.5) with the initial pressure boundary located at x = 0. The tube is di-

vided into 400 nodes such that �x = 1/400, and a CFL number of 0.18 is used. The

FDV variation parameter constants from (27.3.3) and (27.3.4) are � = 0.001 and

� = 0.25.
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Figure 27.3.4.1 Relativistic shock tube analyzed by the FDV theory, 1,600 nodes, CFL = 0.18, � =
0.001, and � = 0.25 [Richardson, 2000]. (a) Density, pressure, and velocity distributions. (b) Calculate

values of convection variation parameters (s1, s2).

Figure 27.3.4.1a shows the shock tube velocity, density, and pressure at time = 0.4,

where the dashed line is the analytic solution and the symbols are the FDV solutions

[Richardson, 2000]. The results fit very well, indicating that FDV is quite adequate to

use for capturing relativistic shocks. Figure 27.3.4.1b shows the distributions of con-

vection variation parameters (s1 and s2). It is interesting to note that discontinuities

of shock waves follow precisely those of the FDV variation parameters as have been

demonstrated in Newtonian fluids in Sections 6.5 and 13.6.

Dust Infall

The shock tube alone is not an adequate test for demonstrating the abilities of FDV

for astrophysical problems since it uses a flat space and does not include a general
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Figure 27.3.4.3 Dust infall velocity and density profiles [Richardson, 2000].

the steady-state solution was found after approximately 550 iterations. The dashed line

shows the analytic solution. Since the FEM flux boundary conditions are imbedded, not

applying them with specific fluxes is not the same as having no flux at the surface. This

is shown, otherwise a steady-state solution would not have been found. The solution is

very stable, and the profiles are very similar to the exact solution. The error from the

exact solution was found to be 11.0% for the velocity and 6.0% for the density. The

profiles of the variation parameters s5 and s6 are interesting since the sharp V-shape

feature corresponds to the point where the velocity profile begins to decrease rapidly

to zero. The s1 and s2 profiles are very similar to the density profile.

Figure 27.3.4.4 Dust infall with no inner boundary condition [Richardson, 2000].



27.4 SUMMARY 983

Figure 27.3.4.5 Dust infall with proportional inner boundary condition of 0.1 [Richardson, 2000].

Figure 27.3.4.5 shows the density and velocity where a flux equal to 0.1 times the

final density was applied at the inner boundary. A CFL of 0.2 was used in this case. This

solution is not as stable as the one shown in Figure 27.3.4.4 where no inner boundary

condition was applied. The errors for this case were 11.0% for the velocity and 6.3%

for the density [Richardson, 2000].

27.4 SUMMARY

Active research toward computational relativistic hydrodynamics has been in progress

for the past three decades. Efforts are being made to provide reliable computer codes

such as in Font et al. [1998b, 1999], in which the FDM with Roe schemes and flux vector

splitting techniques have been examined to resolve relativistic shock wave problems.

Recently, FEM applications have been reported in Meir [1999]. Richardson and Chung

[2000] and Richardson [2000] examined the flowfield-dependent variation theory via

FEM.

It is shown in the work reported by Font et al. [1998b] that sources of error depend on

the initial data being evolved in spacetime or hydrodynamical evolution. For the shock

tube problem, only the hydrodynamical evolution was relevant since the evolution took

place on a flat background metric. For an evolution along a coordinate axis, the Roe

scheme was superior to the flux vector splitting. For an evolution where the shock front

is along the diagonal, the flux vector splitting was slightly more accurate. The BM system

tends to be more accurate than the ADM system.

The large amount of observation data involving general relativistic phenomena re-

quires the integration of numerical relativity with the traditional tools of astrophysics

such as hydrodynamics, magnetohydrodynamics, nuclear astrophysics, and radiation
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transport. In these areas, turbulence and shock waves are the most important physical

phenomena [Bulbus and Hawley, 1998]. Effects of viscosity, boundary layer interac-

tions, and turbulence have not been thoroughly investigated, mainly due to numerical

difficulties as in Newtonian fluids. Sophisticated and controlled implicit schemes must

be devised to cope with convection-diffusion interactions. Toward this end, the role of

the FDV theory introduced in Sections 6.5 and 13.6 is expected to be important and

should be investigated in the future.
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APPENDIX A

Three-Dimensional Flux Jacobians

For three-dimensional flows, the vector of conservation variables, U, can be defined in

terms of a new set of variables, l = �u, m = �v, n = �w, and e = � E

U =

⎡
⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�

�u
�v

�w

�E

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�

l
m
n
e

⎤
⎥⎥⎥⎥⎦

In terms of these variables, the convection and diffusion flux variables are written as

F1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l
l2

�
+ p

lm
�
ln
�

l
�

(e + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
lm
�

m2

�
+ p

mn
�

m
�

(e + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
ln
�

mn
�

n2

�
+ p

n
�

(e + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−�11

−�12

−�13

− l
�

�11 − m
�

�12 − n
�

�13 − k
∂T
∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−�21

−�22

−�23

− l
�

�21 − m
�

�22 − n
�

�23 − k
∂T
∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

G3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−�31

−�32

−�33

− l
�

�31 − m
�

�32 − n
�

�33 − k
∂T
∂z

⎤
⎥⎥⎥⎥⎥⎥⎦
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p = (� − 1)

[
e − 1

2�
(l2 + m2 + n2)

]
T = 1

�Cv

[
e − 1

2�
(l2 + m2 + n2)

]

Explicit forms of Jacobians for convection, diffusion, and diffusion gradients are

derived as follows:

ai = ∂Fi

∂U
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1
i

∂U1

∂F1
i

∂U2

∂F1
i

∂U3

∂F1
i

∂U4

∂F1
i

∂U5

∂F2
i

∂U1

∂F2
i

∂U2

∂F2
i

∂U3

∂F2
i

∂U4

∂F2
i

∂U5

∂F3
i

∂U1

∂F3
i

∂U2

∂F3
i

∂U3

∂F3
i

∂U4

∂F3
i

∂U5

∂F4
i

∂U1

∂F4
i

∂U2

∂F4
i

∂U3

∂F4
i

∂U4

∂F4
i

∂U5

∂F5
i

∂U1

∂F5
i

∂U2

∂F5
i

∂U3

∂F5
i

∂U4

∂F5
i

∂U5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
� − 3

2
u2 + � − 1

2
(v2 + w2) (3 − �)u (1 − �)v (1 − �)w � − 1

−uv v u 0 0

−uw w 0 u 0

−� Eu + (� − 1)u(u2 + v2 + w2) � E + 1 − �

2
(3u2 + v2 + w2) (1 − �)uv (1 − �)uw �u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

a2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

−uv v u 0 0
� − 3

2
v2 + � − 1

2
(u2 + w2) (1 − �)u (3 − �)v (1 − �)w � − 1

−vw 0 w v 0

−� Ev + (� − 1)v(u2 + v2 + w2) (1 − �)uv � E + 1 − �

2
(u2 + 3v2 + w2) (1 − �)vw �v

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

a3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0
� − 3

2
w2 + � − 1

2
(u2 + v2) (1 − �)u (1 − �)v (3 − �)w � − 1

−� Ew + (� − 1)w(u2 + v2 + w2) (1 − �)uw (1 − �)vw � E + 1 − �

2
(u2 + v2 + 3w2) �w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�11 = �

(
4

3

∂u
∂x

− 2

3

(
∂v

∂y
+ ∂w

∂z

))
= �

[
4

3

∂

∂x

(
l
�

)
− 2

3

[
∂

∂y

(
m
�

)
+ ∂

∂z

(
n
�

)]]

∂

∂x

(
l
�

)
= 1

�
l,1 − l

�2
�,1, �R = 2� + � and � = −2

3
�,



THREE-DIMENSIONAL FLUX JACOBIANS 991

b1 = ∂G1

∂U
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

b1
21 b1

22 b1
23 b1

24 0

b1
31 b1

32 b1
33 b1

34 0

b1
41 b1

42 b1
43 b1

44 0

b1
51 b1

52 b1
53 b1

54 b1
55

⎤
⎥⎥⎥⎥⎥⎥⎦

b2 = ∂G2

∂U
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

b2
21 b2

22 b2
23 b2

24 0

b2
31 b2

32 b2
33 b2

34 0

b2
41 b2

42 b2
43 b2

44 0

b2
51 b2

52 b2
53 b2

54 b2
55

⎤
⎥⎥⎥⎥⎥⎥⎦

b1
21 = 1

� 2
[�Rl,1 + �(m,2 + n,3) − �R(2u�,1 − v�,2 − w�,3)] b1

22 = �R

�2
�,1

b1
23 = �

� 2
�,2 b1

24 = �

� 2
�,3 b1

31 = �

� 2
[l,2 + m,1 − 2u�,2 − 2v�,1]

b1
32 = �

� 2
�,2 b1

33 = �

� 2
�,1 b1

34 = 0

b1
41 = �

� 2
(l,3 + n,1 − 2u�,3 − 2w�,1) b1

42 = �

�2
�,3 b1

43 = 0 b1
44 = �

�2
�,1

b1
51 = 1

�
(u�11 + v�12 + w�13) + ub1

21 + vb1
31 + wb1

41

− k
� 2Cv

[−(� E),1 + (2E − 3u2 − 3v2 − 3w2)�,1 + 2ul,1 + 2vm,1 + 2wn,1

]

b1
52 = ub1

22 + vb1
32 + wb1

42 − �11

�
− k

� 2Cv

[2u�,1 − l ,1]

b1
53 = ub1

23 + vb1
33 + wb1

43 − �12

�
− k

� 2Cv

(−m,1 + 2v�,1)

b1
54 = ub1

24 + vb1
34 + wb1

44 − �13

�
− k

� 2Cv

(−n,1 + 2w�,1) b1
55 = k

� 2Cv

�,1

b2
21 = b1

31 b2
22 = b1

32 b2
23 = b1

33 b2
24 = 0

b2
31 = 1

� 2
[�(l,1 + n,3) + �R(m,2 + u�,1 − 2v�,2 + w�,3)] b2

32 = �

� 2
�,1

b2
33 = �R

� 2
�,2 b2

34 = �

� 2
�,3

b2
41 = �

� 2
(m,3 + n,2 − 2v�,3 − 2w�,2) b2

42 = 0 b2
43 = �

� 2
�,3

b2
44 = �

� 2
�,2

b2
51 = 1

�
(u�21 + v�22 + w�23) + ub2

21 + vb2
31 + wb2

41

− k
� 2Cv

[−(� E),2 + (2E − 3u2 − 3v2 − 3w2)�,2 + 2ul,2 + 2vm,2 + 2wn,2

]
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b2
52 = −�21

�
+ ub2

22 + vb2
32 + wb2

42 − k
� 2Cv

[−l,2 + 2u�,2]

b2
53 = ub2

23 + vb2
33 + wb2

43 − �22

�
− k

�2Cv

[2v�,2 − m,2]

b2
54 = ub2

24 + vb2
34 + wb2

44 − �23

�
− k

�2Cv

[2w�,2 − n,2] b2
55 = k

� 2Cv

�,2

b3
21 = b1

41 b3
22 = b1

42 b3
23 = 0 b3

24 = b1
44

b3
31 = b2

41 b3
32 = 0 b3

33 = b2
43 b3

34 = b2
44

b3
41 = 1

� 2
[�(l,1 + m,2) + �R(n,3 + u�,1 + v�,2 − 2w�,3)] b3

42 = �

� 2
�,1

b3
43 = �

� 2
�,2 b3

44 = �R

� 2
�,3

b3
51 = 1

�
(u�31 + v�32 + w�33) + ub3

21 + vb3
31 + wb3

41

− k
� 2Cv

[−(� E),3 + (2E − 3u2 − 3v2 − 3w2)�,3 + 2ul,3 + 2vm,3 + 2wn,3

]

b3
52 = −�31

�
+ ub3

22 + vb3
32 + wb3

42 − k
� 2Cv

[−l,3 + 2u�,3]

b3
53 = ub3

23 + vb3
33 + wb3

43 − �32

�
− k

�2Cv

[2v�,3 − m,3]

b3
54 = ub3

24 + vb3
34 + wb3

44 − �33

�
− k

�2Cv

[2w�,3 − n,3] b3
55 = k

� 2Cv

�,3

ci j = ∂Gi

∂U, j

c11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

c11
21 c11

22 0 0 0

c11
31 0 c11

33 0 0

c11
41 0 0 c11

44 0

c11
51 c11

52 c11
53 c11

54 c11
55

⎤
⎥⎥⎥⎥⎥⎥⎦

, c12 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

c12
21 0 c12

23 0 0

c12
31 c12

32 0 0 0

0 0 0 0 0

c12
51 c12

52 c12
53 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

c13 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

c13
21 0 0 c13

24 0

0 0 0 0 0

c13
41 c13

42 0 0 0

c13
51 c13

52 0 c13
54 0

⎤
⎥⎥⎥⎥⎥⎦
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c21 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

c21
21 0 c21

23 0 0

c21
31 c21

32 0 0 0

0 0 0 0 0

c21
51 c21

52 c21
53 0 0

⎤
⎥⎥⎥⎥⎥⎦ , c22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

c22
21 c22

22 0 0 0

c22
31 0 c22

33 0 0

c22
41 0 0 c22

44 0

c22
51 c22

52 c22
53 c22

54 c22
55

⎤
⎥⎥⎥⎥⎥⎥⎦

,

c23 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

c23
31 0 0 c23

34 0

c23
41 0 c23

43 0 0

c23
51 0 c23

53 c23
54 0

⎤
⎥⎥⎥⎥⎥⎦

c31 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

c31
21 0 0 c31

24 0

0 0 0 0 0

c31
41 c31

42 0 0 0

c31
51 c31

52 0 c31
54 0

⎤
⎥⎥⎥⎥⎥⎦ , c32 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

c32
31 0 0 c32

34 0

c32
41 0 c32

43 0 0

c32
51 0 c32

53 c32
54 0

⎤
⎥⎥⎥⎥⎥⎦ ,

c33 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

c33
21 c33

22 0 0 0

c33
31 0 c33

33 0 0

c33
41 0 0 c33

44 0

c33
51 c33

52 c33
53 c33

54 c33
55

⎤
⎥⎥⎥⎥⎥⎥⎦

c11
21 = �R

l
� 2

c11
22 = −�R

�
c11

31 = �
m
� 2

c11
33 = −�

�

c11
41 = �

n
� 2

c11
44 = −�

�

c11
51 = uc11

21 + vc11
31 + wc11

41 − k
�2Cv

(
−e + 1

�
(l2 + m2 + n2)

)
c11

52 = uc11
22 + k

�2Cv

l

c11
53 = vc11

33 + k
� 2Cv

m c11
54 = wc11

44 + k
� 2Cv

n c11
55 = − k

�Cv

c12
21 = �

m
� 2

c12
23 = − �

�
c12

31 = �
l

� 2
c12

32 = −�

�

c12
51 = uc12

21 + vc12
31 c12

52 = vc12
32 c12

53 = uc12
23

c13
21 = �

n
� 2

c13
24 = − �

�
c13

41 = �
l

� 2
c13

42 = −�

�

c13
51 = uc13

21 + wc13
41 c13

52 = wc13
42 c13

54 = uc13
24

c21
21 = c11

31 c21
23 = c11

33 c21
31 = �

l
�2

c21
32 = − �

�
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c21
51 = uc21

21 + vc21
31 c21

52 = vc21
32 c21

53 = uc21
23

c22
21 = c12

31 c22
22 = c12

32 c22
31 = �R

m
�2

c22
33 = −�R

�

c22
41 = �

n
� 2

c22
44 = −�

�

c22
51 = uc22

21 + vc22
31 + wc22

41 − k
� 2Cv

[
−e + 1

�
(l2 + m2 + n2)

]

c22
52 = uc22

22 + k
� 2Cv

l c22
53 = vc22

33 + k
� 2Cv

m c22
54 = wc22

44 + k
� 2Cv

n

c22
55 = − k

�Cv

c23
31 = �

n
� 2

c23
34 = − �

�
c23

41 = �
m
�2

c23
43 = −�

�
c23

51 = vc23
31 + wc23

41 c23
53 = wc23

43 c23
54 = vc23

34

c31
21 = c11

41 c31
24 = c11

44 c31
41 = �

l
� 2

c31
42 = − �

�

c31
51 = uc31

21 + wc31
41 c31

52 = wc31
42 c31

54 = uc31
24

c32
31 = c22

41 c32
34 = c22

44 c32
41 = �

m
� 2

c32
43 = − �

�

c32
51 = vc32

31 + wc32
41 c32

53 = wc32
43 c32

54 = vc32
34

c33
21 = c13

41 c33
22 = c13

42 c33
31 = c23

41 c33
33 = c23

43

c33
41 = �R

n
� 2

c33
44 = −�R

�

c33
51 = uc33

21 + vc33
31 + wc33

41 − k
� 2Cv

[
−e + 1

�
(l2 + m2 + n2)

]
c33

52 = uc33
22 + k

� 2Cv

l

c33
53 = vc33

33 + k
� 2Cv

m c33
54 = wc33

44 + k
� 2Cv

n c33
55 = − k

�Cv
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Gaussian Quadrature

Gaussian quadrature is one of the most accurate numerical integration methods. In

general, the points of subdivision may not necessarily be equidistant, but they must be

symmetrically placed with respect to the midpoint of the interval of integration.

Consider the integral under the curve u = f (x) between the interval a and bdepicted

in Figure B.1a. The endpoints may be replaced by the nondimensional quantities – 1

and 1, as seen in Figure B.1b for u = f (�).

The integral for Figure B.1a is

I(x) =
∫ b

a

f (x) dx (B.1)

where x may be written in terms of � as

x = a + b
2

+
(

b − a
2

)
� (B.2)

and

dx =
(

b − a
2

)
d� (B.3)

Thus,

u = f (x) = f
[

x = a + b
2

+
(

b − a
2

)
�

]
→ f (�)

where

I(x) = b − a
2

∫ 1

−1

f (�) d� = b − a
2

I(�) (B.4)

I(�) =
∫ 1

−1

f (�) d� (B.5)

It is possible to write (B.5) in the form

I(�) = w1 f (�1) + w2 f (�2) + · · · + wn f (�n) (B.6)

in which wi and f (�i ), with i = 1, . . . , n, are the weight coefficient and abscissae,

respectively. This implies that I(�) contains 2n unknowns and requires 2n equations

995
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a

)(xfu =

-1 1

)(ξfu =

)(xf

x

)(ξf

ξ0

(a) Cartesian coordinates

(b) Natural coordinates

b

Figure B.1 Integrals under functions u = f (x)

and u = f (�).

to uniquely define these unknowns. Let f (�) be written as

f (�) = c1 + c2� + c3�2 + · · · + cm�m−1 (B.7)

with m = 2n. Substituting (B.7) into (B.5) gives

I(�) =
∫ 1

−1

f (�) d� = 2c1 + c3

2

3
+ c3

2

5
+ · · · (B.8)

Writing (B.7) at each point of subdivision yields

f (�1) = c1 + c2�1 + · · · + cm�m−1
1

f (�2) = c1 + c2�2 + · · · + cm�m−1
2

...

f (�n) = c1 + c2�n + · · · + cm�m−1
n

Substituting these into (B.6) leads to

I(�) = w1

(
c1 + c2�1 + · · · + cm�m−1

1

)
+ w2

(
c1 + c2�2 + · · · + cm�m−1

2

)
...

+ wn
(
c1 + c2�n + · · · + cm�m−1

n

)
or

I(�) = c1(w1 + w2 + · · · + wn)

+ c2(w1�1 + w2�2 + · · · + wn�n)

+ c3

(
w1�2

1 + w2�2
2 + · · · + wn�2

n

)
(B.9)

...

+ cm
(
w1�m−1

1 + w2�m−1
2 + · · · + wn�m−1

n

)
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Equating (B.8) and (B.9) yields

w1 + w2 + · · · + wn = 2

w1�1 + w2�2 + · · · + wn�n = 0

w1�2
1 + w2�2

2 + · · · + wn�2
n = 2

3
...

(B.10)

Writing 2n of these equations and solving them simultaneously would make it possible

to yield the values of 2n quantities of �1, �2, . . . , �n, w1, w2, . . . , wn.

The numerical integration performed in the manner described above is called

Gaussian quadrature. The reader should consult the standard book on Gaussian quadra-

ture for tabulated results for the weight coefficients wi and abscissae f (�i ). For n = 2

and 3, these values are

n wi ±�i

2 1.0000000000 0.5773502691

3
5

9
= 0.5555555555

√
3

5
= 0.7745966692

8

9
= 0.8888888888 0.0000000000

Here the weight coefficients are symmetric about � = 0 for the abscissae being anti-

symmetric about � = 0. For example, for n = 2, there is �i = ±0.5773502691 for which

wi = 1. Similarly, for n = 3, there is �i = ± 0.7745966692 for which wi = 0.5555555555.

Note that the solution of simultaneous equations (B.10) is laborious. To avoid this

difficulty, various polynomials of standard form (Legendre, Hermite, Chebyshev poly-

nomials, etc.) may be utilized. It is known that the Legendre polynomials are considered

most efficient for this purpose.

Gaussian Quadrature by Legendre Polynomials

We consider the integral (B.5) in the form∫ 1

−1

f (�) d� =
n∑

k=1

wk f (�k) (B.11)

Our problem is to determine the 2n constants, w1, w2, . . . , wn, �1, �2, . . . , �n, and it is

noted that the integral of (B.11) is exact if the integrand f (�) is a polynomial of degree

2n or less.

The associated points (k = 1, 2, . . . n) are equal to the values of the roots of a Leg-

endre polynomial �n(�). Let us arbitrarily take a polynomial gn(�) of degree n such

that

gn(�) = 	0�0(�) + 	1�1(�) + · · · + 	n�n(�) (B.12)

where �0(�), �2(�), . . . , �n(�) may be found in a standard text. As an example, let us

suppose that,
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for n = 3,

g3(�) = 	0 + 	1� + 	2

1

2
(3�2 − 1) + 	3

1

2
(5�3 − 3�) (B.13)

Comparing (B.13) with

gn(�) = 1 + 3� + 4�2 − 7�3 (B.14)

we obtain

	0 = 7

3
, 	1 = −6

3
, 	2 = 8

3
, 	3 = −14

5

which yields

g3(�) = 7

3
�0(�) − 6

5
�1(�) + 8

3
�2(�) − 14

5
�3(�)

This simple example serves to show that any polynomial gn(�) can be written in terms

of the Legendre polynomials.

From the orthogonality property of the Legendre polynomials,

∫ 1

−1

�m(�)�n(�) d� =

⎧⎪⎨
⎪⎩

0, (m �= n)

2

2n + 1
(m = n)

we have∫ 1

−1

gn(�)�n(�)d� =
∫ 1

−1

	0�0(�)�n(�)d� +
∫ 1

−1

	1�1(�)�n(�)d�

+ · · · +
∫ 1

−1

	n�n(�)�n(�)d� = 0 (B.15)

Comparing (B.15) with (B.11) and noting that gn(�)�n(�) is the integrand, we have

w1gn(�1)�n(�1) + w2gn(�2)�n(�2) + · · · + wngn(�n)�n(�n) = 0 (B.16)

Since gn(�) is an arbitrarily chosen polynomial, the only way that condition (B.16)

may be satisfied is by

�n(�1) = �n(�2) = · · · = �n(�n) = 0

In other words, the associated points �1, �2, . . . , �n are the roots and the Legendre poly-

nomial �n(�) = 0. For n = 3, the roots of �n(�) = 0 are

�n(�) = �3(�) = 1

2
(5�3 − 3�) = 0

�k =
(

−
√

3

5
, 0,

√
3

5

)

Now we turn to the determination of the values of the weighting functions wk(k =
1, 2, . . . , n). By definition of the Lagrange polynomial, any polynomial �n(�) of degree
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n passing through �k(k = 1, 2, . . . , n) points may be expressed in the form

�n(�) =
n∑

k=1

� (�k)Lk(�) (B.17)

Hence∫ 1

−1

�n(�) d� =
∫ 1

−1

n∑
k=1

� (�k)Lk(�) d� =
n∑

k=1

�n(�k)

∫ 1

−1

Lk(�) d� (B.18)

Comparing (B.18) with (B.11) yields

wk =
∫ 1

−1

Lk(�) d� (k = 1, 2, . . . n) (B.19)

By virtue of (B.11), we can rewrite (B.19) as

wk = 1

�′
n(�k)

∫ 1

−1

�n(�)

� − �k
d� (B.20)

For n = 3, we have

�n(�) = �3(�) = 1

2
(5�3 − 3�)

�′
n(�) = �′

3(�) = 3

2
(5�2 − 1)

Thus, using �1 = −
√

3

5
, �2 = 0, �3 =

√
3

5

w1 = 1

3

2

[
5

(
3

5

)
− 1

] ∫ 1

−1

1

2
(5�3 − 3�)

� +
√

3

5

d� = 5

9

w2 = 1

3

2
[5(0) − 1]

∫ 1

−1

1

2
(5�3 − 3�)

� + 0
d� = 8

9

w3 = 1

3

2

[
5

(
3

5

)
− 1

] ∫ 1

−1

1

2
(5�3 − 3�)

� −
√

3

5

d� = 5

9

It can be shown that the general form of the integral (B.20) is

wk = 2

[�′
n(�k)]2

(
1 − �2

k

) = 2
(
1 − �2

k

)
(n + 1)2[�n+1(�k)]2

(B.21)



1000 APPENDIX B

The values of weighting functions for n = 3 can be directly obtained by using (B.21):

wk = 2
(
1 − �2

k

)
(3 + 1)2

[
1

8

(
35�4

k − 30�2 + 3
)]2

w1 =
2

(
1 − 3

5

)

16

[
1

8

(
35

9

25
− 30

3

5
+ 3

)]2
= 5

9

w2 = 2(1 − 0)

16

[
1

8
(35(0) − 30(0) + 3)

]2
= 8

9

w3 =
2

(
1 − 3

5

)

16

[
1

8

(
35

9

25
− 30

3

5
+ 3

)]2
= 5

9

The abscissae and weight coefficients of the Gaussian quadrature formula calculated in

this manner are tabulated in Table 9.3.1 for the range n = 2 through n = 10.

Example 1

Using the three Gaussian points n = 3, integrate the following with Gaussian qua-

drature:

I =
∫ 3

0

x2 cos xdx

For this problem,

x = a + b
2

+ b − a
2

x = 0 + 3

2
+

(
3 − 0

2

)
� = 3

2
+ 3

2
�

dx = 3

2
d�

thus,

I =
∫ 3

0

x2 cos xdx = 3

2

∫ 1

−1

f (�) d�

= 3

2

∫ 1

−1

[
3

2
(1 + �)

]2

cos

[
3

2
(1 + �)

]
d�

= 3

2
[w1 f (�1) + w2 f (�2) + w3 f (�3)]
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= 3

2

{
5

9

[
3

2

(
1 −

√
3

5

)]2

cos

[
3

2

(
1 −

√
3

5

)]
+ 8

9

[
3

2
(1 − 0)

]2

cos

[
3

2
(1 − 0)

]

+5

9

[
3

2

(
1 +

√
3

5

)]2

cos

[
3

2

(
1 +

√
3

5

)]}
= −4.936

Since the exact solution for this problem is I = −4.9522, the error in this case is

0.327%.

Example 2

For 2-D and 3-D problems, the Gaussian quadrature formulas are, respectively:

∫ ∫
f (x, y)dxdy =

∫ 1

−1

∫ 1

−1

f (�, 
) d� d
 =
n∑

i=1

n∑
j=1

wiw j f (�i , 
j )

∫ ∫ ∫
f (x, y, z)dxdydz =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f (�, 
, �) d�

d
d� =
n∑

i=1

n∑
j=1

n∑
k=1

wiw jwk f (�i , 
j , �k)

Note that the abscissae values for 
j , �k are the same as for �i .

Example 3

Consider the integral for the isoparametric element:

I(x, y) =
∫ ∫

∂

∂xi
f (�, 
)dx1dx2

I(�, 
) =
n∑

i=1

n∑
j=1

wiw j f (� i , 
j )

Let N = M = 1, n = 3, and assume, for simplicity of illustration, that

f11(�i , 
j ) = 1 + �2 + 
2 + 
�

1 + � + 


The Gaussian quadrature integration becomes

∫ 1

−1

∫ 1

−1

f11(�i , 
j ) d�d
=
3∑

i=1

3∑
j=1

wiw j f11(�i , 
j )

= w1w1 f11(�1, 
1) + w1w2 f11(�1, 
2) + w1w3 f11(�1, 
3)

+ w2w1 f11(�2, 
1) + w2w2 f11(�2, 
2) + w2w3 f11(�2, 
3)

+ w3w1 f11(�3, 
1) + w3w2 f11(�3, 
2) + w3w3 f11(�3, 
3)
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= (0.555)2

[
1 + (−0.774)2 + (−0.774)2 + (0.774)2

1 − 0.774 − 0.774

]

+ (0.555)(0.888)

[
1 + (−0.774)2 + 0 + 0

1 − 0.774 − 0

]

+ (0.555)2

[
1 + (−0.774)2 + (−0.774)2 + (0.774)(−0.774)

1 − 0.774 + 0.774

]
+ · · ·

= 8.4444

For the finite element analysis using two- or three-dimensional isoparametric ele-

ments in general, one may obtain reasonably accurate results with several Gaussian

points in each direction.
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Two Phase Flow – Source Term Jacobians

for Surface Tension

U =

⎡
⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�

� F
�v1

�v1

� E

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�

�

m1

m2

e

⎤
⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎢⎣

0

0

� f1

� f2

� f1v1 + � f2v2

⎤
⎥⎥⎥⎥⎦

d = ∂B
∂U

=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

d31 d32 0 0 0

d41 d42 0 0 0

d51 d52 d53 d54 0

⎤
⎥⎥⎥⎥⎦

where

� fi = �gi + Qi Qi = �

(
F, j j

|F,k| − F, j
|F, j |, j

|F,k|2
)

F,i

Dimensionless form:

� fi = �∗

Fri
+ 1

We

(
F, j j

|F,k| − F, j
|F, j |, j

|F,k|2
)

F,i

where Froude and Weber numbers are used to make the relationship dimensionless:

Fr = v2
∞

gi L
We = �∞v2

∞L
�

Since � F = � replace F = �

�
in terms of the independent variables

|F,k| = (F,kF,k)
1
2 =

[(
�

�

)
,k

(
�

�

)
,k

] 1
2

, |F,k|2 = (F,kF,k) =
[(

�

�

)
,k

(
�

�

)
,k

]
and

|F,k|, j =
[
(F,kF,k)

1
2

]
, j

=
[{(

�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j

1003
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Qi = �

⎛
⎜⎜⎜⎝

(
�

�

)
, j j[( �

�

)
,k

(
�

�

)
,k

] 1
2

−
(

�

�

)
, j

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[( �

�

)
,k

(
�

�

)
,k

]
⎞
⎟⎟⎟⎠

(
�

�

)
, j

let A= F, j j

|F,k| =

(
�

�

)
, j j[(

�

�

)
,k

(
�

�

)
,k

] 1
2

and

B = F, j
|F,k|, j

|F,k|2 =
(

�

�

)
, j

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[(

�

�

)
,k

(
�

�

)
,k

]

Q = �(A− B)

(
�

�

)
j

∂B
∂U1

=

⎡
⎢⎢⎢⎢⎣

d11

d21

d31

d41

d51

⎤
⎥⎥⎥⎥⎦ = ∂

∂�

⎡
⎢⎢⎢⎢⎣

0

0

� f1

� f2

� f1 + � f2

⎤
⎥⎥⎥⎥⎦ = ∂

∂�

⎡
⎢⎢⎢⎢⎣

0

0

�g1 + Q1

�g2 + Q2

�g1v1 + �g2v2 + v1 Q1 + v2 Q2

⎤
⎥⎥⎥⎥⎦

d31 = ∂

∂�
(�g1 + Q1) = g1 + ∂ Q1

∂�
, d41 = ∂

∂�
(�g2 + Q2) = g2 + ∂ Q2

∂�
and

d51 = ∂

∂�
(�g1v1 + �g2v2 + v1 Q1 + v2 Q2) = g1v1 + g2v2 + v1

∂ Q1

∂�
+ v2

∂ Q2

∂�

where

∂ Qi

∂�
= ∂

∂�

[
�(A− B)

(
�

�

)
, j

]
= �

[(
∂ A
∂�

− ∂ B
∂�

)(
�

�

)
, j

+ (A− B)

(
− �

�2

)
, j

]

∂ A
∂�

= ∂

∂�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
�

�

)
, j j[(

�

�

)
,k

(
�

�

)
,k

] 1
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= ∂

∂�

[(
�

�

)
, j j

][(
�

�

)
,k

(
�

�

)
,k

]− 1
2

+ ∂

∂�

{[(
�

�

)
,k

(
�

�

)
,k

]− 1
2

}(
�

�

)
, j j

=

(
− �

� 2

)
, j j[(

�

�

)
,k

(
�

�

)
,k

] 1
2

−
(

�

�

)
, j j

[(
− �

� 2

)
,k

(
�

�

)
,k

]
[(

�

�

)
,k

(
�

�

)
,k

] 3
2

= −

(
− F

�

)
, j j

|F,k| + F, j j

[(
F
�

)
,k

F;k

]
|F,k|3
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where(
F
�

)
, j

= 1

�
F, j − 1

� 2
F�, j and

(
F
�

)
, j j

= − 2

� 2
�, j F, j + 2

� 3
F(�, j )

2 + 1

�
F, j j − 1

�2
F�, j j

∂ B
∂�

= ∂

∂�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�

�

)
, j

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[( �

�

)
,k

(
�

�

)
,k

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= ∂

∂�

[(
�

�

)
, j

]
[{(

�

�

)
,k

(
�

�

)
,k

} 1
2
]

, j[(
�

�

)
,k

(
�

�

)
,k

]

+ ∂

∂�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2
]

, j[( �

�

)
,k

(
�

�

)
,k

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(
�

�

)
, j

expand second
∂

∂�
term

∂

∂�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2
]

, j[(
�

�

)
,k

(
�

�

)
,k

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

∂

∂�

([{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j

)
[(

�

�

)
,k

(
�

�

)
,k

]

+ ∂

∂�

{[(
�

�

)
,k

(
�

�

)
,k

]−1}{[(
�

�

)
,k

(
�

�

)
,k

] 1
2

}
, j

=

[
1

2

{(
�

�

)
,k

(
�

�

)
,k

}− 1
2
{

2

(
− �

� 2

)
,k

(
�

�

)
,k

}]
, j[(

�

�

)
,k

(
�

�

)
,k

]

−
[(

�

�

)
,k

(
�

�

)
,k

]−2

2

[(
− �

�2

)
,k

(
�

�

)
,k

]

×
[{(

�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j

∂ B
∂�

=
(

− �

�2

)
, j

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[(

�

�

)
,k

(
�

�

)
,k

]

+
(

�

�

)
, j

⎡
⎢⎢⎢⎢⎢⎣

[{(
�

�

)
,k

(
�

�

)
,k

}− 1
2
{(

− �

�2

)
,k

(
�

�

)
,k

}]
, j[(

�

�

)
,k

(
�

�

)
,k

]
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−
2

[(
− �

� 2

)
,k

(
�

�

)
,k

][{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[(

�

�

)
,k

(
�

�

)
,k

]2

⎤
⎥⎥⎥⎥⎥⎦

=
(

F
�

)
, j

|F,k|, j

|F,k|2 − F, j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

{(
F
�

)
,k

F,k

}
|F,k|

⎤
⎥⎥⎥⎦

, j

|F,k|2 −
2

[(
F
�

)
,k

F,k

]
|F,k|, j

|F,k|4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where(
F
�

)
, j

= 1

�
F, j − 1

� 2
F�, j , |F,k|, j =

[
(F,kF,k)

1
2

]
, j

= 1

2
(F,kF,k)− 1

2 (F,kF,k), j

= 1

2

(F, jkF,k + F,kF, jk)

|F,k| = (F, jkF,k)

|F,k|⎡
⎢⎢⎢⎣

{(
F
�

)
,k

F,k

}
|F,k|

⎤
⎥⎥⎥⎦

, j

=

{(
F
�

)
,k

F,k

}
j

|F,k| − 1

2

(F,kF,k), j

|F,k|3
{(

F
�

)
,k

F,k

}

and{(
F
�

)
,k

F,k

}
, j

=
{(

F
�

)
,k

}
, j

F,k +
(

F
�

)
,k

F, jk =
(

F,k

�
− F�,k

� 2

)
, j

F,k +
(

F
�

)
,k

F, jk

(
F,k

�
− F�,k

� 2

)
, j

=
(

1

�

)
, j

F,k + 1

�
F, jk −

(
− 1

�2
F

)
, j

�,k − 1

�2
F�, jk

= − 1

� 2
�, j F,k + 1

�
F, jk +

(
2

� 3
�, j F − 1

� 2
F, j

)
�,k − 1

� 2
F�, jk

(F,kF,k), j = 2F, jkFk

∂B
∂U2

=

⎡
⎢⎢⎢⎢⎣

d12

d22

d32

d42

d52

⎤
⎥⎥⎥⎥⎦ = ∂

∂�

⎡
⎢⎢⎢⎢⎣

0

0

� f1

� f2

� f1 + � f2

⎤
⎥⎥⎥⎥⎦ = ∂

∂�

⎡
⎢⎢⎢⎢⎣

0

0

�g1 + Q1

�g2 + Q2

�g1v1 + �g2v2 + v1 Q1 + v2 Q2

⎤
⎥⎥⎥⎥⎦

d32 = ∂

∂�
(�g1 + Q1) = ∂ Q1

∂�
,
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d42 = ∂

∂�
(�g2 + Q2) = ∂ Q2

∂�
, and

d52 = ∂

∂�
(�g1v1 + �g2v2 + v1 Q1 + v2 Q2) = v1

∂ Q1

∂�
+ v2

∂ Q2

∂�

∂ Qi

∂�
= ∂

∂�

[
�(A− B)

(
�

�

)
, j

]
= �

[(
∂ A
∂�

− ∂ B
∂�

)(
�

�

)
, j

+ (A− B)

(
1

�

)
, j

]

∂ A
∂�

= ∂

∂�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
�

�

)
, j j[(

�

�

)
,k

(
�

�

)
,k

] 1
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

(
1

�

)
, j j[(

�

�

)
,k

(
�

�

)
,k

] 1
2

−
(

�

�

)
, j j

[(
1

�

)
,k

(
�

�

)
,k

]
[(

�

�

)
,k

(
�

�

)
,k

] 3
2

=

(
− 1

�

)
, j j

|F,k| + F, j j

[(
1

�

)
,k

F,k

]
|F,k|3

∂ B
∂�

= ∂

∂�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
�

�

)
, j

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[(

�

�

)
,k

(
�

�

)
,k

]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
(

1

� 2

)
, j

[{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[(

�

�

)
,k

(
�

�

)
,k

] +
(

�

�

)
, j

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[{(
�

�

)
,k

(
�

�

)
,k

}− 1
2
{(

�

�

)
,k

(
�

�

)
,k

}]
, j[(

�

�

)
,k

(
�

�

)
,k

]

−
2

[(
1

�

)
,k

(
�

�

)
,k

][{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[(

�

�

)
,k

(
�

�

)
,k

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∂ B
∂�

=
(

1

� 2

)
, j

|F,k|, j

|F,k| + F, j [ ]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[{(
�

�

)
,k

(
�

�

)
,k

}− 1
2
{(

�

�

)
,k

(
�

�

)
,k

}]
, j[(

�

�

)
,k

(
�

�

)
,k

]

−
2

[(
1

�

)
,k

(
�

�

)
,k

][{(
�

�

)
,k

(
�

�

)
,k

} 1
2

]
, j[(

�

�

)
,k

(
�

�

)
,k

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭



1008 APPENDIX C

∂ B
∂�

=
(

1

�2

)
, j

|F,k|, j

|F,k| + F, j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

{(
1

�

)
,k

F,k

}
|F,k|

⎤
⎥⎥⎥⎦

, j

|F,k|2 −
2

[(
1

�

)
,k

F,k

]
|F,k|, j

|F,k|4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where⎡
⎢⎢⎢⎣

{(
1

�

)
,k

F,k

}
|F,k|

⎤
⎥⎥⎥⎦

, j

= − (F, jkF,k)

|F,k|3
{(

1

�

)
,k

F,k

}
+

{(
1

�

)
,k

F,k

}
, j

|F,k| and

{(
1

�

)
,k

F,k

}
, j

=
{(

1

�

)
,k

}
, j

F,k +
(

1

�

)
,k

F, jk

=
(

2

� 3
�, j �,k − 1

�2
�, jk

)
F,k − 1

� 2
�,kF, jk

∂B
∂U3

=

⎡
⎢⎢⎢⎢⎣

d13

d23

d33

d43

d53

⎤
⎥⎥⎥⎥⎦ = ∂

∂ (�v1)

⎡
⎢⎢⎢⎢⎣

0

0

� f1

� f2

� f1 + � f2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0

0

0

�g1 + Q1

⎤
⎥⎥⎥⎥⎦

∂B
∂U4

=

⎡
⎢⎢⎢⎢⎣

d14

d24

d34

d44

d54

⎤
⎥⎥⎥⎥⎦ = ∂

∂ (�v2)

⎡
⎢⎢⎢⎢⎣

0

0

� f1

� f2

� f1 + � f2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0

0

0

�g2 + Q2

⎤
⎥⎥⎥⎥⎦

∂B
∂U5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d15

d25

d35

d45

d55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∂

∂ (� E)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

� f1

� f2

� f1 + � f2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦



APPENDIX D

Relativistic Astrophysical Flow Metrics, Christoffel

Symbols, and FDV Flux and Source Term Jacobians

D.1 METRICS AND CHRISTOFFEL SYMBOLS

The metric tensor g	 is related by the square of the line element as

ds2 = g	dx	dx

with the Minkowski form,

g	 =

⎡
⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦

ds2 = −dt2 + dx2 + dy2 + dz2

The Kerr line element is of the form

ds2 = −� − a2sin2�

�2
dt2 − 2a

2Mr sin2�

�2
dtd�

+
(
r2 + a2

)2 − a2�sin2�

�2
sin2�d�2 + �2

�
dr2 + �2d�2

with

� ≡ r2 − 2Mr + a2 �2 ≡ r2 + a2cos2�

The general relativistic Kerr metric with the angular momentum a per unit unit mass

M,

g	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−� + a2 sin2 �

�2
0 0

a sin2 �(� − (r2 + a2))

�2

0
�2

�
0 0

0 0 �2 0

a sin2 �(� − (r2 + a2))

�2
0 0 −a2 sin4 �� + sin2 �(r2 + a2)2

�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The Christoffel symbols for the Kerr metric are calculated from the metric terms,

g00,1 = 2
(−Mr2 + Ma2 cos2 � + a2r

)
�4

g00,2 = −4a2 sin � cos �(r2 + a2 − Mr)

�4

g03,1 = g30,1 = 2aM sin2 �(r2 − a2 cos2 �)

�4

g03,2 = g30,2 = −4aMr sin � cos �(r2 + a2)

�4

g11,1 = 2(−Mr2 + a2 cos2 �(M − r) + a2r)

�4

g11,2 = −2a2 sin � cos �

�4

g22,1 = 2r g22,2 = −2a2 cos � sin �

g33,1 =
−2a2 sin2 �

(
a2 sin2 � cos2 �(r − M) + r sin2 �(Mr − a2)

+ 2a2r cos2 �(r2 + a2) + r5 − a4r

)
�4

g33,2 =
−2 sin � cos �

(
sin2 �(3a2r4 − 4Mr3a2) + r2(r3 + a4 + 2a2r2) + 4a4r2

+ 2a6 + cos2 �2r4a2 + 4a4 sin2 � cos2 �� + 2a4 sin4 ��

)
�4

g00,0 = g00,3 = g03,0 = g03,3 = g11,0 = g11,3 = g22,0 = g22,3

= g30,0 = g30,3 = g33,0 = g33,3 = 0

g00 = g33

g00g33 − g03g30

g03 = g30 = −g30

g00g33 − g03g30

g11 = 1

g11

g22 = 1

g22

g33 = g00

g00g33 − g03g30

�0
00 = �0

03 = �0
30 = �0

11 = �0
12 = �0

21 = �0
22 = �0

33 = 0

�1
01 = �1

10 = �1
02 = �1

20 = �1
13 = �1

31 = �1
23 = �1

32 = 0

�2
01 = �2

10 = �2
02 = �2

20 = �2
13 = �2

31 = �2
23 = �2

32 = 0

�3
00 = �3

03 = �3
30 = �3

11 = �3
12 = �3

21 = �3
22 = �3

33 = 0

�0
01 = �0

10 = 1

2

(
g00g00,1 + g03g30,1

)
�0

02 = �0
20 = 1

2

(
g00g00,2 + g03g30,2

)
�0

13 = �0
31 = 1

2

(
g00g03,1 + g03g33,1

)
�0

23 = �0
32 = 1

2

(
g00g03,2 + g03g33,2

)
�1

00 = −1

2
g11g00,1 �1

03 = �1
30 = −1

2
g11g03,1 �1

11 = 1

2
g11g11,1
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�1
12 = �1

21 = 1

2
g11g11,2 �1

22 = −1

2
g11g22,1 �1

33 = −1

2
g11g33,1

�2
00 = −1

2
g22g00,2 �2

03 = �2
30 = −1

2
g22g03,2 �2

11 = −1

2
g22g11,2

�2
12 = �2

21 = 1

2
g22g22,1 �2

22 = 1

2
g22g22,2 �2

33 = −1

2
g22g33,2

�3
01 = �3

10 = 1

2

(
g30g00,1 + g33g30,1

)
�3

02 = �3
20 = 1

2

(
g30g00,2 + g33g30,2

)
�3

13 = �3
31 = 1

2

(
g30g03,1 + g33g33,1

)
�3

23 = �3
32 = 1

2

(
g30g03,2 + g33g33,2

)

D.2 FDV Flux and Source Term Jacobians

The three-dimensional Jacobians for ideal fluids for the general relativistic Kerr metric

are derived similarly as in Newtonian flows. The special relativistic Jacobians can be

deduced from these by setting g00 = −1, g11 = g22 = g33 = 1, and g03 = g30 = 0. It is

important to note that the Christoffel symbols are not dependent on the conservation

variables. This allows the source term Jacobians to be written as a combination of the

other Jacobians.

Convection Flux Jacobian

a1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

hW
0 0 0

−hW
(

V1
2 + g11

g00

)
2V1 0 0

g11

g00

(−hWV1V2) V2 V1 0 0⎡
⎢⎣

−hWV1V3+

V1

g30

g00

(
hW + P

� W
g00

)
⎤
⎥⎦ V3 0 V1 −V1

g30

g00

0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1

hW
0 0

(−hWV1V2) V2 V1 0 0

−hW
(

V2
2 + g22

g00

)
0 2V2 0

g22

g00⎡
⎢⎣

−hWV2V3+

V1

g30

g00

(
hW + P

� W
g00

)
⎤
⎥⎦ 0 V3 V2 −V2

g30

g00

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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a3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g30

g00
0 0

1

hW
− 1

hW
g30

g00

hWV1

(
g30

g00
− V3

)
V3 0 V1 −V1

g30

g00

hWV2

(
g30

g00
− V3

)
0 V3 V2 −V2

g30

g00

hW
(

2V3

g30

g00
− V3

2 − g33

g00

)
0 0 2V3 −2V3 + g33

g00

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Diffusion Flux Jacobians

bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

bi [5] bi [6] bi [7] bi [8] bi [9]

bi [10] bi [11] bi [12] bi [13] bi [14]

bi [15] bi [16] bi [17] bi [18] bi [19]

bi [20] bi [21] bi [22] bi [23] bi [24]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

b1[5] = −W�

(
C6 A2 + 2A3

V1

	
V1W2

)

+ 2�

⎛
⎜⎜⎜⎝

W3

(
V1

	
V1

,t + V1

V1
,t

	

)
+ W

((
V1

	

)
,1

+
(

V1

	

)
,2

+
(

V1

	

)
,3

)

+W3 D4

(
2

V1

	
V1 + V1

	
V2 + V2

	
V1 + V1

	
V3 + V3

	
V1

)

×(
g11 + W2 A10

)⎞⎟⎟⎠ + 2W
(

q1,	V1 − q1

V1

	

)

b1[6] = W�
(
B,1 A2 + 2A3 BV1W2

)
− 2�

(
W3

(
BV1,t +V1 B,t

) + W(B,1 + B,2 + B,3)
(
g11 + W2 A10

)
+W3 A26(2BV1 + BV2 + BV3)

)

+ 2W
(
q1,εV1 − q1 B

)
b1[7] = W�(B,2 A2) − 2�

(
W3 A26 BV1

) + 2W
(
q1,
V1

)
, b1[8] = W�(B,3 A2)

− 2�
(
W3 A26 BV1

) + 2W
(
q1,� V1

)
, b1[9] = 0

b1[10] = −W3�

(
A19V1V2 + 2A3

V1

	
V2

)
+ W

(
q1,	V2 − q1

	
V2 + q2,	V1 − q2

	
V1

)

+ �W3

(
V2

	

(
V1,t +A6

) + V2

((
V1,t

	

)
+ A23 + A5

)
+ V1

	

(
V2,t +A7

)

+ V1

((
V2,t

	

)
+ A9 + A18

))



RELATIVISTIC ASTROPHYSICAL FLOW METRICS 1013

b1[11] = W3�
(
B,1V1V2 + A3 BV2

) − �W3
(
B

(
V2,t +A7

) + V2
(
B,t + BV1,1 +A1

)
+ V1V2,1 B

) + W
(
q1,εV2 + q2,εV1 + q2 B

)
b1[12] = W3�

(
B,2V1V2 + A3 BV1

) − �W3
(
B

(
V1,t +A6

) + V1
(
B,t + BV2,2 +A1

)
+V2V1,2 B

) + W
(
q1,
V2 + q2,
V1 + q1 B

)
b1[13] = W3�

(
B,3V1V2

) − �W3
(
BV2V1,3 +V1V2,3 B

) + W
(
q1,� V2 + q2,� V1

)
,

b1[14] = 0

b1[15] = −W3�
(

A19V1V3 + 2A3

V1

	
V3

)
+ W

(
q1,	V3 − q1

	
V3 + q3,	V1 − q3

	
V1

)

+ �W3

(
V3

	

(
V1,t +A6

) + V3

((
V1,t

	

)
+ A23 + A5

)
+ V1

	

(
V3,t +A8

)

+V1

((
V3,t

	

)
+ A4 + A24

))

b1[16] = W3�
(
B,1V1V3 + A3 BV3

) − �W3
(
B

(
V3,t +A8

) + V3
(
B,t + BV1,1 +A1

)
+ V1V3,1 B

) + W
(
q1,εV3 + q3,εV1 + q3 B

)
b1[17] = W3�

(
B,2V1V3

) − �W3
(
BV3V1,2 +V1V3,2 B

) + W
(
q1,
V3 + q2,
V1

)
b1[18] = W3�

(
B,3V1V3 + A3 BV1

) − �W3
(
B

(
V1,t +A6

) + V1
(
B,t + BV3,3 +A1

)
+ V3V1,3 B

) + W
(
q1,� V3 + q3,� V1 + q1 B

)
b1[19] = 0,

b1[20] = −W3�

(
A19V1 + A3

V1

	

)
+ �

(
W3

(
C A23 + A5

)

+ W
V1,t

	

(
W2 + g00 + 2W2V3 + 2g30

)) + Wq1,	

b1[21] = W3�
(
B,1V1 + A3 B

) − �
(
W3

(
BV1,1 +A1

)
+WB,t

(
W2 + g00 + 2W2V3 + 2g30

)) + Wq1,ε

b1[22] = W3�
(
B,2V1

) − �
(
W3 BV1,2

) + Wq1,
,

b1[23] = W3�
(
B,3V1

) − �
(
W3 BV1,3

) + Wq1,� ,

b1[24] = 0

where

A1 = V1 B,1 + V2 B,2 + V3 B,3, A2 = g11 + (V1V1W2),

A3 = V1,1 +V2,2 +V3,3

A4 = V3,1

V1

	
+ V3,2

V2

	
+ V3,3

V3

	
,
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A5 = V1

(
V1

	

)
,1

+ V2

(
V1

	

)
,2

+ V3

(
V1

	

)
,3

, A6 = V1V1,1 +V2V1,2 +V3V1,3

A7 = V1V2,1 +V2V2,2 +V3V2,3 , A8 = V1V3,1 +V2V3,2 +V3V3,3 ,

A9 = V2,1

V1

	
+ V2,2

V2

	
+ V2,3

V3

	
A10 = V1V1 + V1V2 + V1V3,

A11 = T,1 + T,2 + T,3, A12 = V1,t +V2,t +V3,t

A13 = V2V1 + V2V2 + V2V3, A14 = V3V1 + V3V2 + V3V3,

A15 = g22 + (V2V2W2) A16 = g33 + (V3V3W2),

A17 = V1 V2

	
+ V2 V1

	
+ 2V2 V2

	
+ V3 V2

	
V2 V3

	

A18 = V1

(
V2

	

)
,1

+ V2

(
V2

	

)
,2

+ V3

(
V2

	

)
,3

,

A19 =
(

V1

	

)
,1

+
(

V2

	

)
,2

+
(

V3

	

)
,3

A20 = V1,1 +V2,1 +V3,1 , A21 = V1,2 +V2,2 +V3,2 ,

A22 = V1,3 +V2,3 +V3,3 A23 = V1,1

V1

	
+ V1,2

V2

	
+ V1,3

V3

	
,

A24 = V1

(
V3

	

)
,1

+ V2

(
V3

	

)
,2

+ V3

(
V3

	

)
,3

� = A11 + � W2(A12 + A6 + A7 + A8),

B= 1

�hW2
, � = 2�

3
, � = � − � , 	 = � W

q1 = −k�
(
g11 + W2 A10

)
, q2 = −k�

(
g22 + W2 A13

)
,

q3 = −k�
(
g33 + W2 A14

)

q1,	 = k

⎛
⎜⎜⎜⎝

W2 A17�+

(
g11 + W2 A10

)
� W2

⎛
⎝ V1,t

	
+ V2,t

	
+ V3,t

	
+A23 + A5 + A9 + A18 + A4 + A24

⎞
⎠

⎞
⎟⎟⎟⎠

q1,ε = −k
(

BW2�(2V1 + V2 + V3) + (
g11 + W2 A10

)
� W2(B,t + A1 + BA20)

)

q1,
 = −k
(
BW2V1� + (

g11 + W2 A10

)
� W2(B,t + A1 + BA21)

)
,

q1,� = −k
(
BW2V1� + (

g11 + W2 A10

)
� W2(B,t + A1 + BA22)

)
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d =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

d[5] d[6] d[7] d[8] d[9]

d[10] d[11] d[12] d[13] d[14]

d[15] d[16] d[17] d[18] d[19]

d[20] d[21] d[22] d[23] d[24]

⎤
⎥⎥⎥⎥⎥⎦

d[5] = (a3[20] + b3[20])�1
03 + (a1[5] + b1[5])�1

11 + (a2[5] + b2[5])�1
12

+(a1[10] + b1[10])�1
21 + (a3[15] + b3[15])�1

33 + (a1[10] + b1[10])�1
22

d[6] = �1
30 + (a3[21] + b3[21])�1

03 + (a1[6] + b1[6])�1
11 + (a2[6] + b2[6])�1

12

+(a1[11] + b1[11])�1
21 + (a3[16] + b3[16])�1

33 + (a1[11] + b1[11])�1
22

d[7] = �1
30 + (a3[22] + b3[22])�1

03 + (a1[7] + b1[7])�1
11 + (a2[7] + b2[7])�1

12

+(a1[12] + b1[12])�1
21 + (a3[17] + b3[17])�1

33 + (a1[12] + b1[12])�1
22

d[8] = �1
30 + (a3[23] + b3[23])�1

03 + (a1[8] + b1[8])�1
11 + (a2[8] + b2[8])�1

12

+(a1[13] + b1[13])�1
21 + (a3[18] + b3[18])�1

33 + (a1[13] + b1[13])�1
22

d[9] = �1
00 + (a3[24] + b3[24])�1

03 + (a1[9] + b1[9])�1
11 + (a2[9] + b2[9])�1

12

+(a1[14] + b1[14])�1
21 + (a3[19] + b3[19])�1

33 + (a1[14] + b1[14])�1
22

d[10] = (a3[20] + b3[20])�2
03 + (a1[5] + b1[5])�2

11 + (a2[5] + b2[5])�2
12

+(a1[10] + b1[10])�2
21 + (a3[15] + b3[15])�2

33 + (a1[10] + b1[10])�2
22

d[11] = �2
30 + (a3[21] + b3[21])�2

03 + (a1[6] + b1[6])�2
11 + (a2[6] + b2[6])�2

12

+(a1[11] + b1[11])�2
21 + (a3[16] + b3[16])�2

33 + (a1[11] + b1[11])�2
22

d[12] = �2
30 + (a3[22] + b3[22])�2

03 + (a1[7] + b1[7])�2
11 + (a2[7] + b2[7])�2

12

+(a1[12] + b1[12])�2
21 + (a3[17] + b3[17])�2

33 + (a1[12] + b1[12])�2
22

d[13] = �2
30 + (a3[23] + b3[23])�2

03 + (a1[8] + b1[8])�2
11 + (a2[8] + b2[8])�2

12

+(a1[13] + b1[13])�2
21 + (a3[18] + b3[18])�2

33 + (a1[13] + b1[13])�2
22

d[14] = �2
00 + (a3[24] + b3[24])�2

03 + (a1[9] + b1[9])�2
11 + (a2[9] + b2[9])�2

12

+(a1[14] + b1[14])�2
21 + (a3[19] + b3[19])�2

33 + (a1[14] + b1[14])�2
22

d[15] = (a1[20] + b1[20])�3
01 + 2(a2[20] + b2[20])�3

02 + (a3[5] + b3[5])�3
13

+(a1[15] + b1[15])�3
31 + (a3[10] + b3[10])�3

23 + (a2[15] + b2[15])�3
32

d[16] = �3
10 + �3

20 + 2(a1[21] + b1[21])�3
01 + (a2[21] + b2[21])�3

02

+(a3[6] + b3[6])�3
13 + (a1[16] + b1[16])�3

31 + (a3[11]

+b3[11])�3
23 + (a2[16] + b2[16])�3

32
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d[17]=�3
10 + �3

202(a1[22] + b1[22])�3
01 + (a2[22] + b2[22])�3

02 + (a3[7] + b3[7])�3
13

+(a1[17] + b1[17])�3
31 + (a3[12] + b3[12])�3

23 + (a2[17] + b2[17])�3
32

d[18]=�3
10 + �3

20 + (a1[23] + b1[23])�3
01 + 2(a2[23] + b2[23])�3

02

+(a3[8] + b3[8])�3
13 + (a1[18] + b1[18])�3

31 + (a3[13]

+b3[13])�3
23 + (a2[18] + b2[18])�3

32

d[19]=(a1[24] + b1[24])�3
01 + (a2[24] + b2[24])�3

02 + (a3[9] + b3[9])�3
13

+(a1[19] + b1[19])�3
31 + (a3[14] + b3[14])�3

23 + (a2[19] + b2[19])�3
32

d[20]=(a1[20] + b1[20])�0
01 + (a2[20] + b2[20])�0

02 + (a3[5] + b3[5])�0
13

+(a1[15] + b1[15])�0
31 + (a3[10] + b3[10])�0

23 + (a2[15] + b2[15])�0
32

d[21]=�0
10 + �0

20 + (a1[21] + b1[21])�0
01 + (a2[21] + b2[21])�0

02

+(a3[6] + b3[6])�0
13 + (a1[16] + b1[16])�0

31 + (a3[11]

+b3[11])�0
23 + (a2[16] + b2[16])�0

32

d[22]=�0
10 + �0

20(a1[22] + b1[22])�0
01 + (a2[22] + b2[22])�0

02 + (a3[7] + b3[7])�0
13

+(a1[17] + b1[17])�0
31 + (a3[12] + b3[12])�0

23 + (a2[17] + b2[17])�0
32

d[23]=�0
10 + �0

20 + (a1[23] + b1[23])�0
01 + (a2[23] + b2[23])�0

02

+(a3[8] + b3[8])�0
13 + (a1[18] + b1[18])�0

31 + (a3[13]

+b3[13])�0
23 + (a2[18] + b2[18])�0

32

d[24]=(a1[24] + b1[24])�0
01 + (a2[24] + b2[24])�0

02 + (a3[9] + b3[9])�0
13

+(a1[19] + b1[19])�0
31 + (a3[14] + b3[14])�0

23 + (a2[19] + b2[19])�0
32
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Homework Problems

The following homework problems are prepared assuming that this book can be divided

into three semester courses with three credit hours each: CFD I (Chapters 1 through

4 and 8 through 11), CFD II (Chapters 5 through 7 and 12 through 16), and CFD III

(Chapters 17 through 27). Instead of providing homework assignments at the end of

each chapter, some selected problems are given in this appendix. An emphasis is placed

on comparisons between FDM, FEM, and FVM. Through these exercises, it is hoped

that the reader gain appreciation for studying all available methods without prejudices

so that, at the end, advantages and disadvantages of each method can be identified. This

will be beneficial in making decisions on the most suitable choices for your problems at

hand. A sample computer program can be found at http://www.uah.edu/cfd as detailed

at the end of this appendix.

Homework problems for CFD I

1. One-dimensional problems

1.1 Given the differential equation

d2u
dx2

− 2u = f (x) 0 < x < 1, f (x) = 4x2 − 2x − 4

Boundary conditions:

(A) u(0) = 0, (B) u(1) = −1, (C)
du(0)

dx
= 1, (D)

du(1)

dx
= −3

Develop a computer program to solve the above differential equation by FDM,

FEM, FVM via FDM, and FVM via FEM, using 4 elements, 8 elements, and 16

elements. Draw the solution curves using computer graphics for the following

boundary conditions:

(1) (A) and (B), (2) (A) and (D), (3) (B) and (C)

Compare with the exact solution and provide comments on your results.

1.2 Given the differential equation

d2u
dx2

− u = f (x), f (x) = 2 − 2 cos x − x2, 0 < x < 1

Exact solution: u = x2 + cos x

1017
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Boundary conditions:

(A) u(0) = 1, (B) u(1) = 1.54,

(C)
du
dx

(0) = 0, (D)
du
dx

(1) = 1.16

Develop a computer program to solve by FDM, FEM, FVM via FDM, FVM

via FEM, using 8 elements, 16 elements, and 32 elements for the following

boundary conditions:

(1) (A) and (B), (2) (A) and (D), (3) (B) and (C)

Compare with the exact solution and provide comments on your results.

2. Two-dimensional elliptic partial differential equation
Consider the two-dimensional heat conduction equation:

∂2T
∂x2

+ ∂2T
∂y2

= 0

in a rectangular plate (L = 2 m, H = 1 m) with the boundary conditions as shown. Use

T = 0 at all interior nodes as an initial guess. Develop a computer program to solve

using the 40 × 20 mesh. Double and triple the mesh sizes to compare with the exact

solution:

T = T0

[
2

N∑
n=1

1 − (−1)
n

n�

sinh (n�(H − y)/L)

sinh (n�H/L)
sin

n�x
L

]
(Try N = 100 and 500)

T = 0

T = 0 T = 0

T
0

= 200 oR

2 m

1 m

Use FDM (direct method, Jacobi, Point-Gauss–Seidel, PSOR, LSOR, and ADI).

3. One-dimensional parabolic partial differential equation for Couette flow

∂u
∂t

− �
∂2u
∂y2

= 0
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Top plate fixed

= 0.0001 m /s 2ν
y

x

z

H

Fluid motion

Δy for x volocity and

Δt for time evolution

in the x-direction,

as shown here

Δt

Δy

u0 = 20 m/s Initial conditions t = 0 u = u0, y = 0

H = 30 mm u = 0, 0 < y < H

�y = 2 mm Boundary conditions t > 0 u = u0, y = 0

u = 0, y = H

Develop computer programs using the following methods, show the results graphically,

and provide comments.

FTCS Explicit Method:

(1) �t = 0.02; (2) �t = 0.0205

Crank-Nicolson Method:

(1) �t = 0.02; (2) �t = 0.0205

4. One-dimensional hyperbolic partial differential equation

4.1 Consider the first order wave equation:

∂u
∂t

+ a
∂u
∂x

= 0

with a = 330 m/s.

Initial and boundary conditions:

u(0, t) = 0 x = 0

u(L, t) = 0 x = L

u(x, 0) = 0 0 ≤ x ≤ 10

u(x, 0) = 15 sin
(

�(x−10)
30

)
10 ≤ x ≤ 80

u(x, 0) = 0 80 ≤ x ≤ 200
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5. One-dimensional Burgers’ equation

Consider the following:

Nondimensional form:

∂u
∂t

+ u
∂u
∂x

− �
∂2u
∂x2

= 0

Conservation form:

∂u
∂t

+ ∂ F
∂x

− �
∂2u
∂x2

= 0, F = 1

2
u2

Alternate form:

∂u
∂t

+ A
∂u
∂x

= �
∂2u
∂x2

, A= ∂ F
∂u

Solve using (1) FTCS explicit method, (2) MacCormack explicit method, and (c) BTCS

implicit method.

Boundary conditions:

u = 2 at x = −9 and u = −2 at x = 9

Exact solution for these boundary conditions, � = 1:

u = − 2 sinh x
cosh x − e−t

Use �x = 0.2, �t = 0.01. Compute at t = 0.1, 0.4, 0.8, 1.0 sec with (a) �x = 0.2, �t =
0.02, (b) �x = 0.2, �t = 0.05, (c) �x = 0.5, �t = 0.01, and (d) �x = 0.5, �t = 0.05.

6. Repeat Problem 2 using FEM (GGM, TGM, and GPG)
7. Repeat Problem 3 using FEM (GGM, TGM, and GPG)
8. Repeat Problem 4 using FEM (GGM, TGM, and GPG)
9. Solve the two-dimensional Poisson equation using FEM (GGM, TGM, GPG) and
FDM

∂2u
∂x2

+ ∂2u
∂y2

+ f (x, y) = 0, f (x, y) = −2y

Exact solution: u = x2 y
Boundary conditions and initial conditions are to be specified (using the exact solu-

tion) as shown in the figure below, with Neumann boundary conditions to be specified

at nodes with letter N, and Dirichlet elsewhere. Begin with all interior nodes specified

as u = 0. Compare the results of coarse, intermediate, and fine grids. For FEM use both

triangular elements and quadrilateral isoparametric elements for comparisons. Use the

five-point scheme for FDM.
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N

N N

N

N N

N

N

N

N N

N

N

N

N
N N

189

1

2

3

7

8

9

10

11

12

13

14

15

16

17

18

1

1
0.5

0.5

(a) Coarse Grid

55

1

2

3

4

5

6

7

8

9

10

(b) Intermediate Grid (Halved from the Coarse Grid)

9

8

7

6

5

(c) Fine Grid (Halved from the Intermediate Grid)

11 11 1

5

4

6

4

3

2

1

10. Repeat Problem 9 for the two-dimensional transient problem

∂u
∂t

− ∂2u
∂x2

− ∂2u
∂y2

− f (x, y) = 0, f (x, y) = − 1

(1 + t)2
− 2y, u = 1

1 + t
+ x2 y

11. Repeat Problem 9 for the two-dimensional transient convection-diffusion equations

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

− �

(
∂2u
∂x2

+ ∂2u
∂y2

)
− fx = 0,

fx = 1

1 + t

(
x2 + 2xy − 1

1 + t

)
+ 3x3 y2 − 2�y

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− �

(
∂2v

∂x2
+ ∂2v

∂y2

)
− fy = 0,

fy = 1

1 + t

(
y2 + 2xy − 1

1 + t

)
+ 3x2 y3 − 2�x

� = 10−3, 1, 103
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Exact solution:

u = 1

1 + t
+ x2 y, v = 1

1 + t
+ xy2

Homework Problems for CFD II

1. Lid-driven cavity incompressible flow
Use FDM (ACM, SIMPLE, SIMPLER, SIMPLEC, and PISO). Develop a computer

program and draw streamline distributions for Re = 10, 102, 103, 104, v = 1. Boundary

conditions: u0 = 1 and v0 = 0 at the top, and u = v = 0 at walls.

H = 1

L = 1

u  = 1
0

2. Repeat Problem 1 for a backstep geometry as shown with umax = 1 at inlet

H  = 11

L  = 40
2

u
max

= 1

H  = 12

L  = 61

Parabolic inlet velocity

3. Repeat Problems 1 and 2 using the vortex method
4. Consider the Euler equation (compressible flow)

∂U
∂t

+ ∂F
∂x

− H = 0

U =
⎡
⎣ �

�u
�E

⎤
⎦ , F = A

⎡
⎣ �u

�u2 + p
(�E + p)u

⎤
⎦ , H = dA

dx

⎡
⎣0

p
0

⎤
⎦

These equations represent the flow of a compressible gas inside a diverging nozzle (10 ft

long) with cross section given by A(x) = 1398 + 0.347 tanh(0.8x − 4)ft2 with � = 1.4,

R = 1716 ft2

sec2 ◦R

Inlet:

M = 1.5, p = 1000 lbf/ft2, � = 0.00237 slug/ft3

�u = 2.7323 slug/(ft
2

sec), �E = 4075 slug/(ft sec2)
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∂U
∂t

+ ∂Fi

∂xi
= 0, U =

⎡
⎣ �

� Vi

�E

⎤
⎦, Fi =

⎡
⎣ � Vi

� Vi Vj + p�i j

� EVi + pVi

⎤
⎦

Inlet:

M = 2, � = 1.4, R = 1716 ft2/ sec2 /sec2 ◦R, T = 519 ◦R

a =
√

� RT = 117 ft/sec, � = 0.002378 slugs/ft3

u = 2 × 1117 = 2234 ft/sec, v = 0, p = 2116 lbf/ft2

�E = p
� − 1

+ 1

2
�(u2 + v2) = 11224 lbf/ft2

Initial conditions: Use inlet conditions as initial conditions for all nodes.

Boundary conditions: Supersonic inlet, supersonic exit, slip wall conditions.

Solve using MacCormack, Lax-Wendroff, flux vector splitting, MUSCL, TVD

methods.

6. Repeat Problems 4 and 5 using FVM via FDM
7. Repeat Problem 1 using FEM (TGM, GPG, and FDV)
8. Repeat Problem 2 using FEM (TGM, GPG, and FDV)
9. Repeat Problem 3 using FEM (TGM and GPG)
10. Repeat Problem 4 using FEM (TGM, GPG, and FDV)
11. Repeat Problem 6 using FVM via FEM
12. Develop programs to solve the Navier-Stokes system of equations for Problem 5 using
all methods required for Problems 5 through 11. Repeat these programs for a geometry
in three-dimensional, with the depth of x3-direction given as 1 in the figure of Problem 5.

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= 0

U =
⎡
⎣ �

� Vj

� E

⎤
⎦ , Fi =

⎡
⎣ � Vi

� Vi Vj + p�i j

� EVi + pVi

⎤
⎦ , Gi =

⎡
⎣ 0

−�i j

−�i j Vj + qi

⎤
⎦

Homework Problems for CFD III

1. Develop computer programs to reproduce grids as shown in

(a) Fig. E17.1.1, physical and transformed geometries

(b) Fig. E17.1.2, quadratic Lagrange polynomials

(c) Fig. E17.1.3, three-dimensional grids

(d) Fig. E17.1.4, clustering of mesh lines

(e) Fig. E17.1.5, conical body

(f) Example 17.1.6
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2. Develop computer programs to reproduce grids as shown in

(a) Fig. E17.2.1, elliptic grid generation, TFI

(b) Fig. E17.3.4, surface grid generation, Bezier curve

3. Develop computer programs to reproduce grids as shown in

(a) Fig. 18.1.7, Delaunay-Voronoi, Watson algorithm

(b) Fig. 18.1.9, Delaunay-Voronoi, Bowyer algorithm

4. Develop computer programs to reproduce grids as shown in

(a) Fig. 18.2.3, advancing front method (AFM)

(b) Fig. 18.2.4, AFM smoothing

(c) Fig. 18.4.1, tetrahedral elements, NACA0012 airfoil

5. Develop computer programs to reproduce grids as shown in

(a) Fig. 19.2.4, adaptive mesh refinement (h-method), GPG

(b) Fig. 19.2.5, adaptive mesh refinement (h-method), FDV

6. Develop a computer program for an example of domain decomposition
7. Develop a computer program for an example of multigrid methods
8. Develop a computer program for an example of parallel processing
9. Special term projects: One or two chapters in Part V may be used for special term

projects so that the automatic mesh generation studied in Part IV can be utilized, leading

to a complete CFD project.

Note: Implementations of boundary conditions and methods of solutions for algebraic

equations vary considerably, depending on flow conditions, geometries, and types of

equations. They have been discussed in various chapters and sections as summarized

below.

Boundary conditions: 1.6.1, 1.6.2, 2.3, 6.7.1, 6.7.2, 10.1.2, 11.1.1, 11.1.2, 13.6.6

Equation solvers: 4.2.7, 4.4.2, 4.5.1, 10.3.1, 11.5.1, 11.5.2, 11.5.3

A Computer Program (Fortran 90) for the Solution of Navier-Stokes System of Equations

Using the Flowfield-Dependent Variation (FDV) Method with Finite Elements

Note: Computed results and source code available at http://www.uah.edu/cfd.

This is a computer program for the solution of Navier-Stokes system of equations in

which all features of flows are included to accommodate a wide variety of Mach numbers

and Reynolds numbers (compressible, incompressible, inviscid, and viscous flows). The

governing equations are of the form (conservation form of the Navier-Stokes system of

equations):

∂U
∂t

+ ∂Fi

∂xi
+ ∂Gi

∂xi
= B

The solution is carried out using the flowfield-dependent variation (FDV) method

with element-by-element (EBE) assembly via generalized minimal residual (GMRES)
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solution scheme using finite element discretizations with isoparametric elements and

Gaussian quadrature integrations.

The advantages of FDV method are as follows:

(1) The first-order FDV parameters (s1, s3) as calculated from the current flowfield

variables (Mach numbers and Reynolds numbers) assure the accuracy of solu-

tion. They alter the roles of each term in the governing equations in different

positions of the domain, reflecting the incompressible behavior very close to

the wall and compressible behavior or shock wave discontinuities away from

the wall automatically. This can be demonstrated by contour plots of the FDV

parameters themselves resembling the actual flowfields. The FDV scheme pro-

vides accurate solutions in turbulence with DNS mesh configurations and in

supersonic combustion through FDV Jacobians.

(2) The second-order FDV parameters (s2, s4) assure the stability of solution pro-

cess.

(3) A single program based on the FDV theory is capable of accommodating all

different flow physics, high speed or low speed, compressible or incompressible,

viscous or inviscid, in one-, two-, and three-dimensional geometries, reflecting

the interactions between various physical phenomena.

(4) The FDV method can be applied to both FDM and FEM geometries.

Example problems include:

I. Incompressible viscous flow

A. Lid-driven cavity flow (two-dimensional, three-dimensional)

B. Backstep flow (two-dimensional, three-dimensional)

II. Compressible (inviscid or viscous) flow

A. Shock tube (one-dimensional)

B. Transonic flow (variable cross sections with one-dimensional formulation)

C. Flat plate flow (two-dimensional, three-dimensional)

D. Compression corner flow (two-dimensional, three-dimensional)

E. Supersonic combustion chamber fin-inlet flow (three-dimensional)





Index

Accuracy, 48–61, 187, 372
Acoustic intensity level, 807
Additive Schwarz procedure, 654–9
Adiabatic wall, 206
Advancing front methods (AFM), 601–6
Atkin’s algorithm, 580
Albedo, 876, 892
Algebraic grid generator, 543–61, 579
Algebraic Reynolds stress model, 702–3
Alternating direction implicit (ADI), 66, 72–3,

141, 173, 522
Amplification factor, 70, 78
Approximate factorization, 73–5, 141, 175
Arbitrary Lagrangian-Eulerian methods, 912, 914,

930
Arc-length method, 571
Arnoldi process, 385
Arrhenius law, 737
Artificial compressibility, 106, 107, 126
Artificial viscosity (diffusion), 123–125, 127, 139,

140, 368, 371
Artificial viscosity flux limiters, 195
Assembly of stiffness (diffusion, viscosity) matrix,

212–5
Assembly of source vector, 212–5
Axisymmetric ring elements, 305, 306
Axisymmetric cylindrical heat conduction, 335–6

Back scatter, 707
Backward (upwind) differencing, 7, 46
Baldwin-Lomax model, 702–3
Banach space, 256
Base functions, see interpolation functions
Beam-Warming method, 85–6, 141, 156, 169–76,

524
Bernstein polynomials, 581, 583
Beta spline, 582, 583
Bezier curve, 581–586
Bezier patches, 583
BGK model, 940, 941
Biharmonic equation, 415
Black hole accretion, 975–76
Boltzmann equation, 940–941
Boolean matrix, 246, 313
Boolean operators, 609

Boundary and initial conditions, 9, 17–24, 38–41,
197–207, 315–20, 347–55, 458–460

Dirichlet, 17–20, 38–41
for Euler and Navier-Stokes system of

equations, 197–207
mixed, Robin, 38–41
Neumann, 9, 13–18, 20–24, 38–41, 347–354,

458–460
well-posedness, 98, 201

Boundary element methods, 245, 532–535
Bowyer algorithm, 597–600
Box (tophat) function, 707
Burger’s Equation, 87–90, 355, 402–404, 502

C0, C1, Cm continuity, 307–308
Catmull-Rom form, 582, 584
Cauchy/Robin boundary conditions, 39, 317
Cebeci-Smith model, 694
Cell area (Jacobian) method, 570
Cell-centered average scheme, 225–7
Cell-centered control volume, 223–5
Central difference, 6, 141, 371
CFL(Courant) number, 77, 78, 368
Characteristic Galerkin method (CGM), 347,

445–6
Characteristic variables, 134–5, 205
Chebyshev polynomials, 473–5, 645, 776, 788, 931
Chemical equilibrium equations, 714–54
Compatibility relations, 132
Christoffel symbols, 563, 574–7, 969, 1009–1016
Circum circle, circumradius, circumsphere, 593–4
Clausius-Duhem inequality, 437
Clustering function, 553–5
Coarse grain parallelism, 666
Combustion, see chemically reactive flows
Completeness, 307
Compressed sparse row, 669
Compressibility condition, 354
Compressibility effects, 703–5
Compression corner flow, 464
Condition number, 256, 257
Conduction-radiation ratio, 876, 906
Conforming elements, 308
Conjugate gradient method (CGM), 337, 384
Consistency, 61
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Consistent mass matrix, 359
Continuity across elements, 307
Continuous space-time (CST), 327
Contravariant metric tensor, 379, 440
Control functions, 567, 579, 618–627
Control function, 617–27
Control surfaces (volumes), 12–19, 219–32, 234–5,

501–9
Convection-diffusion equation, 369
Convection-dominated flow, 347–8
Convection Jacobians, 131, 170, 181, 989–94
Convection matrix, 355, 370
Convergence, 62, 258, 259, 306–8
Convex hull, 599
Coordinate transformation, 94–8
Cost function, 891
Couette flow, 110
Coupled Eulerian-Langrangian methods, 246,

535–8, 790
Courant (CFL) number, 368, 372, 374
Covariant metric tensor, 563
Crank-Nicolson scheme, 71–5, 81, 108, 356, 362,

364
Cubic spline, 535–7
Curl of three-dimensional vorticity transport

equations, 118, 417
Curvature tensor, 574

Damköhler number, 452, 743, 744, 784
Deflection angle, 467
Delaunay-Voronoi methods (DVM), 591–600
Derivative finite difference operator, 48
Diagonally dominant, 113
Differential geometry, 573–577
Differential operator, 440
Diffusion gradient Jacobian, 181, 433
Diffusion Jacobian, 181, 989–994
Diffusion matrix (stiffness, viscosity) matrix, 9,

355, 370
Diffusion number, 68
Diffusion transport tensor, 701
Diffusion velocity, 738
Dilatation, 353
Dilaunay triangulation, 592–594
Direct numerical simulation, 713–4, 792, 793, 796,

832, 931
Dirichlet boundary conditions, 39, 315–17
Discontinuity-capturing diffusivity, 454
Discontinuity-capturing factor, 442
Discontinuity-capturing scheme (DCS), 376, 377,

439–43
Discontinuous Galerkin methods DGM), 347,

446–7
Discontinuous space-time (DST), 327, 377
Dispersion error, 89
Dissipation error, 79
Dissipation tensor, 700
Dissociation, 767, 779
Distributed shared memory, 664–73
Domain decomposition methods, 654–60

multiplicative Schwarz procedure, 654–50
additive Schwarz procedure, 660–1
parallel processing in, 670, 677

Domain vertex methods, 547–45
Double asymptotic approximation, 373
Driven cavity flow, 465–7
DuFort-Frankel methods, 71, 522
Dulquist and Bjorck scheme, 56
Dust infall, 980–3

Eckert number, 881
Eddy (turbulent) viscosity, 710
Effectivity index, 646
Eigenvalues, 132  143, 179, 204, 208

negative, 204, 207
positive, 204, 207

Eigenvectors, 133, 134
Element-by-element (EBE) method, 340,

381
Elliptic equations, 31–3, 63–7, 98, 561, 572
Elliptic grid generator, 561–8, 618
Emissive power, 851–2
Energy dissipation range, 708
Energy norm error, 255, 630
Ensemble average, 691
Entropy condition, 151
Entropy controlled instability, 839–44
Entropy mode acoustics, 813–8
Entropy variables, 437, 441–4
Entropy variable Jacobians, 437, 438–40
Equation solvers, 65, 76–77, 90–4, 337–42,

380–91
Gauss elimination, 67
Gauss-Seidel iteration, 65
generalized minimal residual (GMRES)

method, 380, 752
Jacobi iteration, 65
Newton-Raphson method, 380, 752
Runge-Kutta method, 90, 168
Thomas algorithm, 76
tridiagonal matrix algorithm (TDMA), 76

Equilibrium chemistry, 744, 779
Error estimates, 254–9, 645
Error coefficient vector, 385
Error indicator, 628–30, 645
Errors

iterative, 65
round-off, 65
sources of, 91–94
truncation, 46–62

Essentially nonoscillatory (ENO) schemes,
163–5

Euler equations, 129–166, 367–91
Eulerian differences, 535
Explicit scheme, 68–71, 77–81, 167, 365, 366
Extinction coefficient, 853
Extrapolation methods, 201

FDV parameters (variation parameters), 181–185,
448–59, 784

Ffowcs Williams-Hawkings equation, 812, 836
Filtering functions, 706
Fine grain parallelism, 666
Finite difference operators, 48–61

derivative, 48
displacement, 48



INDEX 1031

Finite element functions
trial functions, (base, interpolation, shape), 8,

262, 308
temporal test functions, 254, 327
test functions, 8, 377–9

Finite point methods, 491–2
Finite rate chemistry, 744, 777
First order variation parameters, 183, 187
Flowfield-dependent variation methods, 180–94,

448–67, 781, 828, 832, 923, 977–84
Fluid-particle mixture, 923–7
Flux corrected transport (FCT) schemes, 165–6
Flux extrapolation approximation, 149
Flux implicit higher order accurate schemes, 196
Flux vector splitting, 142–5, 448
Forward differencing, 7, 46
Fourier series, 69
Fourier-cutoff function, 707
Fractional step methods, 75, 522
Frequency, fundamental, 69
Front tracking methods, 912
Froude number, 978
Frozen chemistry, 744
FTCS schemes, 78, 81
FTFS schemes, 77
Fully implicit continuous Eulerian (FICE)

methods, 956
Fundamental frequency, 69
FVM via FDM, 16, 216–39
FVM via FEM, 17, 491–517

Galerkin methods, 9, 243–54
characteristic (CGM), 426, 443–6
discontinuous (DGM), 243, 426, 446–8
generalized (GGM), 243, 347, 426, 435
generalized Petrov (GPG), 243, 347, 376–80,

426, 436–43
standard (SGM), 11, 243, 249, 309–24, 347, 912,

910
streamline diffusion Petrov (SUPG), 347, 374
Taylor (TGM), 243, 347, 426, 430–4, 777, 840

Galerkin test function, 370, 377
Gather operation, 669–70
Gauss elimination, 67, 657
Gauss-Seidel iteration, 65
Gaussian curvature, 576
Gaussian quadrature, 231, 292, 293 484, 892, 909,

995–1002
Generalized Galerkin methods (GGM), 327–336,

430, 435
Generalized minimal residual (GMRES), 384–5,

752
Generalized Taylor-Galerkin methods, 243, 426,

430–4, 510, 530
Generalized Petrov-Galerkin methods, 374, 377,

378, 410, 531
Gibbs function, 752
Givens Householder rotation matrix, 386, 390
Godunov method, 145–8, 155
Gram-Schmidt orthogonalization, 385
Granularity in parallel processing, 673
Gravitation, 965
Gravitational source term Jacobian, 1009–1016

Green’s function, 532
Grid clustering, 553–545
Grid generation

structured, 591–615
unstructured, 543–587

Hanging nodes, 630–631, 637–638
Heat conduction, 98, 99, 335
Helmholtz equation, 533, 808
Hermite polynomial, 271, 581
Hermite polynomial elements, 271–3, 544
Hessenberg matrix, 385, 387, 395
Hexahedral element, 303–5, 608
Hilbert space, 255, 629
hp methods, 645–9
hr methods, 640–3
Hyperbolic equations, 31–3, 77–81, 93, 332–4, 522
Hyperbolic grid generator, 565–71
Hypersonic flows, 120, 467 769–75

Ill-conditioned, 257
Implicit scheme, 71–72, 81, 90, 169, 331, 356, 365,

366
Incompressibility condition, 106–15
Incompressible limit, 178, 439
Inertial subrange, 708
Inner product, 8, 218, 249, 369
Insertion polygon, 594
Interpolation functions, 8, 247, 262, 308, 472, 543
Intrinsic time scale, 440
Ionization, 767, 772
Isoparametric element, 286–297, 477–80, 909
Iterative error, 65
Iterative paving method, 613

Jacobi iteration, 65
Jacobi preconditioner, 382
Jacobians

convection flux, 131, 170, 989
diffusion flux, 989
diffusion gradient, 181, 425, 979–84
source term, 1003, 1014

K − ε model, 696–7, 781, 785, 932
K − � model, 698
Kerr black hole geometry, 669
Kirchhoff’s law, 853
Kirchhoff’s method, 809–10, 821, 823
Kolmogorov microscale, 455, 708
Krylov space, 385

Laasonen method, 71, 522
Lagrange multipliers, 318, 320, 753, 754
Lagrange polynomial elements, 269–71, 543–4,

580
Lagrangian differences, 537
Lanczos algorithm, 382, 383, 385
Landau-Teller model, 773
Laplace equations, 63, 561–3
Large eddy simulation, 706–133, 792, 794
Law of mass action, 736–7
Lax-Friedrichs scheme, 138
Lax method, 80, 83, 151
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Lax-Wendroff method, 80, 82, 83, 105, 138, 523,
525

LBB Condition, 325, 408
Leapfrog method, 80, 168, 363

Midpoint, 87
Least square methods, 488–490, 890–2
Legendre polynomials, 466–7, 645
Legendre spectral mode functions, 479, 470,

645
Leonard stress, 707
Level set methods, 912
Lighthill’s acoustic energy, 811
Load balancing, 674–5

Dynamic, 675
Static, 674, 675

Local and global approaches for FEM, 309, 310,
311

Local remeshing, 642
L2 norm error, 256, 385, 464
Lumped mass matrix, 359–60

MacCormack scheme, 82, 85, 89, 98, 105, 140, 168,
525, 820

Mach number, 29, 120, 455, 838, 845
Mach wave, 20, 30
Magnetohydrodynamics, 937–9
Marker and cell (MAC), 106, 115, 409
Mass (Favre) average, 691–2
Mass fraction, 736
Mass matrix

Consistent, 359
Lumped, 359–360

Matrix-by-vector product, 669
Matrix norm, 256
Maxwell equations, 932–9
Mesh enrichment (p) methods, 644
Mesh movement (r) methods, 639–40
Mesh refinement (h) methods, 628–39
Mesh parameter, 258
Mesh smoothing, 604, 605
Meshless methods, see finite point methods
MIMD, SIMD, 666–8
Minimizer error vector, 385
Minkowski coordinate transformation, 972–3
Mixed methods, 325, 326, 407
Mixed/Robin boundary conditions, 38–41
Molar concentration, 736
Mole fraction, 736
Monotonicity condition, 152
Monte Carlo methods, 538–9
Multiblock structured grids, 587–9
Multigrid methods, 661–666

restriction process, 661–5
prolongation process, 661–5

Multiplicative Schwarz procedure, 654–60
Multi-step method, 81
Multitasking, 673
Multithreading, 672, 673, 678–83
MUSCL approach, 148–50

Natural coordinates, 267, 278, 282
Navier-Stokes system of equations, 33–8, 166–214,

426–460

Neumann boundary conditions, 9, 13–18, 20–24,
38–41, 97, 310, 312, 317–20, 508

Newton-Raphson method, 380, 382, 751, 752, 799,
891, 896

Nonreflecting boundary conditions, 204–5
Node-centered control volume, 219–23
Noise control, 827–832
Normed adjusted error, 385
Normed error vector, 385
Number density, 736
Numerical diffusion, 357, 358
Numerical diffusion test function, 367–80
Numerical diffusion factor, 368–73
Numerical diffusion matrix, 358, 370
Numerical diffusion test functions, 368–9, 370,

379, 441
Numerical viscosity, 153, 371
Nusselt number, 904

Operator splitting, 411, 777
Operator splitting methods, 411, 412
Optical thickness, 865, 909
Optically thick, 871–85
Optically thin, 869–83
Optimal control methods, 490, 889, 890–2, 904
Optimality condition, 647, 847
Orr-Sommerfeld equation, 419, 421
Orthogonality, 8, 249, 623
Outscatter, 707
Over-relaxation method, 66, 99, 128

Pade’ scheme, 60
Parabolic equations, 31–3, 67–73, 327–32
Parabolic grid generator, 572
Parallel processing, 666–75
Partial pressure, 736
Particle-in-cell (PIC), 119, 228, 538
PDE mapping methods, 561–572
Peclet number, 183, 370, 453, 743, 881
Penalty methods, 326, 408
Petrov-Galerkin (integral) methods, 368, 370, 374
Petrov-Galerkin test function, 377
Phase angle, 70
Phase field formulation, 912
Phase interaction methods, 922, 932
PISO, 106, 112–14, 175–7, 509, 528
Planck’s law, 851
Plasma processing, 946–56
Point implicit method, 197, 777
Pointwise error, 256
Poisson equations, 115, 572, 655
Potential equation, 121–9
Prandtl mixing length model, 693
Prandtl number, 909
Preconditioned conjugate gradient, 382
Preconditioning, 178–9, 396, 438, 657
Predictor-corrector, 81–3, 140, 168
Pressure-correction method, 108, 409, 410
Pressure mode acoustics, 808–810
Pressure-strain correlation tensor, 701
Primitive variables, 132, 442–6
Primitive variable Jacobian, 438, 439
Principal curvature, 578
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Prism element, 302, 303
Probability density function, 758–61, 785, 793
Projection method, 249
Prolongation process, 661–5
Pure convection, 399–402

QR algorithm, 421
Quadrilateral elements, 286–297
Quadtree and octree methods, 614

Radiative transfer equation, 873
Ramjet combuster, 779
Rarefied gas dynamics, 941–946
Reflection wave (reflection boundary), 205
Ristriction process, 661–665
Reconstruction function, 163
Relativistic hydrodynamics, 976–7
Relativistic shock tube, 974–5
Relativity

general, 965–72
special, 965

Reynolds number, 107, 184, 370, 428, 488, 909, 931
Reynolds average Navier-Stokes (RANS), 704,

706, 928
Reynolds stress, 455, 707
Reynolds stress model, 700–702, 780
Richardson method, 71
Riemann-Christoffel tensor, 576
Riemann invariants, 135
Roe’s approximate Riemann solver, 146
Root mean square error, 256
Rossland approximation, 871
Rotational difference, 125
Round-off errors, 65
Runge-Kutta method, 90, 168, 776, 792

Scatter operation, 669–70
Scattering media, 890
Schur complement matrix, 656
Schwarzschild metric, 969
Scramjet combustion, 731–735
Second order variation parameters, 183, 187
Semiconductor plasma processing, 946–56
Semi-implicit pressure correction, 413, 413
Sensible enthalpy, 734, 740, 741
Shock angle, 467
Shape functions, see interpolation functions
Shear layer, 206
Shock-capturing mechanism, 189–90
Shock tube problems, 465, 974, 975
Shock wave, 120, 205
Shock wave boundary layer flow, 463–6
SIMPLE, SIMPLER, SIMPLEC, 106, 111, 118,

528
Singularity, 648
Slivers, 594
Small perturbation approximations, 33, 121
Sobolev space, 255
Sound wave, 29
Smooth particle hydrodynamics (SPH), 491, 492,

913
Smoothness, 623
Solar corona mass ejection, 956–7

Solid angle, 853
Sound pressure level, 807
Space-time

continuous, 327
discontinuous, 327–5

Space-time Galerkin/least squares, 378
Spatial average, 691
Spectral element methods, 472–87, 788
Spectral methods, 472
Speedup factor, 666
Speed of light, 965
Speed of sound, 29
Splitting methods, 81
Spray combustion, 746–8, 786, 791
Stability and accuracy, 369–375
Stability conditions

Numerical, 61, 70, 233, 234, 369–75
Physical, 421, 839–47

Stephan-Boltzmann law, 842
Spray combustion, 746–8, 786–91
Stiffness (diffusion or viscosity) matrix, 9, 251,

277, 309–17
Stoichiometric condition, 736
Stoke’s flow, 324–7
Stream function, 39, 115
Streamline diffusion in GLS, 439
Streamline diffusion in GPG, 439
Streamline diffusion method (SDM), 243, 367
Streamline upwind Petrov-Galerkin (SUPG), 347,

374
Subgrid scale model, 709
Subgrid stress tensor, 707
Subsonic flow, 39, 120, 123
Supersonic flow, 30, 120, 128
Surface grid generator, 572–9, 584–7
Surface tension, 352, 1014–21
Surface tension force Jacobian, 1003–8
Surface traction, 353
Sutherland’s law, 34, 429

Taylor-Galerkin methods (TGM), 355, 366, 777,
840

Taylor series, 83, 85, 86, 180, 356, 368, 430, 449
Temporal parameter, 329
Temporal test functions, 254–327
Tensor notation (index notation), 246
Test function

spatial, 8, 247, 262, 308
temporal, 328, 435, 472

Tetrahedral elements, 298
Thomas algorithm, 76
Threaded parallel program, 678–83
Three plus one formulation, 967–8
Time average, 690–1
Total variation diminishing (TVD) schemes,

150–62, 189, 526, 527
Transfinite interpolation (TFI) methods, 555–60
Transient problems, 327
Transonic flow, 120, 123
Trial function, 8, 247, 262, 308, 470
Triangular elements, 273, 286
Triangular prism elements, 302, 303
Tridiagonal matrix algorithm (TDMA), 76
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Truncation errors, 46–62
Two-phase flows, 352, 912–934
Two-step explicit scheme, 358, 359
Two-temperature model, 772, 801

Unstable waves, 839–45, 846, 847
Upwind scheme, 124, 526

First order, 142–50
Second order, 150–62, 448

Unstructured finite element mesh refinements,
650–2

Unstructured grid generation, 591–615

Variable extrapolation approach, 148
Variational equation, 8, 250, 319
Variational functional, 622
Variational methods, 249, 251, 377, 622–7
Variation parameters (FDV parameters), 181–5,

448–59
Variational principles, 243, 251
Vector pipelines, 666

Vibration model, 772–3, 799
View factors, 858–62
Viscosity (diffusion, stiffness ) matrix, 9, 251, 277,

309–17
Volume-of-fluid methods, 912–21
Volume tracking methods, 912
Von Neumann stability analysis, 68–71, 77–80
Vortex methods, 115–118, 414–20
Voronoi polygons, 592–4
Vorticity mode acoustics, 811–3
Vorticity transport equation, 117

Wall functions, 698–9
Watson algorithm, 592–7
Wave equation, 87
Wave number, 9, 51, 253
Weak form (solution), 9, 369
Weight function, 621
Weighted residual methods, 249, 252, 472–99
Well-conditioned, 257, 438, 439
Well-posedness, 198, 201
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